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ABSTRACT 
We consider a single-server retrial queueing system with K(K ≥ 1) Poisson input flows. The service 
times have a common arbitrary distribution function Bi(x) for customer of type i. An arriving customers of 

type i,  ,K,1i = who finds the server free begins to get service inmediately and leaves the system after 
completion. Otherwise, if the server is busy, the customer with probability 1 - Hi leaves the system 
without service and with probability Hi > 0 joins an orbit of repeated customer but conserves its own 
type. The intervals separating two succesive repeated attempts of each customers from the orbit are 
exponentially distributed with rate γ. The orbit is finite or infinite. In case of a finite orbit an arriving 
customer who finds the server busy and the orbit completely full is lost. We derive the steady state 
probabilities of the multidimensional Markov process underlying the considered queueing system. 
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RESUMEN 
Consideramos un sistema estable de colas con un solo servidor con K(K ≥ 1) flujos de entrada Poisson. 
Los tiempos de servicio tienen una función de distribución arbitraria Bi(x) para usuarios del tipo i. Un 

usuario del tipo i, ,K,1i = que se incorpora y encuentra el servidor libre, para obtener servicio comienza 
a utilizarlo inmediatamente y abandona el sistema al obtenerlo. En otro caso, si el servidor está 
ocupado, el usuario abandona el sistema con probabilidad 1 - Hi sin obtener el servicio y con 
probabilidad Hi > 0 se une a una órbita de usuarios repetitivos pero conserva su propio tipo. Los 
intervalos separantes de dos intentos sucesivos de cada usuario de la órbita se distribuyen 
exponencialmente con tasa γ. La órbita puede ser finita o infinita. En caso de una órbita finita un usuario 
que arriba y encuentra el servidor ocupado y la órbita llena completamente se pierde. Nosotros 
derivamos las probabilidades de reintento del estado para el proceso multidimensional de Markov 
subyacente en el sistema de colas. 
 
Palabras clave: sistemas de colas, flujos varios, esfuerzos repetidos, proceso de Markov. 

 
1. INTRODUCTION 
 
 Queueing systems with repeated customers have wide use in the practice of designing of computer 
communications networks and telecommunication systems. There are many works considering different 
models of retrial single-server queueing systems with one Poisson input flow (see, for ex. Falin and 
Templeton (1997)). Nevertheless the single-server queueing systems with several independent Poisson input 
flows with retrials and without priorities were not  investigated. For the case with no retrials the phenomenon 
of multitype Poisson input flow was investigated in Basharin (1965) for the MK/MK/1/r queueing system with a 
buffer of capacity r, where r can be finite of infinite. In that work the steady state distribution of 
multidimensional queue lengths distribution was obtained. This result was extended in Bocharov (1985) for 
the MK/GK/1/r queueing system with arbitrary service times distribution function Bi(x) of customers of type i, 

.K,1i =  
 
 The purpose of the present work is to study the multitype Poisson input flow phenomenon for a single-
server queueing system without buffer for the primary customers arriving from outside but having an orbit for 
repeated customers where customers of different types are queueing separately. The maximum number of 
customers of all types waiting in the orbit to seek service again can be finite or infinite. The both cases are 
investigated. 
 
 It should be pointed out that the approach of Bocharov (1985) of the reduction of multidimensional limiting 
distribution of underlying linear Markov process to two-dimensional distribution, where the type of served 
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customer and the total number of customers in the orbit are only marked, was developed for the queueing 
system under study. 
 
2. DESCRIPTION OF THE QUEUEING SYSTEM 
 
 We consider a single-server queueing system without buffer with K (K ≥ 1) independent Poisson flow of 
customers. The flow rate for the customers of type i (i-customers) in λi and their service times have a 
common arbitrary distribution function Bi(x), .K,1i = We assume that the distribution functions Bi(x) are 

absolutely continuous and satisfy the conditions Bi(0) = 0 and .K,ii,/1)t(tdB i
0

i =∞<µ=∫
∞

 

 
 Any i-customer who finds the server busy at the time of his arrival joins with probability Hi a retrial group 
called "orbit" in order to be service again and with probability Hi a retrial group called "orbit" in order to be 
serviced again and with probability 1 - Hi leaves the system without service. The intervals separating two 
successive repeated attempts of each customer from the orbit are exponentially distributed with rate γ. The 
orbit is finite or infinite. An i-customer who become retrial conserves own type, i.e.his service time distribution 
function maintains Bi(x). A customer (primary or retrial) who finds the server free is served immediatly. We 
consider two cases where the maximum number of repeated customers of all types waiting in the orbit to seek 
service again, which we call orbit size is limited by s(1 ≤ s < ∞) or can be unlimited (s = ∞). In the case of finite 
orbit an arriving customer who finds the server busy and s customers of all types being in the orbit is lost. 
 
 The queueing system with retrials, non-persistent customers and finite orbit we shall codify as MK/GK/1/0/s/NP 
and this one with infinite orbit as MK/GK/1/0/∞/NP. 
 
3. THE MK/GK/1/0/S/NP RETRIAL QUEUEING SYSTEM WITH FINITE ORBIT 
 
 In this section we consider the case where the maximum number of customers in the orbit is limited by  
s < ∞. 

 Let us denote ),n,...,n(n K1=
r

nj ≥ 0, and n = n. = ;n
K

1j
j∑

=

 here and later the subscript "." stands for summation 

over all values of the corresponding discrete argument. 
 
 The stochastic behaviour of the considered queueing system can be described by a linear Markov process 
{ }0t),t( ≥ξ with the state space 
 

{ }.s,0n,K,1j,0x,0n,K,1i),n,i,x();n(0 j ==≥≥==χ
rr

 
 

 The state )n(0
r

of the process ξ(t) at some instant time t means that the server is idle and there are nj  

j-customers waiting for their service in the orbits, ;K,1i =  the state )n,i,x(
r

corresponds to the situation which 

the number of j-customers in the orbit is nj, ,K,1j = and a time x has elapsed since the beginning of the 
service of the i-customer. 
 
 Under these assumptions (Bocharov, Pechinkin, Albores (1997)) the process { }0t),t( ≥ξ is ergodic, there 
exists a unique stationary distribution of this process and the stationary probability densities )n,i,x(p

r
of the 

states )n,i,x(
r

can be represented in the form    
 

        ),n,i,x(q)]x(B1[)n,i,x(p i
rr

−=  
 
where )n,i,x(q

r
 are bounded functions. 

 
 Let us denote the stationary probability of the state )n,0(

r
 by )n(p0

r
 and the stationary probability of the 

state )n,i,x(
r

 with no regard for the elapsed service time by :)n,i(p
r
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∫
∞

=
0

.dx)n,i,x(p)n,i(p
rr

 

 
 Using the result in Bocharov, Pechinkin, Albores (1997) we obatin the system of differential equations 
 

    ,s,0n,K,1i),en,i,x(q)n(u)n,i,x(q)ns(u)n,i,x(q
dx
d

j
*
j

K

1j
j

* ==−λ+λ−−= ∑
=

rrrr
        (1) 

 

      ,s,0n),x(dB)n,i,x(q)n(p)n(
K

1i 0
i0 ==γ+λ ∑∫

=

∞
rr

        (2) 

                  
            ,1s,0n,K,1i),n(p)en(p)1n()n,i,0(q 0ii0i −==λ++γ+=

rrrr
       (3) 

 
        
       ,sn),n(p)n,i,0(q 0i =λ=

rr
          (4) 

 

where ∑∑
==

λ=λ=λ=λλ=λ
K

1j

*
j

*
jj

*
j

K

1i
i )x(u,,K,1j,H, is the unit Heaviside function and ie

r
is the vector of a suitable 

size and consists of zeros, except unit at the i th place. 
 
 We do not resolve these equations directly. For their solution we consider the following sets of states: 
 

);n,0()n,0(
nn...n K1

r
U

=++

=  

 
,s,0n);n,i,x()n,i,x(

nn...n K1

==
=++

r
U  

 
and introduce the unknowns correspondings to these makrostates: 
 

),n,i,x(q)n,i,x(q),n(p)n(p
nn...n

0
nn...n

0
K1K1

rr
∑∑

=++=++

==  

 

),n,i(p)n,i(p),n,i,x(p)n,i,x(p
nn...nnn...n K1K1

rr
∑∑

=++=++

==  

 
 The following lemma shows that the unknown stationary probability distribution of the process {ξ(t), t ≥ 0} 
can be expressed in terms of the newly defined macrocharacteristics. 
 
Lemma 1. For K,1i = we have the following relations: 
 
     ,s,0n,K,1j,0x),j,n()j,i,x(q)n,i,x(q n ==≥=

rr
M          (5) 

 
             ,s,0n,K,1j),j,n()j(p)n(p n

00 ===
rr

M          (6) 
 
      ,s,0n,K,1j,0x),n()n,i,x(q)n,i,x(q ==≥=

rr
N          (7) 

 
              ,s,0n,K,1j),n()n(p)n(p 00 ===

rr
N                      (8) 
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where jn is the vector (n1, n2,...,nj,...,nk) with nj = n and nl = 0 for l ≠ j, and 
 

!n
)a(

!n)n(,
!n
)(

)(
!n)j,n(

l

n*
l

K

1ll

n*
l

K

1ln*
j

ll

==
Π=

λ
Π

λ
=

rr
NM  

 

and .a
*

*
l*

l
λ

λ
=  

 
Proof. First of all, we consider the relation (5) for the case where x > 0. Substituting (5) into equation (1) we have 

 

 ).j,en()j,i,x(q)n(u)j,n()j,i,x(q)ns(u)j,n()j,i,x(q
dx
d

m

K

1m

1n*
mm

n*n rrrr
−λ+λ−−= ∑

=

− MMM  

 
 It is easy to verify the equality 

),j,n(n
n

)j,en()n(u m

*
j

m
*
mm

rrr
MM

λ
=−λ  

 
which implies that 
 

).j,i,x(q)n(u)j,i,x(q)ns(u)j,i,x(q
dx
d 1n*

j
n*n −λ+λ−−=  

 
 The last is a particular case of the equation (1), therefore the relation (5) is true for x > 0. 
 
 The relation (6) is proved similarly bu iys substitution into equation (2). 
 
 Now we substitute (6) into equation (3). As a result we have 
 

)j,n()j(p)j,en()j(p)1n()n,i,0(q n
0ii

1n
0i

rrrr
MM λ++γ+= +  

 

)j,n()j(p)j(p)1n( n
0i*

j

*
i1n

0
r

M
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λ+

λ

λ
γ+= +  

 
[ ] )j,n()j(p)ej(p n

0ii
n

0
rr

Mλ++γ=  
 

).j,n(j,i,0(q n r
)M=  

 Thus we proved the relation (5) for x = 0. 

 At last we obtain the relation (7) by summing up )n,i,x(q
r

over all n
r

 such that n. = n: 

)n,i,x(q)n,i,x(q
nn...n K1

r
∑

=++

=  

 
)j,n(j,i,x(q

nn...n

n

K1

r
M ) ∑

=++

=  

 

)n(
)(
)()j,i,x(q

nn...n
n*

j

n*
n

K1

r
N

 
  ∑

=++λ

λ
=  

).j,i,x(q
)a(

1 n
n*

j 
  =  
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 This implies the relation (7). The relation (8) is proved by the similar way. Thus Lemma 1 is proved. 
 
 Now using Lemma 1, instead of equations (1) - (4) we have to resolve the more simple system of equations 
 

    ,s,0n,K,1i),1n,i,x(q)n(u)n,i,x(q)ns(u)n,i,x(q
dx
d ** ==−λ+λ−−=          (9) 

 

       ,s,0n),x(dB)n,i,x(q)n(p)n(
K

1i 0
i0 ∑∫

=

∞

==γ+λ         (10) 

 
         ,1s,0n,K,1i),n(p)1n(pa)1n()n,i,0(q 0i0

*
i −==λ++γ+=        (11) 

 
       q(0,i,s) = λip0(s),          (12) 
 
 The equations (9) - (12) are the equilibrium equations for underlying Marjov process for the similar retrial 
queueing system buth with only one Poisson arrival flow with rate λ*, where the type i, K,1i = , of service time 
distribution function for a customer is defined only at the beginning of his service. Such a queueing system we 
shall codify as M/HGK/1/0/s/NP. 
 
 The equation (9) has the following solution: 
 

     ,1s,0n,
)!mn(

)x()m,i,0(qe)n,i,x(q
n

0m

mn*
x*

−=
−

λ
= ∑

=

−
λ−         (13) 

 

     .)m,i,x(q)m,i,0(q)s,i,x(q
s

0m

1s

0m
∑ ∑
=

−

=

−=         (14) 

 
 Substituting (13) into equation (10) we have 
 

                   ,1s,0n,)m,i,0(q)n(p)n(
K

1i
mn,i

n

0m
0 −=β=γ+λ ∑∑

=
−

=

       (15) 

 
where 
 

)x(dB
!k
)x(e i

k*

0

x
k,i

* λ
=β ∫

∞
λ−  

 
is the probability that k customers of any type arrived to the system M/HGk/1/0/s/NP during the service time of 
an i-customer. 
 

 Now we have to find the unknowns p0(n) and q(0,i,n). Let us denote q(n) = q(0,⋅,n) = ∑
=

K

1i

).n,i,0(q  

 
Lemma 2. For the retrial M/HGk/1/0/s/NP queueing system the functions q(0,i,n) are given by 
 
     ,s,0n],a[)n(p)n(qa)n,i,0(q *

ii0
*
i =λ−λ+=  (16)       (16) 

 
 The values of q(n) and p0(n) are defined by the recurrent relations 
 

   ,s,1n,)m)(m(p)1n(p))1n((
n

1)n(p
1n

0m
1mn

*
mn00*

0
0 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λβ+γβ−−γ−+λ

γβ
= ∑

−

=
−−−      (17) 
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     ,1s,0n),n(p)1n(p)1n()n(q 00 −=γ++γ+=        (18) 
 
       q(s) = λp0(s),         (19) 
 

where .a,a,a i
K

1i

K

1i
i

*
k,iikk,i

*
i

*
k λ

λ
=β=ββ=β ∑ ∑

= =

 

 
Proof. Summing up the equation (11) over all i and multiplying the result by *

ia we obtain (16). The relation 
(17) is given by substituting (13) in (10) and the relations (18), (19) are obvious. 
 
 Now using the results obtained above we can determine the stationary distributions of underlying Markov 
processes for the considered queueing systems. 
 
 Theorem 1. The stationary probabilities p0(n) are defined by the relation (17), and the stationary 
probabilities p(i,n), )n,i(p

r
 are defined by the following relations: 

 

∑
=

−γ
λ

=
n

0m
mn,i*

,)m,i,0(q1)n,i(p  

                 (20) 

∑ ∑
=

−

=

−
µ

=
s

0m

1s

0mi
)m,i(p)m,i,0(q1)s,i(p  

and 

,)n()n(p)n(p 00
rr

N=  
                 (21) 

,s,0n,)n()n,i(p)n,i(p ==
rr

N  
 

where the values γi,k are determined by the recurrent formulas 
 

γi,0 = 1 - βi,0, K,1i = , 
 

γi,k = γi,k-1 - βi,k, K,1i = , ,s,1k =  
 

and 

).x(dB
!k
)x(eB i

k*

0

x*
k,i

λ
= ∫

∞
λ−  

 
4. THE MK/GK/1/0/∞/NP RETRIAL QUEUEING SYSTEM WITH INFINITE ORBIT 
 
 In this section we consider in brief the case where the orbit is infinite. Using the notations of the previous 
section under the assumption that there exists the stationary distribution of the underlying linear Markov 
process we shall write the following system of equilibrium equations: 
 

    ,0n,K,1i),en,i,x(q)n(u)n,i,x(q)n,i,x(q
dx
d

j

K

1j

*
jj

* ≥=−λ+λ−= ∑
=

rrrr
            (22) 

 

       ,0n),x(dB)n,i,x(q)n(p)n(
K

1i 0
i0 ∑∫

=

∞

≥=γ+λ
rr

        (23) 

 

                   .0n),n(p)en(p)1n()n,i,0(q 0ii0i ≥λ++γ+=
rrrr

       (24) 
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 To find the steady state distribution we shall use the same approach which was demonstrated in the 
previous section. We do not repeat it again and remember only that all lemmas and theorem remain true but 
now for every n ≥ 0. 
 
 To complete our investigation we shall derive the expressions for partial generating functions 
 

.]1,0[z,z)n,i(p)z(P,z)n,i,x(q)z,x(Q,z)n(p)z(P
0n

n
i

0n

n
i

0n

n
00 ∈=== ∑∑∑

∞

=

∞

=

∞

=

 

 
 The equations (9) - (11) for the case of infinite orbit, i.e. s = ∞ can be rewritten in terms of generating 
functions. 
 

      ,)z1()z,x(Q)z,x(Q
dx
d *

ii −λ−=         (25) 

 

           ∑∫
=

∞

=′γ+λ
K

1i 0
ii00 ),x(dB)z,x(Q)z(Pz)z(P         (26) 

  
              .K,1i,)z(P)z(Pa)z,0(Q 0i0

*
ii =λ+′γ=         (27) 

 
 The solution of the equation (25) has the following form: 
 
            Qi(x,z) = Qi(0,z)exp{-(λ* - λ*z)x}, K,1i = .         (28) 
 
 Let us denote the Laplace-Stieltjes transform of Bi(x) by βi(s) and put 
 

∑∑
==

λ−λβ=λ−λβ=
K

1i
i

*
i

K

1i
ii ).z**(a)z(*k),z**(a)z(k  

 
 We have from equation (26), (27) and (28), 
 
                ,)z(P))z(k1()z(P)z)z(*k( 00 −λ=′−γ         (29) 
which has the solution 
 

            .du
u)u(*k
)u(k1exp)1(P)z(P

z

1
00

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

γ
λ

= ∫         (30) 

 
 Eliminating )z(P0′  from equation (27) we get the following relation: 
 

          ).z(P
z)z(*k

)z)z(*k(a))z(k1(a
)z,0(Q 0

i
*
i

i λ
−

−+−
=         (31) 

 
 This implies that 
 

dx)]x(B1[e)z(P
z)z(*k

)z)z(*k(a))z(k1(a
)z(P i

0

x)z**(
0

i
*
i

i −λ
−

−+−
= ∫

∞
λ−λ−  

(32) 

,K,1i),z(P
z**

)z**(1
z)z(*k

)z)z(*k(a))z(k1(a
0

ii
*
i =λ

λ−λ
λ−λβ−

−
−+−

=  

 
where βi(s) is the Laplace-Stieltjes transform of Bi(x). 
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 Summing up equation (32) from K,1i = , we have: 
 

           ).z(P
]z)z(*k[*

)z(k1)z(P)z.(P 0

K

1i
i λ

−λ
−

==∑
=

        (33) 

 
 Putting z = 1 in the equation (33) we get 

            ).1(P
a*1

a

)1.(P 0K

1i i

*
i

K

1i i

i

λ

µ
λ−

µ
=

∑

∑

=

=          (34) 

 
 The unknown constant P.(1) and P0(1) can be found from the normalizing condition P.(1) + P0(1) = 1. Thus 
we get 
 

P0(1) = .
)H1(1

H1

K

1i i

ii

K

1i i

ii

∑

∑

=

=

µ
−λ

+

µ
λ

−

 

 
 We will define 
 

ρ = 1 - P0(1) = .
)H1(1

K

1i i

ii

K

1i i

i

∑

∑

=

=

µ
−λ

+

µ
λ

 

 
 Then we can rewrite relation (34) as 
 
 

                  ).1(P
1

)1.(P 0ρ−
ρ

=         (35) 

 
 From the formula (35) it follows that  
 
               ρ < 1                     (36) 
 
gives us a necessary condition for ergodicity of the process {ξ(t), t  ≥ 0}. Following Falin, Templeton (1997) it 
can be proved that the condition (36) is also a sufficient condition for ergodicity of this process. 
 
 From (30), (33) and (36) we get the generating function for stationary distribution of the common queue 
length in the orbit  
 

)z(P
]z)z(*k[*

]z)z(*k[*)]z(k1[)z.(P)z(P)z(P 00 −λ
−λ+−λ

=+=  

 (37) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

γ
λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−λ
−λ

ρ−= ∫ du
u)u(*k
)u(k1exp1

]z)z(*k[*
)]z(k1[)1(

z

1

. 

 
 The mean common queue length in the orbit is 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

µ
λ

β−λρ−βλ

λ+
γρ−

ρ
==

∑

∑∑

=

==
K

1i i

i

K

1i

)2(
iii

K

1i

)2(
ii

2

)H1(
*1

)1(
)1('PN . 

 
 We can expressed the stationary mean joint queue length Ni of i-customers in the orbit as: 
 

Ni = K,1i,Na*
i =  
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