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ABSTRACT 
We have worked with the local access network design problem with two cable technologies. This is an 
optimization problem in graphs that consists of linking an origin node to a set of terminal nodes which 
have a flow demand. There are also a set of Steiner or tranbsshipment nodes wich do not have 
demand. Each arc of the graph has two associated costs: a variable cost depending on the flow through 
the arc and a fixed cost associated with the installation of the arc. Moreover, in each arc wr can install 
one of two available technologies: optical fiber or copper (we can also use radio links with any other 
cable technology). Each one of these technologies has different variable and fixed costs. To be more 
precise, the fixed cost of the optical fiber is greater than that of the copper, but its variable cost is much 
smaller. The problem was modeled using a multicommodoty flow formulation in which we added some 
structutal constraints. This model was used to apply the Benders decomposition method. The structutal 
constraints have the objective of trying to guaranbtee that the master problem of the Benders 
decomposition will yield a tree. The Benders subproblems are trivial network flow problems. The dual 
variablesw have commodity meaningfull values and are evaluated in a systematic form. The algorithm 
was implemented in C++ with CPLEX 5.0 callable library. We have tested the algorithm with some test 
instances obtained by a generator of problems that we developed. 
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RESUMEN 
Hemos trabajado con el problema del diseño de una red de acceso local con dos tecnologías de cable, 
Este es un problema de optimización en grafos que consiste en unir un nodo de origen con un conjunto 
de nodos terminales que tienen un flujo de demandas. También hay un conjunto de Steiner o nodos de 
trasbordo que no tienen demanda. Cada arco del grafo tiene dos costos asociados: un costo variable 
que depende de un flujo a través del arco y un costo fijo asociado con la instalación del arco. Más aún, 
en cada arco podemos instalar una o dos de las tecnologías disponibles: fibra óptica o cobre (nosotros 
podemos también usar conexiones por radio con cualquier otra tecnología de cable). Cada una de 
estas tecnologías poseen diferentes costos variables y costos fijos. Para ser más precisos, el costo fijo 
de la fibra óptica es mayor que la de cobre, pero tiene un costo variable mucho menor. El problema fue 
modelado usando una formulación de flujo multigénero en la cual adicionamos algunas restricciones 
estructurales. Este modelo fue usado para aplicar el método de la descomposición de Benders. Las 
restricciones estructurales tienen el objetivo de tratar de garantizar que el problema maestro de que la 
descomposición de Benders produzca el árbol. Los subproblemas de Benders son problemas triviales 
en flujos de redes. Las variables duales poseen valores con significado genérico y son evaluados en 
forma sistemática. El algoritmo fue implementado en C++ con una biblioteca llamable en CPLEX 5.0. 
Nosotros hemos probado el algoritmo con algunas pruebas obtenidas por un generador de ejemplos 
que hemos desarrollado. 
 
Palabras clave: problemas de Benders, grafos, relajación Lagrangeana. 

 
1. INTRODUCCION  
  
 This paper adresses an extension of the local access network design problem (LAND). In the LAND 
problem we have to connect an origin node to a set of demand nodes minimizing the total cost. There are two 
costs: a variable cost which depends on the flow passing through the arc and a fixed cost to install the arc. 
There are also transshipment or Steiner nodes. In the problem that we work with in this paper in each arc of 
the network we can install one of two available technologies, for instance, optical fiber or copper cables. Note 
that it is also possible to think about radio links as an alternative to one of these cable technologies. We have 
chosen optical fiber and copper to be our referential technologies, but it is unimportant. We call this problem 
local access network design problem with two technologies (LAND-2T). We will follow the notation given in 
Balakrishnan et al. (1994b) and will denote the two kinds of links by “primary links” (optical fiber) and 
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“secondary links” (cooper). The cooper cable has a fixed cost smaller than that of the optical fiber, but its 
variable cost is greater than the variable cost of the optical fiber. We also work with primary connectivity 
constraints that require that primary links be connected to the origin node by a path consisting of primary links 
only. The reason for using such constraints is that when a message flows from one technology link to another 
technology link it has to undergo some kind of data transformation which implies that a swithching devide has 
to appear at every node where a change of technology takes place. In our problem, the primary connectivity 
constraints ensure that the number of such devices will be small and the cost of installing these devices is not 
considered. Another reason for requiring the primary connectivity constraints is that they imply that more 
paths can benefic from higher quality of a primary link. 
 
 There are many possible variations of the LAND-2T problem that result in new problems. That result in new 
problems. Balakrishnan et al. (1999a) have worked with a problem similar to the LAND-2T where a minimum 
cost spanning tree that contains an embedded primary subtree connecting all the primary nodes (and 
optionally including secondary ndoes) has to be found. As in the LAND-2T, for each arc we can install one of 
two available cable technologies. Note that they divide the set of nodes into primary and secondary nodes. 
The primary nodes have to be connected to the origin node by primary arcs. The secondary nodes can be 
linked to the origin node by primary or secondary arcs. They propose a dual-ascent algorithm to find an 
approximate solution. 
 
 Gouveia and Janseen (1998) have worked with a similar problem that is an extension of the minimal 
spanning tree problem, but with two cable technologies too. The model that they explore has generalized hop 
constraints and primary connectivity constraints. Hop constraints limit the number of links (hops) between the 
root node and any terminal and measure in a certain way the reliability of the tree network. The primary 
connectivity constraints are the same that we described above. The problem is shown to be NP-hard and 
schemes to obtain lower and upper bounds are presented. They formulate the problem as a directed 
multicommodity flow model. To derive lower bounds they use Lagrangean relaxation with subgradient 
optimization. A Lagrangean heuristic is developed to construct feasible solutions. Moreover, they discuss 
several different ways of modeling the primary connectivity constraints. One outcome of their discussion is 
that they derive an extended and compact representation of the convex hull of directed rooted subtrees when 
the underlying graph is series-parallel. 
 
 De Jongh et al. (1999)  have also worked with a problem similar to the LAND-2T in which a pair of nodes 
has to be linked by two node disjoint paths with minimum total cost and there are two cable technologies. This 
problem is a little different from the LAND-2T since for each arc of the network there is only one available 
technology, that is, each arc has a specified technology and there are arcs of type 1 and arcs to type 2. In the 
LAND-2T problem, for each arc we have two available technologies. They also consider a transition cost that 
is associated with each node. This cost is incurred only when a flow enters and leaves the corresponding 
node on arcs of different types. Two heuristics are proposed to the problem and a lower bounding procedure 
based on Lagrangean relaxation is provided. These procedures are used in a branch-and-bound strategy to 
solve the problem. 
 
 In a previous paper, we worked with the local access network design problema Luna et al. (1998). In this 
article, we studied two formulations of the problem: single commodity flow formulation; multicommodity flow 
formulation. The problem was solved by CPLEX (with the two formulations), by a branch-and-bound 
algorithm, by a branch-and-cut algorithm and by a Benders decomposition. The success obtained by Benders 
decomposition to solve this problem has boosted us to extend the algoritm developed to the local access 
network design problem to solve the LAND-2T. So, in this paper we develop a Benders decomposition 
algorithm to the LAND-2T. 
 
 In Section 2 the mathematical programming formulation of the problem is presented. Section 3 presents the 
Benders decomposition applied to solve the problem. The implemented algorithm is showed in Section 4. 
Section 5 presents and discusses the computational results obtained. Section 6 closes this paper with 
conclusions and final comments. 
 
2. FORMULATION OF THE PROBLEM 
 
 Consider a directed connected graph G(V;E), where V denotes the set of nodes and E is a collection of 
directed arcs. Each arc of the graph represents a possible pair of nodes between which a direct transmission 
link can be placed. This transmission link can be a primary or a secondary link. Suppose we have an origin 
node o that must be linked to a number of |K| demand nodes, each of them with a commodity flow 
requirements of fk, where k ∈ K and K ⊆ V.  
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 With appropriate structural and operational costs, the problem is to find a minimal cost arborescence that 
links the origin node to all the terminal nodes and that has a connected set of primary links beginning from the 
origin node. Remark that all flows are originated at the origen node. 
 
 We define the variables: 
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fijk1: flow passing through the primary arc (i,j) and destinated to the demand node k.  
 
fijk2: flow passing through the secondary arc (i,j) and destinated to the demand node k. 
 
 And we also define the cost parameters: 
 
bij1: fixed (structural) cost to install a direct primary transmission link in (i,j); 
 
bij2: fixed (structural) cost to install a direct secondary transmission link in (i,j); 
 
cijk1: variable (operational) cost to transmit one unit of commodity k through the primary arc (i,j); 
 
cijk2: variable (operational) cost to transmit one unit of commodity k through the secondary arc (i,j). 
 
 The mathematical model, M, for the LAND-2T problem is: 
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 The objective function minimizes the total cost associated with the fixed and variable costs. Constraints 2 
ensure that the flow of commodity k that leaves the origin node is equal to the demand of the node k. 
Constraints 3 guarantee that the flow of commodity  k that arrives at node k is equal to its demand. 
Constraints 4 are flow conservation constraints. The fact that a flow can pass tjrough an arc only if this arc is 
selected to the design is expressed by constraints 5 (for primary arcs) and 6 (for secondaty arcs). Constraints 7 
and 8 ensure that the flow variables are greater than zero. Constraints from 9 to 13 are considered structural 
constraints that try to guarantee that the solution of the master problem resulting of Benders decomposition is 
an arborescence (Benders decomposition method will be described in the next section). Constraints 9 ensure 
that at each demand node enters only one arc. Constraints 10 guarantee that at each Steiner node the 
number of nodes that leave the node is greater than or equal to the number of arcs that enter the node. 
Constraints 11 express the fact that if at least one arc leaves the node l, then at least one arc enters the node l. 
Between any nodes i and j the number of selected arcs, in any direction, has to be less than or equal to 1. 
 
 Constraints 12 express this fact. Constraints 13 are the primary connectivity constraints and guarantee that 
the set of primary arcs constitutes a connected set from the origin. Finally, constraints 14 define the binary 
variables xij. 
 
3. BENDERS DECOMPOSITION OF THE PROBLEM 
 
 Benders partitioning method was published in 1962, Benders (1962) and was initially developed to solve 
mixed integer programming problems. The computational success of the method to solve large scale 
multicommodity distribution system design models has been confirmed since the pioneering paper of 
Geoffrion and Graves (1974), Florian et al. (1976) have used Benders decomposition to schedule the 
movement of railways engines and Richarson (1976) has applied the algorithm to airline routing. Fisher and 
Jaikumar (1978) have discussed the advantages of using the algorithm for vehicle routing problems. 
Magnanti and Wong (1981) have proposed methodology for improvising the performance of Benders 
decomposition when applied to mixed integer programs. They have introduced a technique for accelerating 
the convergence of the algorithm and theory for distinguishing “good” model formulations of a problem that 
has distinct, but equivalent mixed integer programming representations. Magnanti et al. (1986) have applied 
Benders decomposition to solve the uncapacitated network design problem (with undirected edges) and have 
adapted this technique to be as efficient as possible. In Luna et al. Benders decomposition method was used 
to solve the local access network design problem and performed better than branch-and-cut and branch-and-
bound algorithms. 
 
3.1. Master Problem 
 
 The mathematical model of the master problem is constituted by the following objective function: 
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subject to the constraints (9), (10), (11), (12), (13), (14) and by the Benders cut constraints 
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 The parameter h is a cycle counter and indicates the number of Benders cuts that must be taken into 
account. For given h and k the correspondent parcell of constraints 16 provides a lower bound on the cost of 
the flow that leaves the origin node to the demand node k. 
 
 Also, there are three series of dual variables that can be interpreted as prices informations: 
 
• :ph

lk price of the establishement of the communication k (k ∈ K) at node l (l ∈ V) in cycle h (h = 1...H). 
 
• h

1ijkα : maximal reduction in the operational cost of commodity k if the primary link at arc (i,j) is selected to 
the  design in cycle h, 

 
• h

2ijkα : maximal reduction in the operational cost of commodity k if the secondary link at arc (i,j) is selected 
to the design in cycle h. 

 
The real variable t that appears in objective function (15) is a lower bound on the total operational cost. 
 

3.2. Subproblems 
 
 For a fixed arborescente Ah, associated with the vectors ,xandx h

1
h
1 we have to solve separately a series of 

trivial network flow problems. Let h
1okC be the set of arcs of type 1 in the path from the source node to the 

demand node k and h
2okC  be the set of arcs of type 2 in the path from the source node to the demand note k 

that have been defined by the master problem of cycle h. The primal-dual pait to be solved for commodity k is: 
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 The trivial and unique solution of the problem is: 
 



 120

⎪⎩

⎪
⎨
⎧ ⊆∈=

otherwise0
AC)j,i(ifdf

hh
oklkh

ijkl  

 
 

        
⎪⎩

⎪
⎨
⎧ ⊆∈=

otherwise0
AC)j,i(ifdf

hh
2okkh

2ijk  

 
 The dual subproblem for commodity k is: 
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 From the complementary slackness condition we have: 
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in such a way that we can construct, associated with the primal solution xh, the following dual feasible solution: 
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 The systematic evaluation of the dual variables with commodity meaningfull values is a clue for an efficient 
implementation. The dual variable h

1ijkα  evaluates for commodity k the maximal reduction in the operational 
cost that could be gained with the introduction of a primary link at the arc (i,j) in the solution. It can also be 
undestood as a tax to be paid with the use of the primary arc (i,j) in order to maintain the distribution agents 
with no positive profit. Remark that the dual solution set represents spatial prices for which there is no positive 
profit for any distribution agent that pays the cost cijk1 to flow commodity k across the primary arc (i,j). The 

same interpretation is valid for the dual variables h
2ijkα . 

 
4. ALGORITHM 
 
 In this section we present the implemented algorithm. Our algorithm is not simply a Benders decomposition 
algorithm. We work with two feasible solutions of the problem: a feasible solution that minimized the total 
variable cost: a feasible solution that is an approximation to the minimal total fixed cost solution. The solution 
that minimizes the total variable cost is obtained applying the Dijkstra’s algorithm, Dijkstra (1959),  to find the 
shortest path from the origin to all nodes, but only the variable cost to flow from origin to each demand node 
is computed. An approximation to the solution that minimizes the total fixed cost is obtained by Prim’s 
algorithm, Prim (1956). The main steps of the algorithm are the following: 
 
1. Use Dijkstra’s algorithm to find the shortest path from the origin o to every node of the network. Let E0  

be the arcs of the arborescence that containts the shortest paths to all the nodes and let T(V0, A0) be  
the correspondent arborescence that links the origin o to all demand nodes k ∈ K ( ,A)j,i(1x 00
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 Compute the cost associated with T(V0, A0) (the sum of the fixed cost of the arcs in E0 plus the sum of the 
variable costs of sending the flow requirement of each demand node k from the origin to the demand node). 
This value gives an initial upper bound, UB = ( )∑ ∑∈ ∈

++0A)j,i( kk
0
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incumbent solution. Also, the shortest paths solution provides the minimal total variable cost among all 
possible arborescences, and thus we can use it to initialize a lower bound, LB = .pd

kk
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lower bound on the variable t of the master problem. 
 

2. Use Prim’s algorithm to find a minimal spanning tree in a reduced graph that containts only the origin  
and the demand nodes k ∈ K. This reduced graphs is constriucted as proposed by Mehlhorn, 
Mehlhorn (1988) using a single shortest-path computation. Let T(V1, A1) be the associated Steiner 
arborescence, that is contained in the original graphs G(V,E), and that links the origin o to all demand 
nodes k ∈ K ( 11

2ij
11

2ij AE)j,i(0x,A)j,i(1x −∈∀=∈∀=  and ) 1
2ok

1
2ij C.E)j,i(0x ∈∀= is the set of the arcs in the 

path from the origin to the demand node k across A1. The set 1
1okC is empty since only the secondary links 

are selected to minimize the total fixed cost. Set the cycles counter h = 1. 
 
3. Compute the values of the dual variables as showed by the equations (30) – (39). A new value for the 

upper bound is calculated and if this value is less than the current upper bound then the current bound is 
updated. If the lower bound is greater than (or equal to) the upper bound, then stop. 

 
4. Solve the master problem. It provides a lower bound for the problem. If the lower bound is greater than (or 

equal to) the upper bound, then stop. 
 
5. Solve the subproblem. To solve it, initially verify if the arcs selected in the master problem build an 

arborescence from the origin to all demand nodes. If yes, set h = h+1, let T(Vh, Ah) be the arborescence that 
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links the origin o to all demand nodes k ∈ K, contained in the origin graph G(V,E) let h
1okC be the set of 

primary arcs in the path from the origin to the demand node k across Ah, let h
2okC be the set of secondary 

arcs in the path from the origin to the demand node k and go to step 3. Else, the solution of the master 
problem is infeasible in the subproblem in the sense that it generates a cycle in the path from the origin to 
one or more demand nodes. In this case, the cycles are identifies and constraints to avoid them are added 
to the master problem model and no new upper bound is generated. The master problem must again be 
solved, then go to step 4. 

 
5. COMPUTATIONAL RESULTS 
 
 The test were executed in a Sun Ultra Enterprise 3000 with two 250 MHz UltraSPARC processors and 512 
Mbytes of Ram memory. The operational system is Solaris 2.5.1. The Benders decomposition algorithm was 
implemented in C++ with CPLEX 5.0 callable library. The test problems are Euclidean graphs randomly 
generated using a procedure similar to that presented in Areja (1980). This procedure has extensively been 
applied fro creating testing instances of the Steiner problem and we have used this procedure to generate 
test instances of the local access network design problem, Luna et al. (1998). 
 
 We have only tested small instances until this 
moment. From Table 1 we can note that the number of 
cycles of the implemented Benders decomposition 
method is small. Although the initial gap ((upper bound – 
lower bound)/upper bound) obtained from the first 
solved master problem be high, the total number of 
master problems needed to be solved is small. It is 
important to note that for all these instances, the linear 
relaxation of the model M gives an optimal integer 
solution of the problem. The test instances which are 
series-parallel graphs have this property, Goemans 
(1994). We do not have tested the instances which do 
not have this property yet. From our previous 
experience, we know that it is in this class of problems 
that the Benders decomposition algorithm procedures its best results. So, e believe that the performance of 
Benders decomposition can be better than this obtained with these preliminary experiments. 
 
6. CONCLUSIONS 
 

In this paper e have extended a Benders decomposition algorithm that we have previously implemented to 
solve the local access network design problem. This algorithm has performed very well to the local access 
network design problem and the obtained results have boosted us to extend it to solve the LAND-2T. 

 
We have presented a multicommodity flow formulation for the LAND-2T ith primary connectivity constraints. 

Moreover, we have added some structural constraints to the model with the objective of getting feasible 
solutions from the master problem. Banders decomposition was applied to this model and the values of the 
dual variables were derived. 
 
 We do not have tested the algorithm with the instances for which the linear relaxation of model M does not 
find an optimal integer solution of the problem. From our prevous experience, we expect that the best results 
of Benders decomposition algorithm will be reached for these problems. By the way, the Benders 
decomposition method has performed very well for the preliminary test instances since the number of cycles 
and the local execution time  were small. 
 
 Anyway, there are many improvements that we can make to our algorithm. For some instances, the gap is 
high and we can try to make the bounds better. An alternative is to get good heuristics and we are working on 
this now. 
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