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THE DIFFERENCE OF MEANS 
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ABSTRACT 
Ranked set sampling permits to use anciliary information to rank the units. The drawing of them using 
the ranks is at least equivalent to random sampling. In this paper this method is applied for deriving 
estimators of the difference. 
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RESUMEN 
El muestreo de conjunto previamente rankeado permite utilizar la información adicional para rankear las 
unidades. La selección de ellas es llevada a cabo usándoles y es cuando menos equivalente al uso del 
muestreo simple aleatorio. En este trabajo le usamos para obtener estimadores de la diferencia. 
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1. INTRODUCTION 
 
 The aims of the researcher are to observe a convenient sample. It must have units representing the 
expected different behaviors of the variable of interest Y. They look for a representative sample. Statisticians 
have modeled these aims by stratifying, clustering, assigning different probabilities to the units, etc. The 
economic aspect is characterized by the sampling costs which should match with a fixed budget. The use of a 
sub-sampling procedure is common. Then a large sample s is selected but only some of the selected units, a 
sub-sample, are used for measuring Y. A less costly variable X is measured in s and Y only in the smaller 
sub-sample s*. 
 
 Ranked Set Sampling (rss) is based on the observation of a sub-sample m from a set of m independent 
samples of the same size. s = s1 ∪…∪ sm is the large sample. The sub-samples are selected independently 
by using Simple Random Sampling With Replacement (srswr) and their sizes are |si| = m for any i = 1,...,m. 
Therefore |s| = s2 and we have the measures of X as follows: 
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 Xij is the value of X in the j-th-sampled unit in si and Xi(t) as the t-th order statistics (t-os). Then we may 
rearrange the samples as 
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  The units with the underlined of are included in the sub-sample and Y is measured in them. The 
obtained sample s* is called Random set Sample and its size is m. 
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 McIntyre (1952) recommended this method. He analyzed the economy due to its use without a 
mathematical support for his ideas. It was used for estimating pasture yields. He ranked a set of plots on the 
basis of a previous visual inspection. The subjective evaluation (X) were used for ranking the plots before 
measuring the yield (Y). The assumption that the ranking was perfect establishes that to measure Y in the 
unit with X-rank t in *

ts  is the tos of Y in this sample. This procedure is used in r cycles independently. The 
size of m is small and the size of the complete sample is n = rm. 
 
 In Section 2 we will discuss the efficiency of rss in comparison with srswr. In Section 3 we will develop 
estimators for the difference. A rss procedure is proposed and it is compared with an estimator used by Ware-
Cunia (1962). Ratio and regression based estimators are worked out. The estimators are compared in 
Section 4. A Monte Carlo experiment illustrated the practical performance of the alternative estimators of the 
difference of population means. 
 
2. SIMPLE RANDOM SAMPLING AND RANKED SET SAMPLING 
 
 Ranked set sample is based on the selection of m samples of size m. The procedure of selecting the 
ranked set sample is repeated r times independently and the total sample size is rm. Let us denote the os Yi(i) 
in a cycle j as Y(i:m)j. An estimator of the population mean µY is 
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 Halls-Dell (1966) and Cobby et al (1985) have used this method in other studies of pasture yields. 
 
 Takahasi-Wakimoto (1968) developed mathematical aspects of rss. The improvement of the efficiency of 
the proposed procedure dor estimating the mean with respect to the srswr was established under the 
assumption that the X-ranking and the Y-ranking coincide. 
 
 As the variables with the i-th rank have E(Y(i:m)) = µ(i:m), the expectation of the i-os, and Var(Y(i:m)) = 2

)m:i(σ is 
its variance. Then the unbiasedness of (2.1) follows easily, see Patil-Sinha-Taillie (1994), and 
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 As n = mr is the total sample size we have that the sampling error in srswr is 
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(2.1) is more accurate. Takahasi-Wakimoto (1968) derived that rss and srswr are equivalent only if the 
distribution of the variable is uniform. 
 
 Dell-Clutter (1972) considered the case in which the ranking may be imperfect. They obtained that this 
estimator maintains its properties. Jonhson-Patil-Sinha (1993) applied rss to an important study of vegetation 
and Patil-Taillie (1993) discussed how related models permit to develop adequate inferences using rss. The 
interest in rss is close related with its usefulness in environmental surveys. Evaluating small sets of samples, 
which are ranked, diminishes the associated high costs, and an adequate representation of the existing units 
is achieved. Since the publication in the Volumen 12th of the Handbook of Statistics of the analysis of Patil-
Sinha-Taillie (1994) on rss the number of publications on this subject has been increased considerably. We 
will cope with the problem of estimating the difference of two population means. 
 
3. ESTIMATION OF THE DIFFERENCE 
 
 We are interested in estimating the difference between the means of two variables Y and Z. The auxiliary 
variable X permits to rank the units. An increase in X is related with an adequate response in Y and Z. This is 
a common situation in many applications. For example the ecologist wants to estimate the difference between 
the abundance of a pest after and before, a visual evaluation of the fields (X) permits to rank them, a 
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manager plans to estimate the consumption of his beverage in a population with respect to the competitor´s 
results, X may be the overall sales of the stores, etc. 
 
 A sample s of size m is selected by srswr for estimating D = µY - µZ and it is divided into three independent 
sub-samples 
 

• s (1)  = {j ∈ s| Y and Z are measured}, |s(1)| = m(1) 
 
• s (2)  = {j ∈ s| only Y is measured}, |s(2)| = m(2) 

 
• s (3)  = {j ∈ s| only Z are measured}, |s(3)| = m(3). 

 
 This model permits to reduce the sampling costs. Ware-Cunia (1962) derived a Minimum Variance 
estimator dealing with forest inventories. Pi-Erh Lin (1971) derived an optimal estimator of D when the 
variables are normal. We will use rss for estimating D and different estimators will be compared. 
 
 Take s as in Section 2 but each sub-sample si is partitioned into three sub-samples si(j), j = 1,2,3, according 
with the above proposed scheme. For the first sample the ranking is made using an evaluation of the 
expected difference between Y and Z. For the other sub-samples the ranking is made as usual. Therefore we 
may compute for the sample where Y and Z are measured 
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by using the structure of (2.1). It is unbiased for D and 
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 Because the existence of errors in the ranking do not affect the propeties of (2.1).  
 
 In the unmatched samples we will use the corresponding estimators of µy and µz: 
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 Then we estimate D by using 
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Ware-Cunia (1962) proposed the estimator 
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the parameters are unknown buy they must satisfy that  a1 + a2 = - (b1 + b3) = 1 for supporting the 
unbiasedness of it. Setting a1 = a and b1 = b the variance is 
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The optimum values of a and b are obtained by looking for a minimum variance estimator. 
 
They are 
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 Using the approach based on Double Sampling and assuming that the ratios and regression coefficients 
are stable the knowledge of their values from previous experiences enables to develop ratio and regression 
estimators of D. 
 
 Taking R1 = µz/µy and R2 = µy/µz 
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is unbiased because the involved means are unbiased. The variance is 
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 When the regression estimator is used 
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where B1 = ρσy/σz and B2 = ρσz/σy and 
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 Again the unbiasedness of the estimator follows from the knowledge of the involved parameters. Arranging 
conveniently the terms of (dr – D)2 after some algebraic manipulations we obtain that 
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4. COMPARISON OF THE ESTIMATORS 
 
 A theoretical comparison of the estimators is based on the analysis of their variances. The estimator drss is 
more accurate than dVC  when V(drss) – V(dVC) < 0. Remembering that nh = rm (h = 1,2,3) we can write this 
difference as: 
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 In this case the gain in accuracy of rss with respect to srswr is not expressed by a decomposition of the 
variance. The coefficients of the variance terms positive whenever a and/or – b belong to ]0,1[. That is the 
case when we  use the optimal values of them. The covariance term should be small in many cases. 
Therefore the possible gain in accuracy due to the use of rss depends on ∆. 
 
 A similar analysis of drss versus dR yields the preference of the former when 
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 It is sufficient that 
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for preferring drss. In other cases the value of ∆ must be analyzed. 
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 The comparison with dr establishes that if 
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we must prefer drss. Whenever 
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this decision is adequate. In other case the magnitude of ∆ should be taken into account. The use of dVC must 
be preferred to dR if 
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 A sufficient condition for preferring dVC is that  
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in any case the covariance term is always negative. 
 
 The evaluation of the accuracy of dVC with respect to dr is based on the difference 
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 It is smaller than zero if  
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 Note that the covariance term is positive. 
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 The comparison of the two estimators based on Double Sampling principle yields that dR should be 
preferred to dr if 
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is negative. Hence dR is more accurate if 
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because the term in covariance is expected to be generally negative. 
 
 In practice the parameters involved in the calculation of a0, b0, R1, R2, B1 and B2 are unknown. We will use 
the proposal of Bouza-Prabhu-Ajgaonkar (1993) for analyzing the behavior of dVC, dR and dr by plugging in 
estimators of the parameters. The counterparts are 
 

3121
'
VC z)'b1(z'by)'a1(y'ad −++−=  
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 For dR we use instead of the population ratios 
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 The Minimum Least Squares estimators estimate the regression coefficients 
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 Note that the use of rss does not depend on unknown parameters. 
 
 A simulation experiment was performed for evaluating the behavior of the estimators. 
 
 Three sample sizes n = 30, 90 and 300 were used and the sub-sample's size were equal to n/3. Both 
variables were generated using the same distribution. The distribution functions were an uniform in (0.2), 
U(0.2), an exponential with λ = 1, E(1) and a Normal, N(1,1). They have the same mean. The relative 
accuracy of the estimators was measured by 
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 H = 1000 was the number of generated samples and t denotes the estimator. The number of cycles was  
r = 100. 

 The results for U(0.2) are given in Table 4. They suggest that drss was the best estimator but rR dandd ′′  
have a similar behavior when the correlation is small. Note that the equivalence between (2.1) and the mean 
in srs derived by Takahasi. Wakimoto (1968) does not hold in this case. The increase in the correlation and 
the sample size have not a significant effect in the behavior of drss but it permits to obtain better estimates if 

VCd′ is used. 
 

Table 4.1. Relative Accuracy of the estimators for a U(0.2). 
 

D̂  0.1 
N = 30 
ρ 
0.5 

0.9 0.1 
N = 90 
ρ 
0.5 

0.9 0.1 
N = 300
ρ 
0.5 

0.9 

rssd  0.035 0.045 0.042 0.061 0.057 0.053 0.021 0.023 0.024 

VCd′  0.121 0.118 0.109 0.105 0.097 0.098 0.093 0.084 0.076 

Rd′  0.056 0.057 0.051 0.063 0.067 0.060 0.076 0.069 0.064 

rd′  0.045 0.067 0.072 0.070 0.084 0.082 0.078 0.075 0.066 

 
 Table 4.2 presents the results of the Monte Carlo experiments for the E(1). The estimator based on rss is 
again the best alternative. The use of srs is the second best. The sample size plays an important role in the 
accuracy of the estimators. The ratio and regression estimators have a similar behavior. 
 

Table 4.2. Relative Accuracy of the estimators for a E(1). 
 

D̂  0.1 
N = 30 
ρ 
0.5 

0.9 0.1 
N = 90 
ρ 
0.5 

0.9 0.1 
N = 300
ρ 
0.5 

0.9 

rssd  0.081 0.080 0.079 0.067 0.070 0.064 0.058 0.055 0.060 

VCd′  0.094 0.096 0.093 0.079 0.077 0.078 0.069 0.065 0.058 

Rd′  0.104 0.098 0.094 0.100 0.098 0.087 0.091 0.086 0.082 

rd′  0.106 0.100 0.098 0.099 0.084 0.085 0.081 0.076 0.072 

 
 When the variables are normal dVC is the best alternative but drss and rd′  are close to it. 
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Table 3. Relative Accuracy of the estimators for a N(1,1). 

 

D̂  0.1 
N = 30 
ρ 
0.5 

0.9 0.1 
N = 90 
ρ 
0.5 

0.9 0.1 
N = 300
ρ 
0.5 

0.9 

rssd  0.063 0.065 0.057 0.041 0.060 0.054 0.033 0.036 0.031 

VCd  0.008 0.008 0.013 0.012 0.012 0.009 0.007 0.004 0.004 

Rd′  0.087 0.087 0.089 0.061 0.063 0.089 0.087 0.083 0.082 

rd′  0.064 0.066 0.067 0.072 0.081 0.080 0.079 0.075 0.068 

 
 Therefore drss seems to be the best alternative when the distribution is unknown and dVC under the 
normality of the variables. 
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