
 145

REVISTA INVESTIGACION OPERACIONAL                     Vol. 22, No. 3, 20001  
 
 
 
 
 

A NEW EMBEDDING FOR THE AUGMENTED 
LAGRANGE METHOD 
Gemayqzel Bouza Allende, Universidad de La Habana 
 

ABSTRACT 
Several algorithms such as penalti, barrier, Augmented Lagrangean and parametrical approaches are 
used in the solution of non-linear optimization problems. One of these approach construct of each 
optimization problem (P) or the results of some iterative algorithms. For this parametrical problem a 
necessary condition for a good behavior of the continuation or to define jumps is that the parametrical 
problem is JJT – regular. In this work we propose an embedding for the Augmented lagrangean Method, 
using the ideas of Bertsekas for this kind of algorithms and we proof that for almost every parameter, 
fixed the original optimization problem, the constructed parametric problem is JJT – regular. Some 
numerical examples to illustrate the solution are presented. 
 
Key words: parametrical optimization problem, Augmented Lagrangean Method, JJT-regular,  
                        generalized critical points. 
 
RESUMEN 
Muchos algoritmos, como penalidad, barrera, lagrangeanos aumentados e embedding uniparamétricas, 
han aparecido para la solución de problemas de optimización no lineal (P). Este último consiste en la 
construcción para cada (P), de un problema de optimización uniparamétrica, cuya solución incluirá las 
soluciones de (P) o resultados de algún algoritmo iterativo. Para este tipo de problemas una condición 
necesaria para el buen comportamiento del método de continuación y saltos, es que el problema 
parámetrico sea JJT – regular. En este trabajo, proponemos una inmersión para el método de 
Lagrangeanos uaumentados, usando las ideas de Bertsekas para este tipo de algoritmos y probamos 
que, fijo el problema original, puede construirse una embedding tal que el problema paramétrico sea 
JJT – regular. Se presentan algunos ejemplos numéricos ilustrativos. 
 
Palabras clave: problemas de optimización paramérica, método Lagrangeano Augmentado, JJT-  
                              regular, puntos criticos generalizados. 

 
1. INTRODUCTION 
 

There are different methods for solving the well known non linear optimization problem: 
 
       P = min{f(x)  | x ∈ M} 
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 But as a global minimum is very difficult to obtain, many algorithms that pretend a convergence to it have 
appeared. Some examples are the barrier and the penalty algorithms. One important case of penalty method 
is the Augmented Lagrange Methods or Multipliers Method. In this algorithm a simpler optimization problem is 
constructed which objective function includes the Lagrange function and a quadratic penalty term. This 
function is an example of a smooth penalty function that is exact. 
 
 Since 1980 homotopy ideas for solving the non-linear programming problem has been used. This method 
construct an uniparametric problem P(t), and try to obtain a solution of the original problem, with a strategy of 
continuation and jumps on the set of solutions, generalized critical points, of P(t). In order to characterize the 
different situations Jongen, Jonker and Twilt have considered particular cases of solutions and classified 
them in five classes. They provides us of necessary conditionsunder which the continuation method may 
succeed. Some results about how strong is to assume that all the solutions of P(t) are of one of the fve 
defined classes are already known. 
 
 In this work we are going to propose a new immersion that describe the Augmented Lagrange methods. 
We also analyze its properties: the types of generalized critical points, defined by Jongen Jonker and Twilt, 
that may appear in P(t), under the assumption that the problem is JJT-regular, and the expected success of 
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the continuation method applied to the parametric problem or perturbations of it. We also display some 
numeric examples and compare our results with the ones obtained for this method already known using other 
immersions. In the next section, we are going to describe the principal aspects of uniparametric optimization 
and the multipliers method. The third section is dedicated to the analysis of some simple properties of the 
immersions proposed by us. After this we proceed to proof the theorem that assure us that the immersion 
describe the Augmented Lagrange Method. In the fourth section, we proof theorems that told us how strong is 
the assumption that the parametric problem is JJT-regular. Finally, the last section is dedicated to the 
numerical experience, comparing the behavior of this inmersion with others. 
 
2. PRELIMINARY ASPECTS AND NOTATIONS 
 
 At first we will define the following optimization problem 
 
      P = min{f(x)  | x ∈ M} 
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 Now we will present a theoretical background of the topics of parametric optimization that we are going to 
use in order to solve the problem (2) using the homotopy method. We will consider the problem: 
 
      P(t) = min{f(x,t)  | x ∈ M} 
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 It is shortly denoted as P(t)f;H,G = (f(x,t); h1(x,t),…,hm(x,t), g1(x,t) …gs(x,t)). As we are interested in construct 
a parametric problem that should be related with the optimization problem P(2), the following properties 
should hold: 
 
Properties 2.1 
   
• P(1) and P are equivalents. 

• There is a solution of the problem P(t) ∀t ∈ [0,1]. 

• P(0) has an evident solution. 
 
 With this properties, we can begin with an easy point at t = 0. As there is a solution ∀t ∈ [0,1], we can try to 
use a continuation, if it is possible, on the set of solutions and, if we reach t = 1, a solution of the original 
problem will be attained. The known definitions of Optimization are easily extended to this case, considering  
t as a parameter: 
 
Definition 2.1.  
 
 Let x ∈ M(t), (x, t) a feasible point P(t). 
 
• J0(x, t) = { j:gj(x, t) = 0} is the active index set of (x, t). 
 
• We will say that the LICQ holds at (x, t) if the following vectors {Dxhi(x, t), i = 1…m, {Dxgj(x, t), j ∈ J0(x, t),   

are linear independent. 
 

• L(x,λ,µ,t) = f(x, t) - ∑∑
∈=

µ−λ
0Jj

jj

m

1i
ii )t,x(g)t,x(h is the Lagrange function for P(t), and λi, i = 1…m, µj,  

j ∈ J0(x, t), are the Lagrange multipliers. 
 
 Now we are going to present the definitions of critical point and generalized critical point. 
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Definition 2.2 
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            µj ≥ 0           (5) 

 
(x, t) ∈ Σcrit (i.e. is a critical point) if exist λi, i = 1…m, µj, j ∈ J0(x,t) such that (x, λ,µ) satisfies the system (4).  
If (5) holds then we say it is a stationary point, (x, t) ∈ Σstat.(x, t) ∈ Σstat, (i.e. is a generalized critical point)  
if this system of vectors is linear dependent 
 
     {Dzf(x, t), Dzhi(x, t), i = 1…m, Dxgj(x, t), j ∈ J0(x, t)}        (6) 
  
 The solution of P(t) will be understood in this work as a generalized critical points. Actually we are going to 
deal with the structure of the set Σgc. In order to have an evident solution at t = 0 it is important to have an 
easy problem. 
 
 As we want to obtain a solution of the problem in t = 1, a continuation on Σgc is intended. Beginning at t = 0, 
we make a partition of the interval [0, 1], and using an active index strategy, we try to find from a solution at  
t = tk a generalized critical point in t = tk+1. This continuation depends on the structure of the set Σgc, as told in 
Jongen et al. [7]. That's why they define  five class of generalized critical points: 
 

Definition 2.3 ∑∈
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gc
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1a) LICQ holds. 
 
1b) J0 .)(J)t,x(J0 µ= +  
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2

gc
,)t,x(  the 1b) condition doesn't hold. The condition 1c) fails at the points in the 

third class of generalized critical points. In the last two classes the LICQ is not satisfied, Gómez et al. [4]. 
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5U)G,H,f(:)t,x(G),t,x(H),t,x(fF . It is also said that then the problem P(t) is 

JJT-regular. 
 
 A very important result says that this set is open and dense with the strong topology on (C3)1+m+s and that 
for almost every quadratic perturbation of f(x,t), and linear on (H(x,t), G(x,t)), both in x, the parametric problem 
is in the class F. The results of this kind that we will obtain here are, as in the proved results, respect the 
Lebesgue’s measure. 
 
2.1. Lagrange Multipliers Method 
 
 This method constructs an optimization problem with non-negative restrictions and the objective function 
includes the Lagrange function and a quadratic penalty term. For example, in the problem P, (2), the Lagrange 
method solve ∀c >0, the problem: 
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and then as in a penalty algorithm, c → ∞. This method obtains the multipliers too, having a dual 
interpretation. (x,λ,µ) is a saddle point of the Lagrange function. 
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3. EMBEDDING FOR AUGMENTED LAGRANGIANS 
 
 In this section we present a new embedding that construct a parametric problem such that construct a 
parametric problem such that, when we solve the obtained parametric problem, the obtained solutions should 
be "equivalent" to the application of the Lagrange Multipliers Embedding to P. 
 
 This immersion should have at t = 0 an evident saddle point, the start solution. It holds too that at least in a 
neighborhood V of t = 0, the continuation method, beginning at t = 0, will calculate, ∀t ∈ V, saddle points of 
the same characterof those obtained by the application of the original method. If it is possible to reach t = 1 
with such a points, the procedure will be equivalent to the application of the Augmented Lagrange method. If 
not, the “equivalence” holds for some iterations of the classic method. In both cases we will made an study of 
the singularities in order to know which kind of jump are necessary to obtain a critical point at t = 1. The main 
diffrence between this parametric point of view and the original algorithm is that the parametric problem can 
have non-linear constrains in general. The immersion we are going to deal with construct the following 
parametric problem: 
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This immersion was motivated by the ideas presented in Luenberger [9] for the Lagrange Method. One 
immersion of this kind was already proposed in Dentcheva et al. [2], but is used the ideas of Bertsekas and 
do not convert the inequalities restrictions in equalities. Let's see some properties of immersion PP1 that 
allow us to say that it describe the method, at least in a neighborhood of 0. 

Proposition 3.1 If q >> 1. Then: 

1. We can obtain an easy saddle point at t = 0 and P(1) is equivalent to P. 

2. The LICQ holds for all feasible point (x, z, λ, µ,v, w,t) t ∈ [0; 1[. 

3. ∀t ∈ [0,1[, the feasible solution is bounded. 

4. There is a global minimum of P(t), ∀t ∈ [0,1]. 

Proof 

1.  It is evident if ||y0||2 < p. 

2. It' is enough to analyze the gradients of the active restrictions when the compactification restriction is  
     active. That is: see that this matrix has full rank. 
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3. It’is sufficient to see that the variables (v, w) are bounded. It’s obtained from the fact that  

wj = woj + 
t1

x)x(gjt )( 2
j

−

−
(analogous for v), (x, z) are bounded and the functions are continuos. 

4. If P has an optimal solution xopt, then  global minimum ( )00optopt wv0,0,)x(g,x  solves P(1).       g  

Remarks 3.2 From this proposition we obtain the three properties included in (2.1), and it is clear that the  
function involved in the restrictions and the objective function are of the class C3 if (f; H; G) ∈ [C3]

1+m+s
. 

Remarks 3.3 The main problem of this embedding is that there is not a compact set that includes  
M(t) ∀t ∈ [0; 1]. 

Corollary 3.4 If the parametric problem P1(t), (7) is such that P(t) ∈ F, then .
i

gc
3

1igc
U ∑∑ =⊂  

Proof It follows direct from assertion 2) of the last proposition.     g 

 For notations we are going to assume that ζ(y, v, w, α, β, γ, t) is the hessian matrix of the Lagrange function 
corresponding to the parametric problem PP1 (7), respect to y. Here the multipliers are (α ∈ IRm, β ∈ IRs,  
and γ ∈ IR. The  last multiplier corresponds to the compactification. 
 
 There are two possibilities for the matrix M, if the compactificaction restriction is active or not, (8), (9) 
respectively. 
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 For each case we define M  as in (10), and (11), corresponding to the same two possibilities. In the first 
case k is such that yk ≠ 0. 
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Proposition 3.5  We can find a matrix D ∈ ,R 2
)1n(n +

 a sub-matrix of M  such than rank(D) = rank(M) = n – k 

and M  is a sub-matrix of D. 

Proof  In the two cases the matrix M  has full rank. It is enough to complete the basis.       g 

 
4. MAIN RESULTS 
 
 Now we are going to proof how much strong is to assume that the parametric problem described as PP1(7) 
is in class F. 
 
Theorem 4.1 For the immersion described in (7), for almost every Q = (A, y0, v0), its generalized critical points 
are of type 1, 2 or 3, (here the almost everywhere is taken in the sense of the Lebesgue’s measure). 
 
Proof  Using the same ideas described in Gómez et al. [4], we can write every generalized critical point of the 
problem as the a solution of the system (12), where J0 is its active index set, J+(µ) = {j: µj ≠ 0} and D is a 
symmetric matrix, rank(D) = rank(M) = n – k. That means ∑gc is the finite union of sets described by the 
following system: 
 
     H(x, λ, t, A, x0) = 0 
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where R ∈ ,R 2
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 is a sub-matrix of ζ + 2(1 – t)A and depends of the parameter Q and the variables of the  
system, (Proposition 3.5). Then writing the jacobian of the system (12) respects to variables and parameters, 
we obtain: 
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 Here  τ = (1 – t), ∗ = (n + m + s)(n + m + s+ 1)/2, ∗∗∗ = k(k + 1)/2 y ∗∗ = (n + 3m + 3s + δ)(n + 3m +  
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 The matrix described in (13) has full rank. So we can apply the parametric Sard theorem and the rest of the 
proof follows the same steps of the Theorem 6.18, pp. 121 (Gómez et al. [4]).        g 
 
Remarks 4.2 In this case we want to remark that as the set of the symmetric matrixes positive definite is 
open the Lebesgue´s measure restricted to this set is allowed, and the result holds with the restricted 
measure too. 
 



 151

Remarks 4.3 Another important problem is to know if the set of functions (f, H, G) ∈ ,C3
S are such that the 

parametric problem obtained by the application of the immersion PP1(7) are in class F is generic in C3 with 
the strong topology. The proof of this result using quadratic perturbation and the parameterized Sard theorem 
as in theorem 6.25, pp. 137 (Gómez et al. [4]) is not valid.  
 
5. NUMERICAL EXAMPLES  
 
 In this section we are going to present some examples of optimization problem, to whom the immersion 
PP1 (7) is applied and the parametric solved by the program PAFO. At first it was necessary to program in 
FORTRAN the proposed immersion. This program calculates, known the derivatives of the problem at t = 1, 
the third order derivatives of the parametric problem. The problem at t = 1 is not exactly the original 
optimization problem, that's why the program was made in such a way that the programmed optimization 
problems can be used. From a numerical point of view of the PAFO program with such a kind of immersion  
only small problem can be solved, with at most 5 inequalities restrictions. The same limitations are in the 
numerical solution of the immersion proposed for this method in Dentcheva et al. [2]. 
 
 One of the chosen numeric examples was taken from Dentcheva et al. [2], to whom another immersion for 
the Augmented Lagrange method is applied. The original problem is: 
 

min(x1 + 4)2 

S.T. 
g(x) = - 0.026573509 8

1x + 0.21150527 7
1x - 0.25753848 6

1x -  1.34579642 5
1x  + 2.34222067 4

1x - 

                         0.45664738 3
1x + 2.65029635 2

1x - .091447716 x1+ 2
3x + 2

4x + 2
2x + 5 ≥ 0 . 

 
 The immersion PP1 (7) applied to this problem, construct the following parametric problem: 
 

min t[(x1 +4)2+ µ(g(x) - z2) + (1 – t)[||x – x0||2 + (z – z0)2 – (µ -µ0)2] + (w – w0)2] 

S.T. 
t(g(x) – z2) + (1 – t)(w – w0) = 0 

 
      ||x – x0||2 + (z – z0)2 +(µ - µ0)2 ≤ 50 
 

 This problem was solved for two different initial points: 
 
1. (x0, z0, µ0, w0) = (4, 0, 0, 0, 0, 0, 0, 0) 
 
2. (x0, z0, µ0, w0) = (0, 0, 0, 0, 0, 0, 0, 0) 
 
 As can be seen at Figure 1, in the first case we can reach successfully the point t = 1. In the other case,  
Figure 2, is necessary to make some special considerations because there is a multiplier that tends to infinity. 
In the second example it is impossible to reach t =1 because of the presence of a turning point, point of  
type 3. We have considered the problem for two different initial points and the same situation was obtained. 
 

Min – x1 

 

S.T.  1 + x1(1 - x1)2 - x2 ≥ 0 
 
is constructed the following parametric problem: 
 

min - x1 + µ(1 + x1(1 - x1)2- x2) + (w - w0)2 

 

1 + x1(1 - x1)2 - x2 + 2
3x  = 0 

S.T. 
50xxx 22

3
2
2

2
1 ≤µ+++  
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6. CONCLUSIONS 
 
 In this work we have presented an embedding that when the obtained parametric problem is solved, it 
describes the iterative process of solution of the original problem with the Multipliers Method. As the start 
solution is a saddle point of type 1, we can affirm that there is a neighborhood such that the obtained critical 
points are points of type 1 with the same characteristics. This neighborhood can be extended as far as we the 
critical points of the problem P(t) are of type 1 or non-turning point of type 2. In this neighborhood the 
equivalence between both algorithms holds. The functions involved in the constructed parametrical problem, 
are of class C3 if (f, h1…g1…gm) ∈ [C3]1+m+s, a property that doesn't holds for one of the embeddings proposed 
in Dentecheva et al. [2]. For the embedding P1(t)(7), proposed by us, we have proof that fixed (f; H; G) for 
almost every parameter, the parametric problem P1(t) (7) will be JJT-regular. That's why we can assume it for 
numerical needs. Something similar take place for the second embedding proposed in Dentcheva et al. [2] 
and as in that case we can not proof that the set (f; H; G) : Φ3 (f; H; G)  ∈ F is generic using the Sard Lemma, 
where : Φ(f; H; G) s the parametrical problem defined at Dentcheva et al. [2]. The numerical examples, even 
in this limited cases, show us that we can not have a PC1 - path that connect a generalized critical point of  
t = 0, with other at t = 1. We want to remark that the same problem appears in one of the embeddings 
proposed by Dentcheva et al. [2]. We can not even assume that jumping to another component of Σgc we can 
obtain the desired solution. Nevertheless this embedding is very important because when the first singularity 
appears, there is a descending direction on ∑gc, even if the singularity is of type 4. 
 
 In future work, we can think in the construction of an embedding for the Augmented Lagrangean Method  
Φ:[C3]1+m+s → [C3]1+m1+s1 in which Φ-1(F) would be generic. 
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