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ABSTRACT 
A new class of column generation/simplicial decomposition method for non linear convex and 
differentiable programming is presented. The new algorithm class builds on the intuitively appealing idea 
that non linear column generation problems may be advantageous computationally. Difference 
applications of this methodology are presented, with special attention to the unicommodity and 
multicommodity network flow problems, which are obtained when some decomposition methods applied 
to network design problems. 
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RESUMEN 
Una nueva clase de métodos de descomposición generación/simplicial de columna para la 
programación no lineal convexa y diferenciable es presentada. La nueva clase de algoritmos se 
construye sobre la idea intuitiva de que los problemas de generación de columna pueden ser 
ventajosos desde el punto de vista computacional. Diferentes aplicaciones de esta metodología son 
presentadas, poniendo atención especial a problemas del tipo "unicommodity" y "multicommodity" para 
el flujo de redes, los cuales son obtenidos cuando algunos métodos de descomposición son aplicados a 
problemas del diseño de redes. 
 
Palabras clave: programación lineal convexa y diferenciable, generación de columna, plan de la red,  

 plan de la red capacitado, problemas de flujo en multicomodidad, intercambio en el    
 plan multimodal urbano, plan de red de carga ferroviario. 

 
1. INTRODUCTION 

  
 The Network Design Problem (NDP) arises in a variety of problems for solving the balance between 
investment in facilities and the operative cost to use the network. The NDP is defined on a graph, where some 
resources of facilities can be located in the nodes and arcs of the graph, which give the capacity of them. The 
demand origin-destination is distributed through the available routes of the network. 
 
 The cost to minimize is defined adding the cost for resources assignment and the cost for routing the 
commodities through the network. The NDP constraints are the specific routing and resource ones and the 
relation between them; the commodity route flows must be inferior to the arc and/or node capacity given by 
resources assignment. 
 
 The Fixed-Charge Facility Location Problem establishes the capacity at the arcs of multicommodity flow 
network problems. Gendron and Crainic (1994) propose different relaxation together with heuristics for 
yielding feasible solution. Hermann et al. (1996) study the capacitated network design problem (CNDP) using 
a dual ascent approaches. Holmberg and Yuan (1996) use an efficient method based on Lagrangian heuristic 
within a branch and bound framework. 
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 NDP have wide applications in telecommunication and transportation network design. See the surveys of 
Magnanti and Wong (1984), Minoux (1989); Chapter 16 of the book by Ahuja et al. (1993); Chapter 1, Section 
13 of Ahuja et al. (1995). 
 
 More specifically, for telecommunication network design, Balakrishnan et al. (1991) and Chapter 1 of the 
book by Gendron et al. (1998) present important review in the subject. 
 
 Parris et al. (1992) combine network topology (node and arc location) and capacity expansion problems for 
leased telecommunication network, in which there is a hierarchy of possible transmission facilities. They 
propose a double heuristic: a lower level a single-period topology only with operative costs, and at upper level 
with all the costs. 
 
 Chang and Gavish (1993) formulate a network topology and capacity expansion model in a telecommuni-
cation network (multicommodity, node location given and link capacity expansion). They include schemes 
exploiting the underlying special structure by Lagrangian relaxation and a global search strategy. 
 
 For transportation applications several application may be mentioned, here two of them have been chosen 
given our direct experience. The Rail Freight Network Design (RFNDP) and the Urban Multimodal 
Interchange Design (UMIDP) Problems. 
 
 The RFNDP considers the design of the optimal frequency and the schedule of the trains, which define  
the line services, through then commodities of the demand are routing. At the stations the car classification 
is produced using different parallel tracks. The cars are sorted in such a way that each track contains cars 
with a common (possibly intermediate) destination. For tactical planning level see, Crainic et al. (1984), 
Crainic et al. (1986), Keaton (1992) and Marín and Salmerón (1996). 
 
 For urban transportation it may be mentioned the UMIDP, where it must be decided the three following 
aspects: location of the interchanges in the main transit network, the design of facilities in these interchanges, 
and the design of the access mode to the interchanges. 
 
 Oppenheim (1994) describes the network design process as a bi-level programming problem, the upper 
level problem being the design problem and the lower level problem being the demand problem of these 
services. The system designer (leader) designs the system of transport taking into account how the users 
(followers) employ it. The leader is assumed to have knowledge of the responses of the followers. This 
situation is known in game theory as a Stackelberg game. 
 
 The bi-level programming is difficult to solve in practice due to its inherent nonconvexity and 
nonsmoothness. Friesz et al. (1992) use Simulated Annealing to solve the bi-level programming formulation 
of the continuous network design problem. 
 
 García and Marín (1999) consider simultaneously aspects of continuous and discrete network design, such 
as: capacity and fares for the first one and location of facilities and design of the secondary network for the 
second one. They have combined the simulating annealing method and heuristic for solving it. 
 
 NDP are frequently decomposed into convex and differentiable subproblems. Each one must be solved at 
each iteration of the decomposition scheme, so it is very important, improve the efficiency of the methods 
used to solve them. 
 
 So pseudo-convex minimization problems arise in a large variety of applications in the engineering and 
decision making. These applications require of the decomposition methodology for solving very large scale 
problems. In this framework the following constrained differentiable optimization problem is considered: 
 

,)x(fMin:)X;f(CDP
Xx∈

 

 
where f is pseudo-convex and continuous differentiable function and X is a non empty, convex and compact 
set. 
 
 García et al. (1999a) present a class of algorithms for these large-scale nonlinear optimization problems. 
There are two main characteristics of the methods in this class: (i) an approximation of the original problem in 
constructed and solved, where in the original feasible  set is replaced by a convex and compact subset, which 
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is an inner approximation, and it is called the restricted master problem (RMP); and (ii) this inner 
approximation is improved (that is, enlarged) by generating a column set in the feasible set through the 
solution of another approximation of the original problem, column generation problem (CGP) where in the 
original objective function is approximated. 
 
 As such, this class of column generation/simplicial decomposition (CG/SD) methods may be placed within 
the framework of Column Generation methods. Another characteristic of a CG/SD method is that the 
sequence of solution to the inner approximated problems tends to a solution to the original problem is such 
way that the objective function is a strictly monotone approach at its optimal value. Therefore, the class of 
CG/SD methods also falls within the framework of iterative descent algorithms. 
 
 This modular algorithm can be formulated in general as: 
 
• Algorithm to Solve Column Generation Problem (CGP). Let  x∈X, so solve the following problem: 
 

  )x;y(Min:)X;(CGP
Xy∈

Π  

   
where Π is a merit function. This approximation problem is much easier to solve than the original one. The  
structures of the set X and of the function Π are used in order to solve it efficiently. Note that the original 
function f can be used as a merit function, that is Π = f. 
 

• Algorithm to Solve Restricted Master Problem (RMP). Let X  be a convex and compact subset of X such 
that [x,y] is a subset of X , where y is a solution of CGP(Π,X). Solve the following optimization problem: 

 
)x(fMin:)X;f(RMP

Xx∈
 

 
 The RMP have two main characteristics: (i) at first iterations it has less number of variables, (ii) it has a very 
simply feasible region, normallly a simplex. These characteristics may be able to use nonlinear codes that 
have the important feature to have superlinear convergence. 
 
2. COLUMN GENERATION STATE OF ART 
 
 The classical form of a CG/SD method is Simplicial Decomposition (SD), originating in the works of 
Holloway (1974) and von Hohenbalken (1977). This algorithm was described for problems where X is a 
polyhedral set. 
 
 A profitable extreme point or direciton of X is generated through the solution of CGP(Π;X), in which Π is a 
first-order linear approximation of f, i.e., Π(y,x) = f(x) + defined at the solution, x, of ),xy()x(f T −∇ ).X,f(RMP  
This approximate problem is a linear programming problem, which in general is much easier to solve than the 
original one. 
 
 Let knowing the subset P a subset of extreme points of the compact polyhedral set X. The inner 
approximation X  of X is defined by the (polyhedral) set of points that can be expressed as a convex 
combination of these extreme points. The advantage of )X,f(RMP respect to original problem in that the inner 
representation of X is much simpler than its original, outer, representation in terms of linear equalities and 
inequalities; disregarding the definition constraints. The set X  is described by the Cartesian product of a 
simplex and the non-negative orthant, an optimization over which often can be made with little more effort 
than for an unconstrained problem, see Bertsekas (1982). 
 
 The disadvantage of SD is that since the number of extreme points and directions of a polyhedral set grows 
exponentially with its dimension, and the )X,f(RMP  introduces an impractical large number of variables when 
the SD progress. 
 
 For such disadvantage, an improvement over the original scheme referred to as restricted simplicial 
decomposition (RSD), was devised by Hearn et al. (1985 and 1987). They devise a modification of the 
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original scheme, in which the number of extreme points retained is kept below a positive integer, r. When this 
number of extreme points has been reached, any new extreme point generated replaces the column in P that 
received the least weight in the solution to the RMP. In order to ensure the convergence of the algorithm, the 
optimal solution x to the RMP must also be retained as an individual column (however not counted among the 
r columns). This algorithms is again an instance of the class CG/SD where X  is defined by means of the 
previous rule. 
 
 An extension of the RSD algorithm was made in Larsson et al. (1966 and 1997). The motivation behind the 
non-linear simplicial decomposition (NSD) method is that by generating high quality columns based on better 
approximations of the objective function in CGP, a less amount of columns will be needed to describe an 
optimal solution, and the sensitive of the method to the dimension of the optimal face will be reduced, 
moreover the number of main iterations is small when small values of the parameter r are chosen. Further, 
more efficient methods can be applied to each RMP, since they are smaller. 
 
 The NSD method is obtained from the CG/SD method by choosing the objective function of CGP: 
 

ΠNSD(y;x) = f(x) + ∇f(x)T(y-x) + ϕ(y;x) 
 
where ϕ(y;x) is a continuous function, convex and continuously differentiable respect to y for all x belongs to 
X, and with the properties that: ϕ(x;x) = 0 and ∇ y ϕ(x;x) = 0 for all x belongs to X. 
 
 García et al. (1999a) generalize both CGP and RMP in NSD algorithms. First, they consider a more general 
class of objective functions in CGP, that are merit functions, Π, and by other side, they take into account more 
general feasible set in RMP. 
  
 The convergence results for CG/SD methods allow both CGP and RMP are inexactly solved, thus 
facilitating its practical use. This is a crucial result that opens a way to see the CG/SD methods, if we choose 
the original function as merit function the CGP is defined by a crude algorithm used for solving it. This choice 
changes the vision of coordination of subproblems by coordination of descent closed algorithms. 
 
3. CG/SP PROPERTIES 
 
 We begin by starting the CG/SD conceptual scheme, which allows for the truncated solutions of both the 
CGP and RMP, and further it allows for very general rules for updating the inner approximations. The 
algorithm is described by means of (possibly point-to-set) closed descent algorithmic mapping, which will be 
assumed to fulfill conditions similar to those utilized in the convergence analysis in Zangwill (1969). 
 
 The CGP is solved using an iterative procedure, denoted by and belonging to a finite collection kk

rA c of two 
possible types. In the first alternative, the mapping is applied once only in a main iteration, and then it is 
assumed to provide a descent direction unless a solution is at hand; we denote this by type 1. The second 
alternative is based on the existence of a merit function, Π. In this case, the algorithm is applied at least once 
and possibly any number of times, starting from the point xk at which the restricted master problem was 
terminated, and then it is assumed to yield a reduced value of the merit function Π each time it is applied, 
unless a solution is at hand; we denote these ones by type 2. 
 
 The RMP is assumed to be solved by an iterative procedure, denoted and belonging to a finite collection  k

cA
Kr with similar properties to the above second case, with the exception that the algorithm should reduce the 
value of f each time that it is applied unless a solution to the CDP is at hand. 

 In Table 1 the CD/SD algorithm is defined 

Table 1. The CG/SD algorithm. 

0. (Initialitation): choose and initial point x0, and let t: = 0. 
1. (Column generating problem): choose an algorithm of the set Kk

cA c. It it of type 1, then apply one 
iteration, otherwise at least one iteration of the algorithm, on CDP(f;X), 
starting from xt. Let the resulting point be yt. 

2. (Termination criterion): if xt solves CDP(f;X) stop. Otherwise, continue. 

 94



3. (Set augmentation): let xt+1 a subset of X be a non-empty, compact and convex set such that the line 
[xt, yt] belongs to Xt+1. 

4. (Restricted master problem): choose an algorithm  of the set Kk
rA r. Apply at least one iteration of the 

algorithm on CDP(f;Xt+1), starting from xt. Let the resulting point be xt+1. 
5. (Update): Let t: = t+1. Go to Step 1. 

 
 Global convergence results are given for pseudo-convex minimization over compact and convex feasible 
sets. García et al. (1999a). Patriksson (1999) is a good reference about the theory used. 
 
 Hearn et al. (1985)  proved that Xt is a simplex for all t in RSD and SD under the hypothesis that RMPs are 
solved exactly and using some given rules. García et al. (1999a) have shown that this property is keep in 
CG/SD algorithms. The finitness convergence, in general, is lost for these algorithms. These authors give 
sufficient conditions to guaranty the finite convergence properties (identifying the optimal face or an optimal 
solution), and extended to the solution of variational inequality problems. These properties depend on the 
geometry of the problem, the properties of the algorithm used in CGP and the construction and solution of 
RMP. We have used the following hypothesis: 
 
1. SOLF(f;X) is a set of weak sharp minima for CDP(f;X) 

2. The algorithm used in CGP forces to zero the projection of the gradient  into X. 

3. r  ≥ dim F* + 1 and RMP are solved exactly, that is the same assumption that Hearn et al. (1985) used to 
can prove that the convergence is finite for RSD. We have introduced the possibility for a restricted 
simplicial decomposition scheme, that is r = ∞, that the RMP's are solved by truncation but at the limit are 
solved exactly. 

  
 García et al. (1999b) conduct numerical experiments on non-linear single- and multicommodity network 
flow problems with various realization of the framework, and compare their performances with those of the 
NSD and RSD algorithms. 
  
 Now, it is described two applications, where the above methodology may be used to solve the sybmodels 
that result when the design variables are fixed. First a centralized NDP and second a bilevel NDP are 
presented. 
  
 A large number of other applications could be mentioned. The CG/SD methodology is special relevant in 
the context of the traffic assignment models. See Patriksson (1994). The two mentioned applications have 
been selected because of we have a direct experience and they characterize the NDP with 1 and 2 levels 
approaches. 
 
4. RAIL FREIGHT PROBLEM 
 
 In the medium range planning of the activities in a Railway Freight Transportation System (RFTS), one of 
the most relevant problems is to define the service level, that is the different train itineraries, called services, 
and their frequencies (number of trips in the time horizon). This is also called tactical planning RFNDP. See 
Salmerón (1998) for more details. 
 
 A RFTS is defined by a physical network, where the nodes correspond to stations and the arcs to railway 
tracks, and by a set of Origin Destination pairs, for each of which and for each type of good to be shipped the 
demand is known. A service network is defined in term of the basic and classification (car grouping) services. 
These last ones are associated to a pair of classification yards. 
 
 We consider a commodity, w, as defined by an Origin/Destination pair and by one type of good; so the 
number of commodities is bounded by the number of O/D pairs times the number of distinct goods. The 
demand, b, is given in carloads, i.e. in number of cars, per unit of time. The demand is met by the car flow of 
each commodity w, xw. 
 
 The objective of the tactical planning is to determine, within the planning horizon, the train services to be 
run and their frequencies, y, (i.e. number of runs within the time horizon), so that the operative and waiting 
costs associated to the demand flow, f(x), and the design costs (train operative and train make up at the 
yards, given in function of the cost per unit of frequency on the services, r) are minimized. 
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 Each car flow (xw) commodity must be non negative and continuous. They must verify the network 
equilibrium conditions and the sum of de commodity flows for each arc (x) must be inferior or equal to the arc 
capacity, which is given by the train capacity (q) multiplied by the frequency. 
 
 The previous definitions permit us to set a tactical RFNDP that may be identified like an example of a 
centralized Network Flow Design Problem (NFDP), where the routing and the design decisions are taken by a 
centralized authority. A mixed integer NFDP is defined by: 
 
         ,yr)x(fMin T

BYy
0xw

+
⊂∈
≥

 
subjecto to  Axw = bw, ∀w 
 
          ∑ ≤=

w

Tw yqXx

 
 Using Metaheuristics, Marín and Salmerón (1996) define a decomposition schemes, which submodels are 
Capacitated Multicommodity Network Flow Problems, where the capacity constraints may be relaxed into the 
objective functon, so the new submodels are Multicommodity Network Flow Problems and they may be 
solved using CG/SD methodology class. 
 
5. MULTICOMMODITY INTERCHANGE DESIGN 
 
 In the UMINDP two subproblems must be studied: 
 
• 

• 

The network equilibrium subproblem: that is to say how the users choose the mode of transport, the 
interchange and the route on the system of transport. To provide a modeling framework for the 
consideration of combined mode trips, it is important to decide which choices are modeled by the mode 
choice model (demand) and which by the route choice on the transport network (supply). In this stage 
equilibrium between sypply and demand leads to an optimal modal split and traffic assignment. 

 
The design-subproblem; that is the choice of the location where the interchange will be established, the 
choice of the dimension of its parking lot and fares, and the type of service of the secondary transit to the 
interchange. 

 
The decision-maker, usually an authority, evaluates the cost-benefit of the effective state of the 

transportation system, which depends on the demand at the interchanges. Knowing the network equilibrium, 
the decision-maker generates a new plan on intervention in the system. This consists of making ot two types 
of decisions. 

 
The first ones are strategical decisions about the topology of the main transit network and the choice of the 

type of feeders. The second ones are tactical about the dimensioning and the fare policy of the parking lots. 
 
The demand allocation problem is formulated by means of an equilibrium model with combined modes, 

where the demand decisions are modeled by nested logit function and the transportation network has been 
simplified to a transportation model. The model describes the user behavior as a function of the generalized 
transportation costs. 

 
The UMINDP is formulated by means of a mix integer non-linear oprimization model. Both models have 

been integrated using bi-level mathematical programming. 
 

)g,x/(Min:)g(ULM
Xx
Ψ

∈
 

 
)x,q(Tmin.arcg:)x(LLM

)x(q Ω∈
= , 

 
where g is the demand share and x is the interchange design variable. 
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 In the lower level model (LLM) is minimized the demand cost objective function, T, which depend on the 
interchange capacity, fares, and the set of feasible solutions, Ω(x), also depends on the interchange location 
design. 
 
 In the upper level model (ULM) is taken strategical and tactical design decisions. At strategic level, the 
location of the interchanges, y, and design of the secondary bus feeder lines z, are studied. At tactical level, 
the interchange parking capacity, u, and the parking fare, v must be decided. We have denoted as x the set of 
design variables associated with the decisions of the upper level: x: = (y,z,u,v). 
 
 For ULM has been used an objective function, ψ, which is defined as the difference between the cost and 
the benefit in the transport system. To define the objective function all economic and non-economic factors 
are changed into monetary worth. 
 
 We assume that the decision-maker has a criterion for the evaluation of the level of service. We consider 
that this consists of two components, first a measure of the effective state of the transport system, which 
depends on the demand variable g. Second, it also depends on the parking fare, v. This benefit relation will 
be denoted as B(g,v). 
 
 The cost has three components: the location cost, L(y), which is a fixed cost of opening an interchange; the 
cost of the parking installation and management, P(u), which depends on its capacity; and the third one is the 
design cost of the secondary transit network, R(y,z), which is a function of the strategic design variables. 
 

ψ(x,g) = L(y) + R(y,z) + P(u) - B(g,v). 
 

 The upper level feasible set, X, is defined considering that each decision has its own constraint set and the 
strategic variables are binary, y, and integer, z, meanwhile, the tactical decisions, u, v, are continuous and 
non negative. 
 
 García and Marín (1999) solve the above bilevel model using some heuristic based on Simulated Annealing 
and Greedy techniques, the submodels may be Combined Multicommodity Network Flow Problems and they 
may be solved with the help of CG/SD. 
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