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ABSTRACT 
Bayesian networks, are usefull tools for the representation of non-linear interactions among variables. 
Recently, they have been combined with evolutionary methods to form a new class of optimization 
algorithms: the Factorized Distribution Algorithms (FDAs). FDAs have been proved to be significantly 
better than their genetic ancestors. They learn and sample distributions instead of using crossover and 
mutation operators. Most of the members of the FDAs that have been designed, learn general Bayesian 
networks. However, in this work we study a FDA that learns polytrees, which are single connected 
directed graphs. 
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RESUMEN 
Las redes Bayesianas son herramientas muy útiles para la representación de las interacciones no 
lineales entre las variables. Recientemente estas han sido combinadas con los métodos evolutivos para 
formar una nueva clase de algoritmos de optimización: los Algoritmos con Distribución Factorizada 
(FDA). Se ha probado que los FDA son mejores que sus antecesores, los Algoritmos Genéticos, en 
problemas donde existe una fuerte interacción entre las variables. Estos algoritmos aprenden y simulan 
distribuciones probabilísticas, en lugar de usar operadores de cruzamiento y mutación. La mayoría de 
los FDA diseñados hasta el momento aprenden redes Bayesianas generales. Sin embargo, en este 
trabajo nosotros estudiamos un FDA que aprende poliárboles, los cuales son grafos dirigidos 
simplemente conectados. 
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INTRODUCTION 
 
 Recently a new class of evolutionary algorithms has emerged. These developments are tractable versions 
of the Estimation Distribution Algorithms (EDAs) [Mühlenbein and Paaβ, 1996]. However, EDAs have only 
theoretical importance because the estimation and sampling problems are too difficult if we do not restrict the 
type of distribution to deal with. 
 
 At each generation, the tractable subclass, the so called Factorized Distribution Algorithms (FDAs), uses 
factorizations of the joint distribution of the best points found so far. This information is used to construct a 
model from which new points are efficiently sampled. 
 
 FDAs use results of Bayesian networks research [Mühlenbein et al., 1999]. Some recent contributions in 
this fiel are [Mühlenbein and Mahnig, 1999, Ochoa et al., 1999, Etxeberria and Larrañaga, 1999, Soto and 
Ochoa, 2000]. All these algorithms have performed very well on a wide range of Genetic Algorithms-hard 
functions. This points out to the fact that the failure of recombination lies on its inability to deal with high order 
nonlinear interactions. 
 
 Most of the members of the FDAs class that have been designed, learn general Bayesian networks. 
However, in this work we study a FDA that learns polytrees. Our choice is motivated by the fact that we know 
efficient procedures for learning trees, a special class of polytrees. Also, because under certain restrictions, 
we can show low cost methods for learning general polytrees. 
 
 The outline of the paper is as follows. Section 2 gives a brief introduction on Bayesian networks and 
Factorized Distribution Algorithms. Section 3 presents a Factorized Distribution Algorithms based on 
polytrees. The following section presents the experimental results. The main conclusions of our research are 
given in section 5. 
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2. BACKGROUND 
 
 The research on the Factorized Distribution Algorithms is based on two major fields:Graphical Models and 
Evolutionary Computation. 
 
2.1. Bayesian networks 
 
 A Bayesian network is a directed acyclic graph containing nodes, representing the variables, and arcs, 
representing probabilistic dependencies among nodes. 
 
 Let X = {X1,…,Xn} denotes the set of random variables. For any node Xi and set of parents πXi 

the Bayesian 
network specifies a conditional probability distribution P(Xi |πXi

). The full joint probability distribution specified 
by a Bayesian network can be calculated by taking the product of the conditional probabilities: 
 

P(X1,…,Xn) = Π P(X | πXi
) 

 
 There are different types of Bayesian networks according to their degree of complexity. Some examples are 
chains, trees, polytrees, simple graphs and general multiple connected networks. The first three are single 
connected graphs, which means they have no undirected cycles. Simple graphs are multiple connected 
networks, where the common parents of any variable are always marginally independent between each other. 
Single connected graphs are specific cases of simple graphs. A different factorization of a joint distribution 
corresponds to each of these structures. 
 
 One interesting property of simple graphs is that, under certain restrictions, they can be recovered using 
only zero and first order conditional independence test. This means, that the learning algorithm needs only up 
to third order marginal distributions. 
 
 We call Bayesian networks of bounded complexity (BN-BC), those networks that can be recovered from 
data using only first, second and third order marginal distributions. Therefore, multiple connected networks 
with a maximum of two parents are also included. 
 
 The question of reliability and computational cost, both in term of space and time, may have in optimization 
a more critical role than they had in previous fields of application of graphical models. BN-BC are important 
for optimization because they can be recovered from data using simple and efficient learning procedures. 
 
 There are some motivations for studying the performance of the FDAs that use BN-BC (FDA-BC). Firstly, it 
is known the good performance of the Univariate Marginal Distribution Algorithm (UMDA) [Mühlenbein, 1997] 
in many non-linear problems. Secondly, BN-BC are also good candidates for combination and mixture of 
models. In this work we deal with an important subclass of the BN-BC: the polytrees. 
 
 In a polytree there are only three possible ways of connecting three variables: 
 

X → Z → Y  X ← Z → Y   X → Z ← Y 
 

 Among them, only the third type allows to pass information between X and Y when Z is instantiated. That is, 
only the third type makes X and Y dependent conditionally on Z. This structure is often called head-to-head 
connection or pattern. 
 
 Any polytree factorization can be written as: 
 

p(X) = Πp(Xi | Xj1(i), Xj2(i),…,Xxjr(i)) 
 
where {Xj1(i), Xj2(i),…,Xjr(i)} is the set of direct parents (possibly empty) of variable Xi. A particular property of 
polytrees is that the parents of any variable are mutually independent. Hence, for all I we have: 
 

)x(p)p( ij

r

1jxi =
Π=π  

 
where p(πxi) is the joint distribution of the parent set. 



 134

2.2. The Factorized Distribution Algorithms 
 
 Factorized Distribution Algorithms 
(see Figure 1) are population based 
search methods that combine results 
from research in Graphical Models 
and Evolutionary Computation. They 
are considered to be the tractable 
subclass of Estimation Distribution 
Algorithms [Mühlenbein and Paaβ, 
1996]. The optimization of a function 
begins with the generation of a random 
population of points. Then some of the 
points are selected based on their 
function’s values. The next and crucial 
step, is the construction of a graphical 
model approximation of the empirical 
distribution of the selected points. Sampling from this distribution model gives us the next population. 
 
3. FDAs BASED ON POLYTREES 
 
 The Polytree Approximation Distribution Algorithm (PADA) is a FDA. Thus is shares the general structure 
given in the Figure 1 [Soto et al., 1999]. 
 
 PADA learns polytree structures, (trees are special cases of polytrees). Unfortunately, it is not at all  clear 
that learning a polytree is any easier than learning the structure of a general Bayesian network. Moreover, 
even if we restrict the maximum number of parents to 2, this problem remains to be NP-hard. However, this 
does not mean that good approximation algorithms can not be created. Following this line of thinking, this 
paper explores two different ways of implementing the learning component of PADA. 
 
 The first method [Etxeberria and Larrañaga, 1999] is based on the minimization of a scoring metric. We call 
this algorithm SPADA. This algorithm can also be used to learn trees or low complexity Bayesian networks 
controlling the number of parents. 
 
 Another possibility is to follow the ideas developed in [Campos, 1998]. In that work was introduced a 
graded dependence relation that measures the degree of dependence between two variables. The basic idea 
of the algorithm is to preserve those edges representing the strongest dependency relations, but with the 
restriction that the resultant structure must be singly connected. To do this, the algorithm uses a Maximum 
Weight Spanning Tree (MWST) to recover the skeleton (the undirected graph that supports the polytree). The 
edges are weighted with the dependency relation mentioned above. It has been proven elsewhere that the 
above procedure is optimal for trees if the Kullback-Lieber entropy is used as a dependency measure. This 
means that it is possible to recover the best tree that approximates the data. In [Chow and Liu, 1968] is 
presented the Chow-Liu’s algorithm for learning trees. After the skeleton is obtained, this algorithm selects a 
node as a root and directs the remainder edges according to this selection. Despite which node is selected as 
a root we obtain an unique tree factorization. 
 
 For general polytrees, once we have constructed the skeleton a procedure tries to direct the edges of the 
skeleton by using the following scheme: in a head to head pattern α→ γ ← β, the instantiation of the head 
node γ should normally increase the degree of dependency between the variables α and β, whereas in a non 
head to head pattern (such as α ← γ → β, α → γ → β or α ← γ ← β), the instantiation of the middle node γ 
should produce the opposite effect, decreasing the degree of dependency between α and β. So the idea is to 
compare the degree of dependency betweenα and β after the instantiation of γ, with the degree of 
dependency between α and β before the instantiation of γ. 
 
 Definition: For each subgraph α - γ - β ∈ skeleton, 
 

if Dep(α,β | γ) > Dep(α,β | ∅) then α → γ ← β. 
 

 The edges that were not oriented after the above test, are directed at random without introducing new head 
to head connections and minimizing the number of parents. 

step 0 

step 1 
 

step 2 

 
step 3 

step 4 

t ← 1, Generate N points randomly. 

Get a selected set S with M points (M < N), 
according to the selection method. 

Learn a graphical model approximation of the 
empirical distribution of the selected points S, ps(x,t). 

Generate N points according to p(x, t + 1) = ps(x,t). 

t ← t + 1. If the termination criteria are not met go to 
step 1. 

 
Figure 1. Scheme of FDAs. 
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 The learning algorithms of general Bayesian networks have exponential complexity in the number of 
parents. The method presented above, uses only up to third order distribution. Therefore, it makes sense to 
explore bounded sampling approximations. Given an ancestral ordering of all the variables (parents go before 
children), the method samples Xi using P(Xi | πXi

). One obvious problem of this method, is that it will require 
an exponential number of points in the number of parents, to estimate the conditional probabilities correctly. 
In PADA we can use several approximations. For example: 
  
 Let us assume, without loss of generality, that πX0

 = { X1, X2, Xr }. Hence, once the parents are instantiated, 
the PLS method would sample X0 with probability p(x0 | πX0

). 
 
 We set, 
 

M(x0 = 1) = p(x0 = 1|x1x2) +…+ p(x0 = 1|xrxr-1) 
 

M(x0 = 0) = p(x0 = 0|x1x2) +…+ p(x0 = 0|xrxr-1) 
 
 Then, we use the PLS method, but sample from: 
 

)1x(M)0x(M
)1x(M)1x(p~

00

0
0 =+=

=
==  

 
instead of p(x0 | πX0

). 
 
4. EXPERIMENTS 
 
4.1. Test functions 
 
 In the experiments we explore the following functions: 
 
 1. The OneMax or unitation function: 

OneMax(x) = ∑
=

n

1i
ix  

 
OneMax has (n + 1) different fitness values. 

 
 2.The Cuban function (Fc5

): this overlapped function was introduced in [Mühlenbein et al., 1999]. It was 
designed to show that the global solution need not to be composed of locally optimal solutions. The 
values of the second best optima are almost as large as the global optimum. 

 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
=
=
=
=
=
=
=

111xfor150.0
110xfor090.0
101xfor050.0
100xfor000.1
011xfor100.0
010xfor595.0
001xfor200.0
000xfor595.0

)x(F3
1cuban  

 
 

⎪
⎩

⎪
⎨

⎧

=
=∗

otherwise0
xxand
xxif)x,x,x(F4

)x(F 53

42321
3

5
1cuban  

 



 136

⎪
⎩

⎪
⎨

⎧

==−
==

=

1x,1xfor2)x(u
1x,0xfor0

0xfor)x(u
)x(F

51

51

5
5

2cuban  

 

( )∑
=

++ ++=
m

0j
2j2

5
1cuban1j2

5
2cuban0

5
1cuban5c )s(F)s(F)s(F)x(F  

 
      where         si = x4ix4i+1x4i+2x4i+3x4i+4 and n = 4(2m + 1) + 1. 
 
 3. The Isotorus function: this function is defined on the grid of size n = m ∗ m. The peak function IsoT1 is    

 used at the upper left corner of the torus. Let u denotes the number of 1s in a string. 
 

u 0 1 2 3 4 5 
IsoT1 m 0 0 0 0 m - 1
IsoT2 0 0 0 0 0 M2 

 

FIsoTorus = IsoT1(x1-m+n, x1-m+n, x1, x2, x1+m) + ∑
=

N

2i

IsoT2(xup, xleft, xi, xright, xdown) 

 
where xup, etc., are defined as the appropriate neighbors, wrapping around. This function is difficult to 
optimize. The best and the second best strings have values m3 – m + 1 and m3 – m respectively. 
 

4.2. Numerical Results 
 
 In the following tables N is the population size and n is the number of variables. The average generation 
when the optimum is found is denoted by G, whereas % represents how many times this optimum is found in 
100 runs. The truncation value is denoted by τ. The column P applies to SPADA and to a general Bayesian 
network (GBN). P denotes the maximum number of parents. PADA and TREE are both implement following 
the second approach presented in section 3. Note that all these algorithms, including the GBN with 2 parents 
are considered in this paper to be algorithms with bounded complexity. 
 
4.2.1. Function OneMax 
 
 For the OneMax, the performance of the PADA is compared with that of the UMDA. 
 
 It is worth noting taht UMDA is a  special case  
of the PADA.It has a graph without arcs, and 
therefore it uses only univariate marginal 
probabilities. For the OneMax function UMDA 
performs better than PADA (see Table 1), but 
considering that UMDA has knowledge of the exact 
dependency model, the difference seems to be not 
so big. For truncation equal to 0.5 the difference in 
performance is smaller. Of course,  we are not 
considering  the learning cost of PADA. More 
important is the fact that  PADA uses  the same 
small set of parameters that UMDA does: population 
size and selection pressure. 
 
4.2.2. Function Cuban 
 
 We have found that  for  a  class of popular test  function FDA-BC performs as good as, or even better  
that algorithms using more general distributions. Table 2 shows that GBNs depend strongly on the number  
of parents. We have also made  test with 3 and 4 parents;  the results  agree with what is shown here. 
However, SPADA seems to be more stable in this respect. For 21 and 37 variables the FDA-BC perform well 

Tabla 1.  Numerical results for PADA and UMDA 
                    for  the OneMax function.  
 
Algorithm N n τ G % 

PADA 30 30 0.3 6.21 69 

UMDA 30 30 0.3 6.74 75 

PADA 30 30 0.5 9.69 72 

UMDA 30 30 0.5 9.13 81 
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Table 3. Results for Cuban function with 0.1 truncation value. 
 

Cuban function TREE SPADA GBN 
n N G % P G % G % 

21 1000 3.2 100 2 3.4 100 3.34 100 

21 1000 - - 5 3.8 100 3.5 100 

37 3000 7.2 98 2 7.5 97 6.7 99 

37 3000   5 7.6 95 6.6 99 

101 9000 17.1 90 2 16.9 93 16.9 94 

101 9000   5 17.2 90 17 94 

   Table 4. Results for IsoTorus with 49 variables. 
               N = 1000 and τ = 0.1. 

  

TREE PADA SPADA GBN 
G % G % P G % G % 

6.18 75 7.0 75 2 6.57 71 5.4 73 

- - - - 5 6.7 56 4.5   6 

(the TREE is the bets). For 101 variables even with a population size of 13000 the success rate is below  
60 %. However, in these cases, it makes no sense to use a GBN with  more parents.  

 
Table 2  Results of Cuban function with 0.1 truncation value. 

 
Cuban function TREE SPADA GBN 

n N G % P G % G % 

21 1000 2.4 100 2 2.2 100 2.3 100 

21 1000 - - 5 2.1 98 2.6 60 

37 3000 4.3 96 2 4.7 82 4.1 88 

37 3000   5 4.6 73 4.4 65 

101 13000 10.4 55 2 10.4 41 10.4 52 

101 13000   5 10.5 55 10.6 59 
 

 
 The results in the Table 3 are 
better for the GBNs. We have 
observed that more general 
distributions perform better with 
larger truncation values.  Besides, 
better informed models have lower 
convergence times. However, as 
the table shows  there is no a  big 
difference between the results of 
the algorithms. Having in mind  
the low computational cost of the 
FDA-BC we conclude that they 
are better for the optimization of 
this function. 
 
4.2.3. Funtion IsoTorus 
 
 It was expected that the 
IsoTorus function should not be 
easily optimized by PADA or 
SPADA. This function is a highly 
overlapped grid function, and 
therefore its variables interact 
strongly. However, the result was 
very interesting. It can be easily 
optimized even with a tree 
structure (see Table 4). 
 
 The success rate for GBNs comes down dramatically from 73 to 6. The reason is simple. Because the data 
set is so connected, the best model should have many parents (max = 5). Unfortunately this increases the 
population size requirements, and therefore the success rate for a fixed population size comes down. SPADA 
uses the same greedy algorithm that the GBN uses, however the constraint of polytrees prevents the 
unnecessary grow of the network, and the success rate falls down only to 56. A more interesting fact is the 
following: PADA does not constraint the number of parents. Therefore, it can learn more complex polytrees 
than SPADA with two parents. However, because PADA uses only up to third order distributions, its success 
rate is higher. 

5. CONCLUSIONS 

 Most of the members of the FDAs that have been designed, learn general Bayesian networks. However, in 
this work we study a FDA that learns polytrees: the Polytree Approximation Distribution Algorithm (PADA). 
We explore two implementations of the learning component of PADA. The first method is based on the 
minimization of a scoring metric. The second approach uses independence tests between two and three 
variables. PADA has been investigated in the case of three functions. 
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 The experiments shows that, at least under certain conditions, bounded complexity approximation models 
perform as good as or even better that algorithms that learn more general distributions. 
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