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ABSTRACT 
In this work we present a hybrid scheme combining the meted-of-line with interpolatory wavelets and 
central finite differences to solve numerically some nonlinear evolution partial differential equations, 
(PDEs), with soliton type solutions. The employment of the interpolatory wavelets permits, in this case, 
to significatively reduce the number of nodes of the non-uniform moving grid. Consequently an 
important reduction of the order of the resulting stiff ODE system is obtained. Some numerical tests are 
presented solving the Schrödinger equation, which models important physical phenomena nowadays. 
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RESUMEN 
En este trabajo se presenta un esquema híbrido basado en el método de líneas, las funciones wavelets 
de interpolación y un esquema en diferencias finitas centradas para la solución de ecuaciones 
diferenciales parciales, (EDPS), no-lineales de evolución con soluciones tipo solitón. El empleo de los 
wavelets interpolatorios permite, en este caso, reducir significativamente el número de nodos de la 
malla adaptativa no-uniforme y por consiguiente se reduce el número de ecuaciones diferenciales 
ordinarias de tipo stiff resultantes de aplicar la técnica de semidiscretización. Se presentan ejemplos 
con la solución numérica de la ecuación no-lineal de Schrödinger, la cual modela importantes 
problemas de la Física. 
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1. INTRODUCTION 
 
 Finding effectgive computational techniques to solve hyperbolic syustems of conservation laws has 
encouraged researches in this field during the last 20 years. As a result, a variety of methods are now 
available that can compute accurate numerical approximations of the physically relevant solutions. Most of 
these methods are the so-called high resolution shock-capturing schemes, typically with second or third order 
approximation in the smooth regions and maintaining sharp and oscillations free, numerical profiles at the 
discontinuities, [Donat, R. and A. Marquina, 1999]. The pionerr in the area with a set of techniques to reduce 
computational efforts was Ami Harten [1995]. 
 
 In this paper we present a hybrid technique, which has the above-mentioned properties. It is based on 
interpolatory wavelets as the previous works of David Donoho [1992], and Mats Holmström [1996], but using 
a semidiscrete technique, the method-of-lines, and an efficient ODE solver for the resulting stiff ODE system. 
 
 We show the main advantages in using this technique, which brings also the possibility to construct an 
adaptive non-uniform moving mesh. 
 
 As far as the author know, this is the paper presenting the solution of the nonlinear Schreödinger equation 
using interpolatory wavelets. 
 
 This work is a continuation of earlier papers of the first author [Alvarez, L. and Cunha, C., 1997] and 
[Alvarez, L. and Navarro, J., 1999]. 
 
 In section 2, some relevant concepts on wavelets are given, showing their capabilities for compression or 
sparse function representation, in particular the Daubechies and interpolatory wavelets are presented. 
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 The employment of the method-of-lines in two particular PDEs and the relationships between finite 
difference grid refinement and wavelets methods are discussed in section 2. 
 
 Finally, in section 3 some interesting bnumerical solutions of the nonlineasr Schrödinger equation with 
soliton type behavior, computed with an efficient ODE sdolver, are presented. 
 
2. DAUBECHIES ANB INTERPOLATORY WAVELETS 
 
 The most famous wavelets in thew literature are the Daubechies wavelets, [Daubechies, I., 1992] and 
[Cohen, A. and Deaubechies, I., 1993]. We introduce them here, because they illustrate well all the main 
properties that have fulfill “good wavelets”. They satisfy the following equations:  
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where φ(x) are the scalin function and ψ(x) are the wavelets. We assume that φ(x) is normalized, that is 
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where j, k are integers denoting the dilations and translations of the arguments or in other words, j denotes 
the scale and k denotes the position, we have that the coefficients 
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are related by 
 
      gk = (-1)khL-k, k = 0,1,…,L-1       (2.5) 
 
 These coefficients are called filters. 
 
 The Daubechies wavelets are orthonormals, i.e., 
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and also )x()x( 0
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 That means that )x(ψ  has M vanishing moments, property, which will be relevant in the compression or in 
the sparse function representation. 
 
 The space spanned by φ(x) and ψ(x) over k with fixed j are usually denoted by 
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 In the reference [Jameson, L., 1994], is shown that Daubechies wavelets satisfy the following properties: 
 
a)  The space V generate a ladder of spaces: 
 

…⊂ V1 ⊂ V0 ⊂ V-1 ⊂ … 
 

So, we can move the function from coarser to finer grids, (different scale j) and in opposite direction. 
 

b) We say that these wavelets from an orthonormal basis of L2: 
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c) So, there exists a set of coefficients j

k}d{ such that any function 
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 Using the properties a) and b) and knowing that in a computer we perform a finite number of operation, we 
will have a limit scale number J, we can write that: 
 

V0 = W1 ⊕ W2 ⊕…⊕ Wj ⊕ Vj 
 
and also that any projection of the function f(x) can be written as: 
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 The above equation says that we can represent any function in terms of some coefficients of smoothness, 

j
ks in the space of the scaling functions plus the combination of all the details in J scales. 

 
2.2. Interpolatory wavelets 
 
 The interpolatory wavelets, first established by Donoho in 1993, are constructed following the interpolating 
subdivision scheme of Deslauries and Dubuc, [1989]. Starting with a set of dyadic grids in the real line: 
 
     Vj = {xj,k ∈ ℜ: xj,k = 2-jk, k ∈ Z} , j ∈ Z     (2.11) 
 
 The localization of the nodes in these grids in different scales are showed in the following picture: 
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 Formally, we define one step in the subdivision scheme as: 
 

⎪⎩

⎪
⎨
⎧

∈∀=

=

++++

+

ZkPf

ff

1k2,1j1k2,1j

k,jk2,1j  

 
 Here fj,k are the functional values to be represented in the grid, with scale j and position k, (where for 
simplicity we avoid the superindex) and Pj+1,2k+1(x) will be an interpolation polynomial. So, the last equation 
means that we set the same functional values in the odd nodes and interpole the values in the even nodes. 
 
 For example, we can construct the function in the next scale using the functional values from the coarser 
grid as follows: 
 

fj+1,2k+1 = (fj,k + fj,k+1)/2   if p = 2 
 

fj+1,2k+1 = (-fj,k-1 + 9fj,k +9fj,k+1 - fj,k+2)/16 if p = 4 
 
 Of course, p – 1 will be the order of the approximation in the interpoling subdivision scheme. 
 
 Backing again to the interpolatory wavelets of Donoho, they are constructed starting with a sequence 
{δ0,k}k∈Z

 on V0 and applying the interpolating subdivision scheme subsequently, in the limit grid, Vl, l → ∞ we 
get what Donoho calls his scaling function or the fundamental function of Deslauries and Dubuc, ϕ(x). 
 
 From the construction it is established that ϕ(x) has compact support on the interval [-p + 1, p – 1], and is 
symmetric and cardinal. 
 
 Performing dilations and translations of ϕ(x) by the equation 
 

ϕj,k(x) = ϕ(2jx – k) 
 

a basic of interpolatory wavelets have polynomial reproduction and for p > 2 they are not piecewise 
polynomial. All of the mentioned properties are shown in [4]. 
 
 By introducing the spaces Wj, such that 
 

Vj+1 = Vj ⊕ Wj 
 
 We can represent a function in the next scale by 
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 Or in another way, by introducing now the interpolatory wavelets {ψj,k}k∈Z

  in the spaces Wj, where they are 
represented as ψj,k(x) = ψ2jx - k). These wavelets fulfill the properties a) and b) of the Daubechies 
wavelets.Then we can represent any function in these two forms: 
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 So, the difference of the functional values from one scale to another can be computed by: 
 
      Pj+1f(x) - Pjf(x)  = ∑ ψ

k
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 This last equation gives two important facts: 
 
• The wavelet coefficient encode the interpolation error when the function is moved from one scale j to 

another j+1. 
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• The position in the grid of the coefficient coincides with the physical position of the functional value being 
interpolated. 

 
 The first fact is that the equation (2.15) gives the formula to compute the wavelet coefficients and the 
second one gives us the possibility to perform all the operations that we need to solve numerically the PDEs, 
that means, discretization, multiplication, computing all the nonlinerities in the physical functional space. 
 
2.3. Sparse function representation 
 
 For a given threshold ε we truncate to zero all the non-significant wavelet coefficients: 
 
                  dj,k = 0  if    |dj,k| < ε     (2.16) 
 
 We will represent f(x) onlyh with the significant coefficients. 
 
 In other words, we truncate the linear combination to represent the function in the wavelet basis, taking only 
a few numbers of terms. So, a smooth functgion will be represented with as small number of significant 
coefficients and only the region where a given function has sharp behavior we will ned to add terms in the 
series with significant coefficients dj,k. 
 
 After this thresholding operation we will have a locally cubic function, (if p = 4), well represented with only 
Ns coefficients or, which is the same, the function will be represented taking only Ns nodes in the grid, that will 
be a sparse non-uniform grid. 
 
 If, for example, the function moves in the space, it sharpness also moves, and so the grid, so we are able to 
construct an adapotive non-uniform grid. 
 
 The steps to get the sparse point representartion, (spr), of a function and the computation of the discrete 
spatial derivatives by central finite difference are shown in [Holmström, M., 1996], and [Alvarez, L. and 
Navarro, J., 1999]. 
 
 As it is remarked in [Jameson, L., 1994], when wavelet methods are considered in the physical space, 
where the function lives: 
 

• they are equivalent to use explicit finite difference methods. 

• strictly speaking wavelet methods correspond to central finite difference operators. 

• one important fact in that there exists superconvergence in the chosen nodes. 

• the  refinement is accomplished only by adding wavelets basis in the series where 
             the function has singular behavior.  

 
3. SOLVING THE SCHRÖDINGER EQUATION 
 
 The non-linear evolution PDEs that we have solved are those with soliton type solutions. In a previous work 
we have presented this technique for the KdV equation, [Alvarez, L. and Navarro, J., 1999], which describes 
wave trains with weak dispersion. This edquation replaces the Burger’s equation, in models with extremely 
weak dispersions [Witham, G.B., 1974]. 
 
 Now we are presenting in this paper the numerical solution of the nonblinear Schrödinger, (NLS), equation 
[Zakharov, V. and Shabat, A:B., 1972]: 
 
             iut + uxx ± v u|u|2 = 0       (3.1) 
 
 This equation describes the modulation of cuasi-monochromatic wave trains and also is a model which 
arises in various branches of physics, as for example, to describe the nonideal Bose gas of the attracting 
particles of the propagatiopn of light beans in a nonlinear dispersive media (the propagation of bright 
solitons), etc. 
 
 To find efficient numnerical techniques to solve the NLS equation is still a challenging researching area 
[Kholmujdorov, I., V. Puzynin and Yu S. Smirnov, 2000]. 
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3.1. The Method-of-lines 
 
 The method of lines is a semidiscrete tyechnique, that transforms the scalar PDE to an ODE system 
[Le Veque, R., 1992] and [Alvarez, L. and Cunha, C., 1997]. 
 
 Discretizing the second order spatial derivatives of (3.1), using a central finite difference scheme with filter 
coefficients coming from the Lagrange interpolation polynomials and denoting it by: 
 

V2(xi,t) ≈ (uxx)|x=xi 

 
 Then we transform the Schrödinger equation to the following ODE system: 
 
      u’(xi,t) = V2(xi,t) ± |(u(xi,t)|2 u(xi,t),      (3.2) 
 
 This ODE system is completed with Ns initial conditions from the evaluation of the initial condition of the 
PDE in the Ns sparse nodes.  
 
 The treatment of the boundary point for the interpolation of the function values and for the centered 
difference schemes for the discretization of the derivatives are well explained in [Holmström, M., 1996] and 
[Alvarez, L. and Navarro,k J., 1999]. 
 
 It is important to remark that the number of the resulting ordinary differential equations is exactly the samne 
quantity of the sparse point representation of the solution, because the discrfetization of the PDE is done only 
in the nodes of the non-uniform grid. 
 
 The final step of the procedure will be to solve the ODE system with an efficient technique for stiff 
problems, taking into account that we can have small parameters in the denominator of the righ hand sides of 
the systems (∆xj, v. etc.). 
 
 In each temporal step, (taken automatically by the code), we need to compute the sparse wavelet 
representation, (spr), of the solution, constgructing thus, the moving grid. 
 
 The method of lines has the advantahe that decouples the spatial and temporal issues in the ODE system. 
 
4. NUMERICAL SIMULATIONS 
 
Test 1. NLS equation: 

i ut + uxx ± u|u|2 = 0 
 

with a complex initial condition: 
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and parameters values: 

α = 2, v = 1, a = 2(α - v2/4) 
 

 The exact solution reported in Ref. (Vvdensky, D., 1993], is: 
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 The following pictures show the accuracy and well correspondence of the exact and numerical solutions, 
which error has been 0(10-4) in both, spatial and temporal issues. 
 
 The plotted quantity is |u(x,t)|. 
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  Figure 1. Initial condition. The circle are the sparse 
                  nodes from the spr. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 2. Numerical solution showing the trabelling  
                    soliton in different time steps. 
 

Figure 3.3D numerical solution, ].1,0[t ∋  
 

Figure 4. 2D contour of the soliton position. 
 

 
Test 2. NLX equation with v = 2: 

i ut + uxx ± 2 u|u|2 = 0 
 
 With a real initial condition: 
 

xcos1.01(2)0,x(u π+π=  
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Figure 5. Initial condition for test 2. 
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 In this case the exact solution is unknown and we have only numerical results reported in [Fornber, B., 1998] 
using spectral methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 6. 3D numerical solution for Test 2.                Figure 7. 2D contour of the numerical solution. 
 
  
 Notice that, starting from a smooth initial condition, the solution evolves to a soliton and after certain time 
steps it evolves to two travelling solitons. 
 
 To have certainty of the numerical results, we have computed one of the conserved quantities for the NLS 
equation: 

Q(t) ∫≈ dx|)t,x(u|i 2  

 
 Computing the errors with respect to the initial conserved 
quantity Q0 from the initial condition: 
 

Error = 
|Q|max
|QQ|

num

0num −  

 
 We obtained the following behavior for the numerical errors: 
 
 This figure shows that after certain time value (t ≈ 0.05), the 
error increase rapidly due to the accumulation of numerical 
errors frrom the ODE solverm showing the complexity of thgis 
Test 2. 
 
5. CONCLUSIONS 
 
 In this work we have developed an efficient tool to solve the nonlinear evolution 1D PDEs. We have 
discusseds in some details the basic principles of wavelet functions starting from the Daubechies wavelets to 
introduce the Donoho’s interpolary wavelets. For more details in the use of centered finite difference scheme 
to approximate the spatial derivatives, the reader is submitted to [Holmström, M., 1996] and [Alvarez, L. and 
Navarro, J., 1999]. 
 
 The correct results and the little computational effort (only a few minutes in a PC) solving complex PDEs, 
showed the possibility to extend this technique to solve 2D nonlinear PDEs. The authors continue working in 
this subject for systems of 1D nonlinear conservation laws and 2D problems. 
 
 We think that hybrid methods using wavelets is the future in all branches of the numerical analysis. 
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