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ABSTRACT 
The realibility of finite systems is studied. The functioning of a system is characterized by a vector of 
binary variables. The a priori distribution of the random vector permits to establish a linear probability 
model. It is used for deriving a predictor of the realibility and its error. Under a set of mild conditions T-
Student based inferences can be made when a sufficiently large sample size is uded. The independent 
case and a shock dependent model are studied. 
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RESUMEN 
La fiabilidad de sistemas finitos es estudiada. Su funcionamiento es caracterizado por vectores de 
variables binarias. La distribución a priori de los vectores aleatorios permite establecer un modelo 
probabilístico lineal. Este es utilizado para derivar un predictor de la fiabilidad y de su error. Bajo un 
conjunto de condiciones suaves se pueden realizar inferencias basadas en la T-Student cuando el 
tamaño de la muestra es suficientemente grande. 
 
Palabras clave y frases: fiabilidad, procedimiento Bayesiano, predicción. 
 

1.  INTRODUCTION 
 
 A systemic analysis, of different problems, provides a theoretic frame that allows to use common 
techniques for predicting the probability that it works. We will assume that we cope with a finite set of entities 
which are clustered in components. A certain function, evaluated in the observed working condition of the 
entities, evaluated the functioning of the system. For each evaluation of the function a set of weights can be 
computed. The realibility can be evaluated when the involved probabilities are known, which is the common 
case. The a priori information permits to use Bayes Theorem and some predictors are proposed. 
 
 Section 2 is devoted to the description of the system and of the realibility of its functioning. The 
independence of the components is assumed. Under a linear probability model a predictor is proposed. It is 
model umbiased. If a sufficiently large number or realizations of the system are observed the related test 
statistic is a T-test. 
 
 Section 3 introduces the notion of shock. The independence is not longer valid. The realibility can be 
predicted when an adequate random experiment is performed. Again T-Student based inferences can be 
implemented. 
 
 Section 4 discusses some examples, where this approach can be used. They model environmental, 
economic and technical problems. 
 
2.  MODELING THE FUNCTIONING 
 
 Take a finite set ζ = {1,...,n} and a partition ℵ = {A} defined on it, [∪A∈ℵA = ζ A ∩ A´ = Φ if A, A´ ∈ ℵ],. Each 
i ∈ A functions correctly (FC) with a probability pi, P = {pi: i ∈ A}. A set A ∈ℵ functions correctly (A - FC) if 
every i ∈ A FC. Hence πA = Πi∈Api is the probability that A - FC. The performance of i is characterized by a 
binary random variable 
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 It is a Bernoulli random variable.Then A - FC whenever 
 
XA = Πi∈Axi = 1 
 
 To analyze the functioning of a system Ψ = {ζ, φ} is the objective of this paper. 
 
 The function 
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evaluates the status of the system where 
 
X = {XA: XA = (X1,...,XnA)T&A ∈ ℵ} 
 
nA = number of components of A. 
 
 An adequate set of weights W = {δ(A): A ∈ ℵ} can be determined by solving the equation 
 
φ(X) = ΣA∈ℵδ(A)Πi∈AXi
 
 The function 
 
h(P) = ΣA∈ℵδ(A)Πi∈Api
 
measures the realibility of the system if the components of A are independent. Note that this models, in 
technical problems, the fact that ζ represents a device with equivalent parallel components. Then it functions 
if at least one A works. Hence 
 
δ(XA) = 1 for at least one A ∈ ℵ ⇒ ζ - FC  
 
and the probability that it functions is given by E[φ(X)] = h(p). 
 
 Different economical, technical and social systems use weights, for their components, that are not 
necessarily equal to one. Engeland-Huseby (1991) denoted by h(P) the realibility of a network system. P is 
named 'realibility vector'. It may be unknown. 
 
 Generally the system is constructed but its performance must be studied. Hence, the decision maker (DM) 
observes a random X and evaluates φ(X), which is an unbiased estimate of h(P). Then its error is the 
variance 
 
V[φ(X)] = ΣA∈ℵδ

2(A)Πi∈Api(1 - pi) 
 
if the random variables Xi are mutually independent. 
 
 For obtaining the sample the Dm designs an experiment and w1,...,wm random and independent events, 
from the corresponding probability space (Ω, σ, μ), are observed. We compute the sample estimates 
φ[X(w1)],...,φ[X(wm)]. 
 
 An estimator of the multilinear P-function h(P) is 
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 Note that this estimate is more accurate than the previous one. 
 
 Experts can combine their opinions about the bahavior of the components of ζ. Gasimyr-Natuig (1996) 
analyzed this problem by using a Standard Bayes Theorem approach. Scott (1977) proposed a Bayesian 
method for finite population inferences. We will use both ideas for modeling a Bayesian approach to this 
problem. 
 
 Suppose that a vector of real numbers Z = (Z1,...,ZN), the data (D), wich is related with X is completely or 
partially known. Using a sampling design d(ο: Z), which depends on the Z - vector, we observe, the sample s. 
Gasymir-Natuig (1995) assumed that P is unknown but that the DM  is able to model the uncertainty in terms 
of a prior distribution Q. The use of this prior yields 
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permits to use Bayes Theorem. w denotes a random event that identifies the actual population, μ is the 
Lebesgue measure and D denote the data set. If Z is available at the data analysis stage QD(X(w): Z) is 
proportional to Q(X(w): Z). Note that 
 
E[h(p)] = ∫ P[Φ(X) = 1 : Z]QD(X(w : Z)) 
 
 The sampling design is unimportant for the inferences. Hence the DM should only observe experimental 
points generated by some devise and to use the information provided by the data through the guessed prior. 
 
 Another method is to use the functional relation between X(w) and Z. The DM may postulate that for the 
prior Q[X(w)] the observations are iid random vectors distributed with 
 
E(X(w) : Z) = βZt + ε  
 
and 
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 In terms of our problem we can write the linear probability model by fixing A as an index: 
 
(1) XA = βZA + εA 
 
where Z is a known variable, or at least it can be measured, β is an unknown parameter and ε is an 
unobservable random variable with model expectation  
 
Eμ(εA) = 0 
 
and covariance 
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under the hypothesis of independence of the model residuals. 
 
 The measurement of the ZA's permits to predict 
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P(XA = 1) = βZA
 
 Note that we are dealing with is a Generalized Linear Model with binary random component and identity link 
function, see Agresti (1996). 
 
 The use of φ(X) as a predictor of h(p) was suggested previously. As the sampling design is non informative 
we can rely on the results of a reasonable experimental design for obtaining the required information. 
 
Proposition 1. Suppose that a certain experimental design generates m random results of a system ζ with a 
model structure ζ = ΣA∈ℵ A. Take the function φ0[X(wt)] and the model given by (1). The hypothesis that ζ is 
reliable [h(P) ≥ γ] can be tested by using 
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Proof: 
 

φ(wt) is a Bernoulli random variable with weight wi = .
m
1  If P = (p1,...,pn) is unchanged during the experiment 

then h(P) =  Take the weights )].P(ĥ[Eμ
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where then m is also the 'equivalent sample size'. Then t(P), for a sufficiently large m follows a 

T-Student distribution with approximatelly m - 1 degrees of freedom, see Bouza (1995) an the proposed test 
can be performed♣ 
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3. SHOCK MODELS 
 
 A  system can be affected in its performance by external causes that we will denominate as 'shocks'. 
Formally it is given by: 
 
Definition 2. A shock is an application  that represents an exogeneous cause that destroys all i ∈ A. )A(vSj

A a

 
 Note that the influence of internal causes is not modeled. For example this, means that the products are out 
of the 'infant mortality period' or that the coalition does not reach to a consensus because of discrepancies 
among the coalitioned agents. Following the ideas of Gasemyr-Natvig (1995) we have: 
 
ℵA =  { },J,...,1j:Sj

A = set of shocks for A 
 
Ei = {B: i is shocked}, set of shocks for i. 
 
EA = {B : B ∩ A ≠ Φ} 
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 The status of A is evaluated by the Bernoulli random variable: 
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with E(YA) = θA. 
 
 Currently the shocks can be considered as mutually independent. Real life problems behavior are modeled 
by the observation of a sequence a of signals. The structure of Xi leads to considering it as a function of the 
YA's. They are consistent with Xi. The discrete product measure prior 
 
pi = P(Xi : w) = ΠA∈EiQ(YA) = Π A∈EiqA

 
can be used for Bayesian inferences. qA is an unspecified marginal for Yi. This is a Bayesian approach that 
has been used by several authors in Sampling theory, see Chadhuri-Voos (1988). 
 
 The sequence of signals are characterized by Y ∈ {0,1}|a|. If the DM assigns a probability q ∈ [0,1]|a| we can 
model the functioning of it by 
 
Xi = ΠA∈EiYA

 
 The system can be redefined by using the function 
 
ς : {0,1}|a|  → {0,1}

n

 
such that ς(Y) = X, 
 
ς∗ : {0,1}|a| → [0,1]

 n
  

 
and ς∗(Y) = q. 
 
 Take A∗ = An structure ϕ : {0,1}}.j{n

1j=∪ |a| → {0,1}. Then ϕ(Y) = φ ο ς(Y) permits to identify the components 

of the system. We can express ϕ(Y) = φ(ς(Y)) = ΣA∈ℵΠi∈A(ΠB∈EiYB) = ΣB A∈ℵδ(A)ΠB∈AYBB. 
 
 We avoid the use of natural numbers for characterizing the initial system by using Θ = {ℵ*, ϕ}. The 
components of Θ are independent because ϕ is Y - evaluated. The realibility of Θ is  
 
g(θ) = ΣA∈ℵδ(A)ΠB∈EA

θB  B

 
 Hence the procedure used previously permits to predict in this framework under the hypothesis of iid 
because 
 
Eμ[ϕ(Y)] = g(θ) 
 
 Note that the knowledge of the signed domination function δ(A) for (ζ,φ) permits to predict the realibility of 
the dependent case. 
 
 Take the set of shocks for the subsets a of ζ and a family ℵ of them. Then: 
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is model unbiased and its error 
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 If a random experiment is performed and the results  
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confidence interval at the confidence level α. 
 
4. EXAMPLES 
 
 The described systems can be used for modeling different practical problems. We describe some of them. 
 
Example 3. Evaluation of a email network. Suppose that we have k different boxes. The network consists of n 
devises for sending a message. We can identity ℵ = with the network. Aj

k
1j AU = j is a path, pi is the probability 

that a component i works. δ(Aj) describes the efficiency of the path. Once the message is successfully sent 
φ(X) = 1. Though pi hould be given by the producer of the devises the real problem may be such that the 
operational conditions are far from being accomplished. The independence of the ' boxes'  in an email 
network can be accepted. The DM evaluates the technical condition of the devises and establishes the values 
of X1,...,Xn. The h(p) can be predicted and the comunication network is evaluated. The DM uses the 
evaluation for establishing the realibility of sending successfully a message. The existence of shocks is 
present when damages in the lines or the computers are expected or changes in the electric power are usual. 
 
Example 4. Design and operation of a monitoring network. The DM studies the environment of a region. A 
network of monitoring stations is designed. Each station i obtains information from a set of contaminating 
sources Ci = { })i(

H
)i(

1 c,...,c and provides information on a set of levels of a pollutant Λ = { }.L,...,L )i()i(
1 I  The 

conditional probabilities Prob ( ))i(
t

)i(
j L:c characterizes the relation between the observed level of the pollutant 

and the sources of it. For a certain message X the DM computes 
 
φ(X) = ΣA∈ℵδ(A)Πi∈A

Xi

 
where φ(X) = 1 establishes that the environment is being seriously affected. A is related with a monitoring 
station and 
         

⎪⎩

⎪
⎨
⎧

=
otherwise0

'eargl'isLobserveditheif1X
i
h

i . 

 
ACKNOWLEDGEMENTS 
 
 This paper was partially developed dutring a visit to the Centre Prospective of Economie Mathemàtique 
Apliquées supported by the Project Théory des Jeux et Matemàtique Economique. CNRS - MINVEL 5927. 
 

REFERENCES 

BOUZA, C. (1995): "Linear rank tests derived from a superpopulation model", Biometrical, J. 37, 
497-506. 

CHADHURI, A. and J.W. VOOS (1988): "Unified Theory and Strategies of Survey Sampling", N. 
Holland, Amsterdam. 

GASEMYR, J. and B. NATUIG (1995): "Some aspects of reliability analysis in shock models", 
Scandinavian J. of Stat. Theory and App. 22, 385-393. 

 255



MI, J. (1994): "Maximization of the survival probability and its applications", J. App. Probability, 31, 
1026-1033. 

 
SCOTT, A.J. (1977): "On the problem of randomization in survey sampling", Sankhya, 39, 1-9. 
 
 
 
 
 

 256


