
 132

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 3, 2001

ON THE USE OF POLYTREES IN EVOLUTIONARY
OPTIMIZATION
Marta Soto1, Alberto Ochoa y Roberto Santana, Institute of Cybernetics, Mathematics and Physics, Cuba

ABSTRACT
Bayesian networks, are usefull tools for the representation of non-linear interactions among variables.
Recently, they have been combined with evolutionary methods to form a new class of optimization
algorithms: the Factorized Distribution Algorithms (FDAs). FDAs have been proved to be significantly
better than their genetic ancestors. They learn and sample distributions instead of using crossover and
mutation operators. Most of the members of the FDAs that have been designed, learn general Bayesian
networks. However, in this work we study a FDA that learns polytrees, which are single connected
directed graphs.

Key words: Bayesian networks, evolutionary algorithms, FDAs.

MSC: 90B15, 90C35.

RESUMEN
Las redes Bayesianas son herramientas muy útiles para la representación de las interacciones no
lineales entre las variables. Recientemente estas han sido combinadas con los métodos evolutivos para
formar una nueva clase de algoritmos de optimización: los Algoritmos con Distribución Factorizada
(FDA). Se ha probado que los FDA son mejores que sus antecesores, los Algoritmos Genéticos, en
problemas donde existe una fuerte interacción entre las variables. Estos algoritmos aprenden y simulan
distribuciones probabilísticas, en lugar de usar operadores de cruzamiento y mutación. La mayoría de
los FDA diseñados hasta el momento aprenden redes Bayesianas generales. Sin embargo, en este
trabajo nosotros estudiamos un FDA que aprende poliárboles, los cuales son grafos dirigidos
simplemente conectados.

Palabras clave: redes Bayesianas, algoritmos evolutivos, FDA.

INTRODUCTION

 Recently a new class of evolutionary algorithms has emerged. These developments are tractable versions
of the Estimation Distribution Algorithms (EDAs) [Mühlenbein and Paaβ, 1996]. However, EDAs have only
theoretical importance because the estimation and sampling problems are too difficult if we do not restrict the
type of distribution to deal with.

 At each generation, the tractable subclass, the so called Factorized Distribution Algorithms (FDAs), uses
factorizations of the joint distribution of the best points found so far. This information is used to construct a
model from which new points are efficiently sampled.

 FDAs use results of Bayesian networks research [Mühlenbein et al., 1999]. Some recent contributions in
this fiel are [Mühlenbein and Mahnig, 1999, Ochoa et al., 1999, Etxeberria and Larrañaga, 1999, Soto and
Ochoa, 2000]. All these algorithms have performed very well on a wide range of Genetic Algorithms-hard
functions. This points out to the fact that the failure of recombination lies on its inability to deal with high order
nonlinear interactions.

 Most of the members of the FDAs class that have been designed, learn general Bayesian networks.
However, in this work we study a FDA that learns polytrees. Our choice is motivated by the fact that we know
efficient procedures for learning trees, a special class of polytrees. Also, because under certain restrictions,
we can show low cost methods for learning general polytrees.

 The outline of the paper is as follows. Section 2 gives a brief introduction on Bayesian networks and
Factorized Distribution Algorithms. Section 3 presents a Factorized Distribution Algorithms based on
polytrees. The following section presents the experimental results. The main conclusions of our research are
given in section 5.

1{mrosa,ochoa,rsantana}@cidet.icmf.inf.cu, {mrosa.cu,aa8ar,rsantana.cu}@yahoo.com

 133

2. BACKGROUND

 The research on the Factorized Distribution Algorithms is based on two major fields:Graphical Models and
Evolutionary Computation.

2.1. Bayesian networks

 A Bayesian network is a directed acyclic graph containing nodes, representing the variables, and arcs,
representing probabilistic dependencies among nodes.

 Let X = {X1,…,Xn} denotes the set of random variables. For any node Xi and set of parents πXi

the Bayesian
network specifies a conditional probability distribution P(Xi |πXi

). The full joint probability distribution specified
by a Bayesian network can be calculated by taking the product of the conditional probabilities:

P(X1,…,Xn) = Π P(X | πXi
)

 There are different types of Bayesian networks according to their degree of complexity. Some examples are
chains, trees, polytrees, simple graphs and general multiple connected networks. The first three are single
connected graphs, which means they have no undirected cycles. Simple graphs are multiple connected
networks, where the common parents of any variable are always marginally independent between each other.
Single connected graphs are specific cases of simple graphs. A different factorization of a joint distribution
corresponds to each of these structures.

 One interesting property of simple graphs is that, under certain restrictions, they can be recovered using
only zero and first order conditional independence test. This means, that the learning algorithm needs only up
to third order marginal distributions.

 We call Bayesian networks of bounded complexity (BN-BC), those networks that can be recovered from
data using only first, second and third order marginal distributions. Therefore, multiple connected networks
with a maximum of two parents are also included.

 The question of reliability and computational cost, both in term of space and time, may have in optimization
a more critical role than they had in previous fields of application of graphical models. BN-BC are important
for optimization because they can be recovered from data using simple and efficient learning procedures.

 There are some motivations for studying the performance of the FDAs that use BN-BC (FDA-BC). Firstly, it
is known the good performance of the Univariate Marginal Distribution Algorithm (UMDA) [Mühlenbein, 1997]
in many non-linear problems. Secondly, BN-BC are also good candidates for combination and mixture of
models. In this work we deal with an important subclass of the BN-BC: the polytrees.

 In a polytree there are only three possible ways of connecting three variables:

X → Z → Y X ← Z → Y X → Z ← Y

 Among them, only the third type allows to pass information between X and Y when Z is instantiated. That is,
only the third type makes X and Y dependent conditionally on Z. This structure is often called head-to-head
connection or pattern.

 Any polytree factorization can be written as:

p(X) = Πp(Xi | Xj1(i), Xj2(i),…,Xxjr(i))

where {Xj1(i), Xj2(i),…,Xjr(i)} is the set of direct parents (possibly empty) of variable Xi. A particular property of
polytrees is that the parents of any variable are mutually independent. Hence, for all I we have:

)x(p)p(ij

r

1jxi =
Π=π

where p(πxi) is the joint distribution of the parent set.

 134

2.2. The Factorized Distribution Algorithms

 Factorized Distribution Algorithms
(see Figure 1) are population based
search methods that combine results
from research in Graphical Models
and Evolutionary Computation. They
are considered to be the tractable
subclass of Estimation Distribution
Algorithms [Mühlenbein and Paaβ,
1996]. The optimization of a function
begins with the generation of a random
population of points. Then some of the
points are selected based on their
function’s values. The next and crucial
step, is the construction of a graphical
model approximation of the empirical
distribution of the selected points. Sampling from this distribution model gives us the next population.

3. FDAs BASED ON POLYTREES

 The Polytree Approximation Distribution Algorithm (PADA) is a FDA. Thus is shares the general structure
given in the Figure 1 [Soto et al., 1999].

 PADA learns polytree structures, (trees are special cases of polytrees). Unfortunately, it is not at all clear
that learning a polytree is any easier than learning the structure of a general Bayesian network. Moreover,
even if we restrict the maximum number of parents to 2, this problem remains to be NP-hard. However, this
does not mean that good approximation algorithms can not be created. Following this line of thinking, this
paper explores two different ways of implementing the learning component of PADA.

 The first method [Etxeberria and Larrañaga, 1999] is based on the minimization of a scoring metric. We call
this algorithm SPADA. This algorithm can also be used to learn trees or low complexity Bayesian networks
controlling the number of parents.

 Another possibility is to follow the ideas developed in [Campos, 1998]. In that work was introduced a
graded dependence relation that measures the degree of dependence between two variables. The basic idea
of the algorithm is to preserve those edges representing the strongest dependency relations, but with the
restriction that the resultant structure must be singly connected. To do this, the algorithm uses a Maximum
Weight Spanning Tree (MWST) to recover the skeleton (the undirected graph that supports the polytree). The
edges are weighted with the dependency relation mentioned above. It has been proven elsewhere that the
above procedure is optimal for trees if the Kullback-Lieber entropy is used as a dependency measure. This
means that it is possible to recover the best tree that approximates the data. In [Chow and Liu, 1968] is
presented the Chow-Liu’s algorithm for learning trees. After the skeleton is obtained, this algorithm selects a
node as a root and directs the remainder edges according to this selection. Despite which node is selected as
a root we obtain an unique tree factorization.

 For general polytrees, once we have constructed the skeleton a procedure tries to direct the edges of the
skeleton by using the following scheme: in a head to head pattern α→ γ ← β, the instantiation of the head
node γ should normally increase the degree of dependency between the variables α and β, whereas in a non
head to head pattern (such as α ← γ → β, α → γ → β or α ← γ ← β), the instantiation of the middle node γ
should produce the opposite effect, decreasing the degree of dependency between α and β. So the idea is to
compare the degree of dependency betweenα and β after the instantiation of γ, with the degree of
dependency between α and β before the instantiation of γ.

 Definition: For each subgraph α - γ - β ∈ skeleton,

if Dep(α,β | γ) > Dep(α,β | ∅) then α → γ ← β.

 The edges that were not oriented after the above test, are directed at random without introducing new head
to head connections and minimizing the number of parents.

step 0

step 1

step 2

step 3

step 4

t ← 1, Generate N points randomly.

Get a selected set S with M points (M < N),
according to the selection method.

Learn a graphical model approximation of the
empirical distribution of the selected points S, ps(x,t).

Generate N points according to p(x, t + 1) = ps(x,t).

t ← t + 1. If the termination criteria are not met go to
step 1.

Figure 1. Scheme of FDAs.

 135

 The learning algorithms of general Bayesian networks have exponential complexity in the number of
parents. The method presented above, uses only up to third order distribution. Therefore, it makes sense to
explore bounded sampling approximations. Given an ancestral ordering of all the variables (parents go before
children), the method samples Xi using P(Xi | πXi

). One obvious problem of this method, is that it will require
an exponential number of points in the number of parents, to estimate the conditional probabilities correctly.
In PADA we can use several approximations. For example:

 Let us assume, without loss of generality, that πX0

 = { X1, X2, Xr }. Hence, once the parents are instantiated,
the PLS method would sample X0 with probability p(x0 | πX0

).

 We set,

M(x0 = 1) = p(x0 = 1|x1x2) +…+ p(x0 = 1|xrxr-1)

M(x0 = 0) = p(x0 = 0|x1x2) +…+ p(x0 = 0|xrxr-1)

 Then, we use the PLS method, but sample from:

)1x(M)0x(M
)1x(M)1x(p~

00

0
0 =+=

=
==

instead of p(x0 | πX0

).

4. EXPERIMENTS

4.1. Test functions

 In the experiments we explore the following functions:

 1. The OneMax or unitation function:

OneMax(x) = ∑
=

n

1i
ix

OneMax has (n + 1) different fitness values.

 2.The Cuban function (Fc5

): this overlapped function was introduced in [Mühlenbein et al., 1999]. It was
designed to show that the global solution need not to be composed of locally optimal solutions. The
values of the second best optima are almost as large as the global optimum.

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
=
=
=
=
=
=
=

111xfor150.0
110xfor090.0
101xfor050.0
100xfor000.1
011xfor100.0
010xfor595.0
001xfor200.0
000xfor595.0

)x(F3
1cuban

⎪
⎩

⎪
⎨

⎧

=
=∗

otherwise0
xxand
xxif)x,x,x(F4

)x(F 53

42321
3

5
1cuban

 136

⎪
⎩

⎪
⎨

⎧

==−
==

=

1x,1xfor2)x(u
1x,0xfor0

0xfor)x(u
)x(F

51

51

5
5

2cuban

()∑
=

++ ++=
m

0j
2j2

5
1cuban1j2

5
2cuban0

5
1cuban5c)s(F)s(F)s(F)x(F

 where si = x4ix4i+1x4i+2x4i+3x4i+4 and n = 4(2m + 1) + 1.

 3. The Isotorus function: this function is defined on the grid of size n = m ∗ m. The peak function IsoT1 is

 used at the upper left corner of the torus. Let u denotes the number of 1s in a string.

u 0 1 2 3 4 5
IsoT1 m 0 0 0 0 m - 1
IsoT2 0 0 0 0 0 M2

FIsoTorus = IsoT1(x1-m+n, x1-m+n, x1, x2, x1+m) + ∑
=

N

2i

IsoT2(xup, xleft, xi, xright, xdown)

where xup, etc., are defined as the appropriate neighbors, wrapping around. This function is difficult to
optimize. The best and the second best strings have values m3 – m + 1 and m3 – m respectively.

4.2. Numerical Results

 In the following tables N is the population size and n is the number of variables. The average generation
when the optimum is found is denoted by G, whereas % represents how many times this optimum is found in
100 runs. The truncation value is denoted by τ. The column P applies to SPADA and to a general Bayesian
network (GBN). P denotes the maximum number of parents. PADA and TREE are both implement following
the second approach presented in section 3. Note that all these algorithms, including the GBN with 2 parents
are considered in this paper to be algorithms with bounded complexity.

4.2.1. Function OneMax

 For the OneMax, the performance of the PADA is compared with that of the UMDA.

 It is worth noting taht UMDA is a special case
of the PADA.It has a graph without arcs, and
therefore it uses only univariate marginal
probabilities. For the OneMax function UMDA
performs better than PADA (see Table 1), but
considering that UMDA has knowledge of the exact
dependency model, the difference seems to be not
so big. For truncation equal to 0.5 the difference in
performance is smaller. Of course, we are not
considering the learning cost of PADA. More
important is the fact that PADA uses the same
small set of parameters that UMDA does: population
size and selection pressure.

4.2.2. Function Cuban

 We have found that for a class of popular test function FDA-BC performs as good as, or even better
that algorithms using more general distributions. Table 2 shows that GBNs depend strongly on the number
of parents. We have also made test with 3 and 4 parents; the results agree with what is shown here.
However, SPADA seems to be more stable in this respect. For 21 and 37 variables the FDA-BC perform well

Tabla 1. Numerical results for PADA and UMDA
 for the OneMax function.

Algorithm N n τ G %

PADA 30 30 0.3 6.21 69

UMDA 30 30 0.3 6.74 75

PADA 30 30 0.5 9.69 72

UMDA 30 30 0.5 9.13 81

 137

Table 3. Results for Cuban function with 0.1 truncation value.

Cuban function TREE SPADA GBN
n N G % P G % G %

21 1000 3.2 100 2 3.4 100 3.34 100

21 1000 - - 5 3.8 100 3.5 100

37 3000 7.2 98 2 7.5 97 6.7 99

37 3000 5 7.6 95 6.6 99

101 9000 17.1 90 2 16.9 93 16.9 94

101 9000 5 17.2 90 17 94

 Table 4. Results for IsoTorus with 49 variables.
 N = 1000 and τ = 0.1.

TREE PADA SPADA GBN
G % G % P G % G %

6.18 75 7.0 75 2 6.57 71 5.4 73

- - - - 5 6.7 56 4.5 6

(the TREE is the bets). For 101 variables even with a population size of 13000 the success rate is below
60 %. However, in these cases, it makes no sense to use a GBN with more parents.

Table 2 Results of Cuban function with 0.1 truncation value.

Cuban function TREE SPADA GBN

n N G % P G % G %

21 1000 2.4 100 2 2.2 100 2.3 100

21 1000 - - 5 2.1 98 2.6 60

37 3000 4.3 96 2 4.7 82 4.1 88

37 3000 5 4.6 73 4.4 65

101 13000 10.4 55 2 10.4 41 10.4 52

101 13000 5 10.5 55 10.6 59

 The results in the Table 3 are
better for the GBNs. We have
observed that more general
distributions perform better with
larger truncation values. Besides,
better informed models have lower
convergence times. However, as
the table shows there is no a big
difference between the results of
the algorithms. Having in mind
the low computational cost of the
FDA-BC we conclude that they
are better for the optimization of
this function.

4.2.3. Funtion IsoTorus

 It was expected that the
IsoTorus function should not be
easily optimized by PADA or
SPADA. This function is a highly
overlapped grid function, and
therefore its variables interact
strongly. However, the result was
very interesting. It can be easily
optimized even with a tree
structure (see Table 4).

 The success rate for GBNs comes down dramatically from 73 to 6. The reason is simple. Because the data
set is so connected, the best model should have many parents (max = 5). Unfortunately this increases the
population size requirements, and therefore the success rate for a fixed population size comes down. SPADA
uses the same greedy algorithm that the GBN uses, however the constraint of polytrees prevents the
unnecessary grow of the network, and the success rate falls down only to 56. A more interesting fact is the
following: PADA does not constraint the number of parents. Therefore, it can learn more complex polytrees
than SPADA with two parents. However, because PADA uses only up to third order distributions, its success
rate is higher.

5. CONCLUSIONS

 Most of the members of the FDAs that have been designed, learn general Bayesian networks. However, in
this work we study a FDA that learns polytrees: the Polytree Approximation Distribution Algorithm (PADA).
We explore two implementations of the learning component of PADA. The first method is based on the
minimization of a scoring metric. The second approach uses independence tests between two and three
variables. PADA has been investigated in the case of three functions.

 138

 The experiments shows that, at least under certain conditions, bounded complexity approximation models
perform as good as or even better that algorithms that learn more general distributions.

6. ACKNOWLEDGMENTS

 This work was funded by the Ministry of Sciences and Technology of Cuba, under the project Low Cost
Evolutionary Algorithms.

REFERENCES

CAMPOS, L.M.D. (1998): “Independency relationship and learning algorithms for singly connected
networks”, Journal of Experimental and Theoretical Artificial Intelligence, 511-549.

 CHOW, C.K. and C.N. LIU (1968): Approximating discrete probability distributions with

dependence trees, IT14, 462-467.

ETXEBERRIA, R. and P. LARRAÑAGA (1999): “Global optimization using Bayesian networks”, In

Second Symposium on Artificial Intelligence (CIMAF-99), 332-339, Habana, Cuba.

MÜHLENBEIN, H. (1997): “The equation for response to selection and its use for prediction”,

Evolutionary Computation, 5(3):303-346.

MÜHLENBEIN, H. and T. MAHNIG (1999): “FDA – a scalable evolutionary algorithm for the

optimization of additively decomposed functions”, Evolutionary Computation, 7(4):
353-376.

MÜHLENBEIN, H.; T. MAHNIG and A. OCHOA (1999): “Schemata, distributions and graphical

models in evolutionary optimization”, Journal of Heuristics, 5(2):213-247.

MÜHLENBEIN, H. and G. PAAβ (1996): “From recombination of genes to the estimation of

distributions I. Binary parameters”, In Eiben, A., Bäck, T., Shoenauer, M., and Schwefel, H.,
editors, Parallel Problem Solving from Nature – PPSN IV, 178-187, Berlin, Springer
Verlag.

OCHOA, A.; M.R. SOTO; R. SANTANA; J.C. MADERA and N. JORGE (1999): “The factorized

distribution algorithm and the junction tree: a learning perspective. In Ochoa, A., Soto, M.R.
and Santana, R., editors, Second Symposium on Artificial Intelligence (CIMAF-99), 368-
377, Habana, Cuba.

SOTO, M.R. and A. OCHOA (2000): “A factorized distribution algorithm based on polytrees”, In:

Proceedings of the 2000 Congress on Evolutionary Computation CEC00, 232-237, La
Jolla Marriott Hotel La Jolla, California, USA. IEEE Press.

SOTO, M.R.; A. OCHOA, S. ACID and L.M. CAMPOS (1999): “Bayesian evolutionary algorithms

based on simplified models”, In: Second Symposium on Artificial Intelligence (CIMAF-99),
360-367, Habana, Cuba.

