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ABSTRACT 
We study an M/M/1 queueing system in which the arrival stream is  'shut off' from time to time. The time-
dependent probability generating functions of the number in the system have been found. The 
corresponding steady state results have been derived. The mean number in the system as well as 
server's utilization time and idle time have been obtained explicity. In a particular case, some well-
known results have been derived. 
 
Key Words: interrupted arrival stream, variable batch arrivals, exponential service, probability 
                       generating function, steady state, utilization time, idle time, mean number in the 
                       system. 
 
RESUMEN 
Estudiaremos un sistema de colas M/M/1 en el que la corriente de arribos se desembaraza de vez en 
vez. Han sido halladas las funciones generatrices de probabilidades dependientes del tiempo. Los 
resultados correspondientes para el estado previo han sido derivados. El número promedio en el 
sistema así como del tiempo de la utilización del servidor y del tiempo ocioso son obtenidos 
explícítamente. Algunos resultados bien conocidos son derivados para un caso particular. 
 
MSC 60K25. 
 

1. INTRODUCTION 
 
 Queueing systems with vacations or service interruptions or breakdowns have been studied by numerous 
authors including Keilson and Servi [1986], Scholl and Kleinrock [1983], Cramer [1989], Shanthikumar [1988], 
Doshi [1986] and Madan [1992, 1995]. In this paper we investigate a queueing system in which there are no 
server vacations or breakdowns. Instead, the arrivals into the system are interrupted in the sense that the 
arrival stream gets 'shut off' from time to time. Such a situation could have definite effect on queue 
characteristics including queue length and server's utilization time. Some examples where such a situation 
could be encountered are the following. Aircrafts may stop landing at an airport for some time due to bad 
weather conditions. Branches of an assembly line could stop from time to time thereby blocking the input to 
the next branch. Flow of oil into or out of a refinery or flow of water into or out of a reservoir could experience 
random stoppages due to some reasons. Similarly flow of vehicles in a large network of a traffic system could 
stop for some time and then may become normal again and so on. 
 
2. THE MATHEMATICAL MODEL 
 
 Customers arrive at the system in batches of variable size. Given that the arrival stream (input source) is 
'on' at time t, let λci dt (λ > 0) be the first order probability that a batch size i customers arrives during the time 

interval (t, t+dt) where 0 < ci < 1 and  .1ci
1i

=∑
∞

=

 
 Customers are served one by one by the server with their service times having negative exponential 

distribution function B(x) = 1 - e-μt, t > 0, where 
μ
1 (μ > 0) is the mean service time. 

 
 Given that the arrival stream is 'on' at time t, let ξdt (ξ > 0) be the first order probability that the arrival 
stream will be 'off' during the short interval of time (t, t+dt). 
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 Given that the arrival stream is 'on' at time t, let ηdt (η > 0) be the first order probability that the arrival 
stream will be 'on' during the short interval of time (t, t+dt). 
 
 Further, we assume that the various stochastic processes involved in the system are independent of each 
other. 
 
3. DEFINITIONS AND SYSTEM EQUATIONS 
 
 Let pn(t), ( n ≥ 0) be the probability that at time t there are n units in the system including one in service, if 
any, and the input source is 'on' and let qn(t), (n ≥ 0) be the probability that at time t there are n units in the 
system including one in service, if any and the input source is 'off'. 
 
 The system is governed by the following set of forward differential-difference equations 
 

dt
d pn(t) + (λ + μ + ξ)pn(t) = ∑ λc

=

n

1i
ipn-i(t) + μpn+1(t) + ηqn(t)  (n ≥ 0)           (1) 

 

dt
d p0(t) + (λ + ξ)p0(t) = μp1(t) + ηq0(t)               (2) 

 

dt
d qn(t) + (μ + η)qn(t) = μqn+1(t) +ξpn(t)      (n ≥ 0)           (3) 

 

dt
d q0(t) + ηq0(t) = μq1(t) +ξp0(t)                 (4) 

 
4. THE GENERATING FUNCTIONS OF THE NUMBER IN THE SYSTEM 
 

 We define p(z,t) = p∑
∞

0
n(t)zn and q(z,t) = q∑

∞

0
n(t)zn as the probability generating functions of the 

numbers in the system when the input source is 'on' and 'off' respectively. Let c(z) = denote the 

probability generating function for the sequence c

i
i

1i

zc∑
∞

=

i of arrivals. 
 
 Let us assume that the system starts when the input source is 'on' and there are j units in the system, so 
that the initial condition is 
 
pn(0) = δn,j where δnj is the Kronecker's delta.             (5) 
 
 Taking Laplace transform of equations (1) through (4) and using initial condition (5), we have 
 

(s + λ + μ + ξ)pn(s) = δn,j + λc∑
=

n

1i
ipn-i(s) + μpn+1(s) + ηqn(s)  (n ≥ 0)           (6) 

 
(s + λ +ξ)p0(s) = μp1(s) + ηq0(s)               (7) 
 
(s + μ + η)qn(s) = μqn+1(s) + ξpn(s)     (n ≥ 0)           (8) 
 
(s + η)q0(s) = μq1(s) + ξp0(s)                (9) 
 
 Multiplying equations (6) through (9) by suitable powers of z yields 
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[(s + λ + μ + ξ)z - μ - λc(z)z]p(z,s) = zj+1 + μ(z - 1)p0 + ηzq(z,s)         (10) 
 
[(s + μ + η)z - μ]q(z) = ξzp(z,s) + μ(z - 1)q0(s)            (11) 
  
 Using equation (11) in (10), we obtain 
 

p(z,s) = 2
00

1j

z]z)z(cz)s[(]z)s[(
)s(q)1z(z]z)s[)]s(p)1z(z[

ξη−λ−μ−ξ+μ+λ+μ−η+μ+
−μη+μ−η+μ+−μ++

         (12) 

 
 Further, equation (11) can be written as 
 

μ−η+μ+
−μ+ξ

=
z)s(

)s(q)1z()s,z(zp)s,z(q 0              (13) 

 
 Now for z = 1, equations (12) and (13) respectively yield 
 

)s(s
s

)s)(s(
s)s,1(p

η+ξ+
η+

=
ξη−ξ+η+

η+
=              (14) 

 

)s(s)s(
)s,1(p)s,1(q

η+ξ+
ξ

=
η+

ξ
=              (15) 

 

 We note that p(1,s) + q(1,s) = 
s
1  as it should be. 

 
 Inverting the transforms (14) and (15), we obtain the respective probabilities that at time t the input source 
is 'on' and 'off' as follows 

 

t)(e)t(p η+ξ−

η+ξ
ξ

=
η+ξ

η
=               (16) 

 

t)(e)t(q η+ξ−

η+ξ
ξ

=
η+ξ

ξ
=              (17) 

 
 Obviously, p(t) + q(t) = 1 as it should be. 
 
 The denominator of the right hand side of equation (12) has 2 zeroes inside the unit circle |z| = 1. (For a 
proof, one can use Rouche's theorem, see Madan [4]). Let these two zeroes be designated as z1 and z2. 
Then since p(z,s) is regular inside |z| = 1, the numerator of the right hand side of equation (12) must vanish 
for each of these zeroes, thus yielding the following two equations 
 
[ + μ(z1j

1z +
1 - 1)p0(s)] [(s + μ + η)z1 - μ] + μηz1(z1 - 1)q0(s) = 0           (18) 

 
[ + μ(z1j

2z +
2 - 1)p0(s)] [(s + μ + η)z2 - μ] + μηz2(z2 - 1)q0(s) = 0           (19) 

 
 The unknowns p0(s) and q0(s) can be determined by solving equations (18) and (19) simultaneously. Thus 
p(z) and q(z) can be completely determined. 
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5. STEADY STATE SOLUTION 
 
 Let pn and qn define the steady state probabilities corresponding to the time dependent probabilities pn(t) 
and qn(t) defined above and let p(z) and q(z) denote the respective steady state probability generating 
functions for the number in the system. Then to derive the steady state results we apply the well-known 
Tauberian property  to equations (12) through (15) and obtain )t(fLim)s(sfLim

t0s ∞→→
=

 

p(z) = 2
00

z]z)z(cz)[]z)1z([
q)1z(zp]z)1z()[1z(
ξη−λ−μ−ξ+μ+λη+−μ

−μη+η+−μ−μ            (20) 

 

q(z) = 
z)1z(

q)1z()z(zp 0

η+−μ
−μ+ξ              (21) 

 
 At  z = 1 equations (20) is indeterminate of the 0/0 form. Therefore, we use L'Hopital's rule to find limit of 
p(z) as z → 1. Thus we have 
 

p(1) = 
)I(E)(

)qp( 00

ηλ−η+ξμ
+μη               (22) 

  

q(1) = 
)I(E)(

)qp( 00

ηλ−η+ξμ
+μξ    with   λE(I) < 

η
η+ξμ )(            (23) 

 

where c'(1) = is the mean batch size of arriving customers. )I(Eic
1i

i =∑
∞

=

 
 Equations (22) and (23) respectively give the probabilities that the arrival stream is 'on' or 'off '. 
 
 Since p(1) + q(1) = 1, adding (22) and (23), we obtain 
 

p0 + q0 = 
)(

)I(E)(
η+ξμ
ηλ−η+ξμ    with   λE(I) < 

η
η+ξμ )(            (24) 

 
 Since equation (24) gives the probability that the server is idle, no matter whether the arrival steam is 'on' or 
'off ', we can find its complement to get the system's utilization factor as 
 

)(
)I(E
η+ξμ

λη
=ρ                 (25) 

 
 We will continue the analysis for the case of single arrivals. In that case c1 = 1 and ci = 0 for i ≠ 1. 
Consequently c(z) = z. Then the denominator of the right side of equation (20) can be  written as 
 
[-λ(μ + η)z3 + (μ2 + 2λμ + λη + ημ + μξ)z2 - μ(λ + ξ + η + 2μ)z + μ2] which can be factored as (z-1) [-λ(μ + η) z2 
+  
μ(λ + μ + ξ + η)z - μ2] so that now the factor (z - 1) can be canceled out with that of the numerator. Therefore, 
the expression in (20) can be re-written as 
 

p(z) = 22
00

uz)(z)(
zqp]z)1z([

−η+ξ+μ+λμ+η+μλ−
μη+η+−μμ             (26) 
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 Now, the denominator of the right hand side of equation (26) has two zeroes given by 

)(2
)(4)()( 2

η+μλ
η+μλ−η+ξ+μ+λμη+ξ+μ+λμ m . One of these zeroes is inside the unit circle |z| = 1. Let this 

zero be denotes as z*. The denominator of the right hand side of (26) must vanish for this zero, giving 

 

*z
p*]z)([q 0

0 η
η+μ−μ

=                (27) 

 
 Since in the case of single arrivals E(I) = 1, equation (24) becomes 
 

)(
)(qp 00 η+ξμ

λη−η+ξμ
=+    where  λ < 

η
η+ξμ )(              (28) 

 
 Solving (27) and (28), we obtain 
 

*)z1()(
*z])([p 20

−η+ξμ
ηλη−η+ξμ

=                (29) 

 
which is the steady state probability that the server is idle, even though the arrival stream is 'on'. 
 

⎥
⎦

⎤
⎢
⎣

⎡
−μ
η+μ−μ

⎥⎦

⎤
⎢⎣

⎡
η+ξμ
λη−η+ξμ

=
*)z1(

*z)(
)(

])(q0             (30) 

 
which is the probability that the server is idle when the arrival stream is 'off '. 
 
6. THE MEAN NUMBER IN THE SYSTEM 
 
 Let r(z) = p(z) + q(z) be the probability generating function of the number in the system no matter whether 
the arrival stream is 'on' or 'off ', where p(z) and q(z) are given by equations (26) and (21) respectively. Then 

the mean number, L, in the system is given by 
dz
dL = r(z) at z = 1. Carrying out the computations and 

simplifying, we have 
 

)(
1

)(
p)(q)(L 2

0
22

0
2

)(
)(

η+ξη
ξμ

−⎥⎦

⎤
⎢⎣

⎡
η
ξ

+⎥
⎦

⎤
⎢
⎣

⎡

λη−η+ξμ
λη+ξμμ+μημ−η+μλ

=             (31) 

 
7. A PARTICULAR CASE 
 
 If we assume ξ = 0, which means that there are no interrumptions in the arrival stream, then the 
denominator of the right side of (26) becomes - λ(μ + η)z2 + μ(λ + μ +η) - μ2. It is easy to see that one zero of 

this polynomial which is inside the unit circle |z| = 1 is 
η+μ

μ . Setting z* = 
η+μ

μ  in equation (30) we get q0 = 0  

as it should be and the (29) gives p0 = 1 - 
μ
λ  which is a well-known result of the queueing system M/M/1. 

Further, with ξ = 0, q0 = 0 and p0 = 1 - 
μ
λ , equation (26) becomes 
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[ ]
22 z)(z)

1z)1z(
)z(p

( μ−η+μ+λμ+η+μλ−

⎥⎦

⎤
⎢⎣

⎡
μ
λ

−η−μμ
=             (32) 

 
 In we divide the numerator and the denominator of the right side of equation (32) by η and take limit as 

01
→

η
and simplify, we obtain 

 

z

1
)z(p

λ−μ

⎟
⎠

⎞
⎜
⎝

⎛
μ
λ

−μ
=               (33) 

 
which is again a well-known result giving the probability generating function of the number in the M/M/1 
queueing system. 
 

 Again, letting ξ = 0 and using q0 = 0 and p0 = 1 - 
μ
λ  in equation (31), we have the mean queue length in this 

particular case as  
 

L = 
λ−μ

λ  which is also a well-known result.            (34) 
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