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ABSTRACT 
The inequalities which describe the projection Q of a given polytope P onto a subspace are usually 
generated by an elimination procedure of Fourier-Motzkin type. In this note we give a dual approach for 
the description of Q. In fact, the vertices of a dual polytope serve as indices for the describing 
inequalities. Moreover we show how the redundancy of inequalities is connected with the existence of 
Slater points in the images of a set-valued mapping. 
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RESUMEN 
Las desigualdades que describen la proyección Q de un politopo dado sobre un subespacio son 
usualmente generados por el procedimiento de eliminación del tipo Fourier-Motzkin. En esta nota 
damos un enfoque dual para la descripción de Q. De hecho, los vértices de un politopo dual sirven 
como índices para describir desigualdades. Más aún demostramos que la redundancia de las 
desigualdades están conectadas con la existencia de puntos de Slater en las imágenes de una 
aplicación conjuntualmente evaluadas. 
 
Palabras clave: politopos, programación lineal, dualidad. 

 
1. INTRODUCTION 
 
 For m, n, p ∈ IN consider an arbitrary function a: IRn → IRp, a (p × m) – matrix B and the set 
 

P = {(x,y) ∈ IRn × IRm | a(x) + By ≥ 0}, 
 
where the inequality is to be understood componentwise. We are interested in a description of the orthogonal 
projection π(P) of P onto the first n variables, i.e. Q = π(P) ⊂ IRn. In contrast to the standard procedure of 
Fourier-Motzkin type elimination (cf., e.g., Stoer and Witzgall (1970), Telgen (1982) and the references 
therein) we give a dual description of Q in this note. Unlike the dual approach in Dantzig and Eaves (1973) 
our description of Q is explicit up to the determination of certain vertices of a dual polytope, as it is shown in 
Theorems 3 and 7. Our use of set-valued mappings enables us to give a sufficient condition for redundancy 
of certain vertices in terms of the Slater condition. Moreover, our approach carries over to the case where P is 
a polytope and π is some arbitrary projection operator, which we study in Theorem 9. 
 
2. THE DUAL DESCRIPTION 
 
 Since P is the graph of the set-valued mapping 
 

Γ: IRn → 2IRm, x a {y ∈ IRm | a(x) + By ≥ 0} , 
 
we have x ∈ Q if and only if Γ(x) ≠ ∅. Note that the images of Γ are polyhedra. The following assumption is 
supposed to hold throughout this note: 
 
Assumption 1 The set-valued mapping Γ has bounded images. 
 
 For fixed x we now consider the following (primal) optimization problem:  
 

P(x): 
)z,y(
zmax  s.t. a(x) + By ≥ z ⋅ e, 
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where e = (1,…,1)T ∈ IRp, and z is a scalar. Its dual problem is 
 

D(x): )x(amax Tµ
µ

 s.t. BTµ = 0, eTµ = 1, µ ≥ 0. 

 
 Now let 
 

ZP(x) = {(y,x) ∈ IRm × IR1 | a(x) + By ≥ ze} 
 
and 
 

ZD = {µ ∈ IRp | BTµ = 0, eTµ = 1, µ ≥ 0} 
 
denote the feasible sets of P(x) and D(x), respectively. Observe that ZD neither depends on x nor on y. 
 
Lemma 1. The following assertions hold: 
 

(i) ZD is non-empty and bounded. 

(ii) For each ∈x IRn, both P )x( and D )x( are solvable. 
 
Proof.  In assertion (i), ZD is bounded as a subset of the standard simplex. Assume that ZD is empty. Then,  
by the duality theorem of linear programming, for given ∈x IRn either ZP )x(  is empty or the objective function 

z of )x(P  is not bounded from above on )x(ZP . As the set )x(ZP always contains the point (y,z) = (0, 

min1≤i≤p ))x(ai , it is non-empty. Consequently, there is a sequence (yv, zv) with 
 
       )x(a + Byv ≥ zv e          (1) 
 
and zv → +∞. For some v0 ∈ IN and all v ≥ v0 we have yv ∈ )x(Γ so that, without loss of generality,  

yv → )x(y Γ∈ by the compactness of ).x(Γ  However, then (1) cannot hold for arbitrarily large v ∈ IN. 
Contradiction. Assertion (ii) follows from (i) in virtue of the duality theorem . g 
 
 Let V denote the vertex set of ZD, i.e. the set of points in ZD where p of the active constraints are linearly 
independent. 
 
Lemma 2. For each x∈ IRn the following are equivalent: 
 

(i) )x(Γ  is non-empty. 

(ii) minµ∈V .0)x(aT ≥µ  
 
Proof. The set )x(Γ  is non-empty if and only if there exists a point (y,z) ∈ )x(ZP  with z ≥ 0. As )x(P  is 

solvable by Lemma 1(ii), the latter holds if and only if the optimal value of )x(P is non-negative. The duality 
theorem now implies the equivalence of (i) and 
 
                     0)x(amin T

ZD

≥µ
∈µ

.           (2) 

 
 By the vertex theorem of linear programming, (2) implies (ii). Since )x(D  is solvable by Lemma 1(ii), 
assertion (ii) also implies (2). g 
 
 As we have Q  = { x ∈ IRn | Γ(x) ≠ ∅ }, the next assertion follows immediately from Lemma 2: 
 
Theorem 3. For the set Q = π(P) the following description holds: 
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      Q = I
V∈µ

{x ∈ IRn  | µTa(x) ≥ 0}.          (3) 

 
 Theorem 3 gives a description of Q by finitely many inequalities, where V serves as the finite index set. 
Observe that the defining functions for the inequalities are linear combinations of the functions ai, 1 ≤ i ≤ p. In 
order to obtain an explicit description of Q, a vertex enumeration algorithm can be applied to the polytope ZD, 
Avis and Fukuda (1992). A similar description of Q is given in Nemhauser and Wolsey (1988) , but there the 
function a is supposed to be affine linear. Moreover, our approach via a set-valued mapping gives rise to a 
sufficient criterion for redundant constraints, which we investigate in the next section. 
 
3. REDUNDANT CONSTRAINTS 
 
 Like in the Fourier-Motzkin elimination procedure, some of the inequalities corresponding to vertices µ ∈ V 
may be redundant for the description of Q. We will not dwell on a minimal representation of Q in this note 
Balas (1998) and Telgen (1982), but we only give a sufficient condition for redundancy in this section. 
 
Definition 4. For given x  ∈ IRn  we call y  a Slater point of )x(Γ  if yB)x(a +  > 0. 
 
Lemma 5. For each x  ∈ IRn  the following are equivalent: 
 

(i) )x(Γ  possesses a Slater point. 

(ii)  minµ∈V )x(aTµ  > 0. 
 
 
Proof. The set )x(Γ  possesses a Slater point if and only if there exists a point (y,z) ∈ ZP )x( with z > 0. The 
equivalence of (i) and (ii) now follows with the same arguments as in the proof of Lemma 2.  g 
 
 Lemmas 2 and 5 immediately yield: 
 
Corollary 6 . For each x∈ IRn  the following are equivalent: 
 

(i) )x(Γ  is non-empty and does not possess a Slater point. 

(ii)  minµ∈V )x(aTµ  = 0. 
 
 Subsequently let the following assumption hold: 
 
Assumption 2. The function a is lower semi-continuous. 
 
 For given Qx∈  define the active index set 
 

)x(V0 = {µ ∈ V | µT )x(a = 0}. 
 

 If )x(V0 is non-empty, then in a neighborhood of )x( the set Q coincides with the set 
 

I
)x(V

)x(
0

Q
∈µ

= {x ∈ IRn  | µTa(x) ≥ 0}. 

 
in view of Assumption 2. In the case when )x(V0  is empty, x  lies in the topological interior of Q. 
Consequently, at least the vertices µ ∈ V which do not belong to 
 

),x(VV
~

0
Qx
U
∈

=  
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are redundant for the description of Q. To be more precise, they are strongly redundant in the sense that they 
are not active at any point in Q ([6]). In view of Lemma 2 and Corollary 6, a point Qx∈  possesses a non-
empty active index set )x(V0 if and only if )x(Γ  is non-empty and does not possess a Slater point. This 
proves the following result. 
 
Theorem 7. In the characterization (3) the set V can be replaced by its subset 
 

),x(VV
~

0

Q
~

x
U
∈

=  

 
where 
 

Q
~

 = {x ∈ IRn | Γ(x) is non-empty and does not possess a Slater point}. 
 
 The following example shows that V

~
may be a proper subset of V. 

 
Example 8. 
 

 For m = 1, n = 2, p = 3 put a(x) = 
T

1,1x
2
1,2

2x2
1x ⎟

⎠

⎞
⎜
⎝

⎛ −−− and B = (1,1,-1)T, i.e. we consider 

 
P = { (x,y) ∈ IR3 | ≤≤+ yxx 2

2
2
1 1, x1 ≤  2y }. 

 
 Assumptions 1 and 2 are clearly satisfied. After a short calculation we obtain 
 

ZD = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡∈λ⎟

⎠
⎞⎜

⎝
⎛ λ−λ

2
1,0,

T
2
1,

2
1,  

 

and 
 

V = 
⎭⎬
⎫

⎩⎨
⎧ T)1,0,1(

2
1,T)1,1,0(

2
1 , 

 
so that (3) yields 
 

Q = {x ∈ IR2 | (0,1,1)a(x) ≥ 0, (1,0,1)a(x) ≥ 0} 
 
          = {x ∈ IR2 | x1 ≤ 2, 2

2
2
1 xx + ≤ 1} . 

  
 Obviously the first inequality, corresponding to the vertex 2

1 (0,1,1)T ∈ V  \ V
~

, is strongly redundant for the 
description of Q. 
 
4. ARBITRARY PROJECTION OPERATORS 
 
 The results of Theorems 3 and 7 hold particularly in the case where the functions ai(x) = ,dxc i

T
i + 1 ≤ i ≤ p, 

are affine-linear and P is bounded, i.e. when P is a polytope. 
 
 Assumptions 1 and 2 are then clearly satisfied. Moreover, in this case our method works for any projection 
operator after a suitable linear change of coordinates. An endomorphism σ : IRN → IRN  is called projection 
operator σ°σ = σ. We denote by Im σ and Ker σ the image and the kernel of σ, respectively. 
 
Theorem 9. Let σ be a projection operator on IRN, and let 
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P = {u ∈ IRN | Φ u + ϕ ≥ 0} 
 
be a polytope with a (p × N) – matrix Φ and ϕ ∈ IRp . Then we have: 
 

σ(P) = I
V∈µ

{ξ ∈ Im σ | µT(Φξ + ϕ) ≥ 0} , 

 
where V denotes the vertex set of the polytope 
 

ZD = {µ ∈ IRp | ΦT µ ∈ (Ker σ)⊥, eTµ = 1, µ  ≥ 0} . 
 

Proof. Let the columns of the (N × n) – matrix T1 and the columns of the (N × m) – matrix T2  form a basis of 
Im σ and Ker σ, respectively. The columns of T1 are eigenvectors of σ to the eigenvalue 1, whereas the 
columns of T2 are eigenvectors to the eigenvalue 0. As IRN = Imσ⊕Kerσ, we have N = n + m, and the 
columns of the matrix T = (T1, T2) form a basis of IRN. Hence, σ is diagonizable with σ°T = T°π. Here π 

possesses the matrix representations ,
00
0E

m

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
where En and 0m  denote the (n × n) – identity and the  

(m × m) – zero matrix, respectively. Next, it is easily seen that σ(P) = T(π(P)), where 
 

P = { v ∈ IRN | (ΦT) v + ϕ ≥ 0 }. 
 

 P is again a polytope (cf., e.g., Ziegler (1995)), and we can apply Theorem 3 with x = (v1,…,vn),  
y = (vn+1,…,vn+m), a(x) = ΦT1x + ϕ, and B = ΦT2, in order to determine Q × {0} = π(P). We arrive at 
 

    σ(P) = T(π(P)) = T1(Q) = I
V∈µ

{T1x | x ∈ IRN, µT(ΦT1x + ϕ) ≥ 0} 

 
     =I

V∈µ

{ξ ∈ Im σ | µT(Φξ + ϕ) ≥ 0} , 

 
where V denotes the vertex set of  
 

ZD = {µ ∈ IRN | µΦTT
2T = 0, eTµ = 1, µ ≥ 0} . 

 
 This shows the assertion. g 
 
5. FINAL REMARKS 
 
 An algorithmic implementation of the description for Q in Dantzig and Eaves (1973) obviously relies on an 
efficient vertex enumeration method for the determination of the vertex set V of the polytope ZD. Here, the 
reverse search algorithm of Avis and Fukuda (1992) can be applied, preferably in a version adapted to the 
special structure of ZD. 
 
 This implementation as well as a comparision of our dual description method and Fourier.Motzkin-type 
methods with respect to efficiency and generation, respectively detection, of redundant constraints is beyond 
the scope of this note and will be subject of future research. 
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