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ABSTRACT   
We study some criteria that can be applied for the partitioning of a set of  objects when non Euclidean 
distances are used; particularly, these criteria can be used when the data are described by binary 
variables. These criteria are based on aggregations that measure the homogeneity of a class and some 
are generalizations of variance or inertia. Properties of the criteria are studied and partitioning methods 
are proposed, based on metaheuristics of global optimization, such as simulated annealing and tabu 
search. Finally, comparative results on binary data are shown. 
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                    search, generalized inertia. 
 
RESUMEN 
Se estudian  criterios que se pueden aplicar para particionar un conjunto de objetos cuando se usan 
distancias no euclídeas; en particular, los criterios pueden ser usados cuando los datos son descritos 
por variables binarias. estos criterios están basados en agregaciones que miden la homogeneidad de 
una clase y algunos son generalizaciones de la varianza o inercia. Se estudian algunas de las 
propiedades de los criterios de agregación y se proponen métodos de particionamiento basados en el 
uso de metaheurísticas de optimización global, como sobrecalentamiento simulado y búsqueda tabú. 
Finalmente, se muestran resultados comparativos sobre datos binarios.  
 
Palabras clave: datos binarios, datos cualitativos, análisis de conglomerados, clasificación  
                                automática, búsqueda tabú, sobrecalentamiento simulado, inercia generalizada. 
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1.  INTRODUCTION 
    
 Usual methods of partitioning (Forgy, k-means, dynamical clusters transfers, Isodata, etc.) find locall optima 
of the inertia (or general variance) criterion since they are based on procedures of locall search (Anderberg 
(1973), Bock (1974), Diday et.al (1982)). In the Euclidean case, the authors have employed combinatorial 
optimization techniques, such as simulated annealing, tabu search and evolutionary strategies for optimizing 
the criterion, obtaining excellent results (see Trejos et al. (1998) or Piza  et al.  (1999)). In the case of non 
quantitative data, or if one wants to use a non Euclidean distance, it is necessary to adapt the criterion, since 
Huygens theorem and other theoretical results hold only in an Euclidean context. The use of the L1 distance 
in the quantitative case has been considered in Jajuga (1987) or Späth (1985) and it is proved that the best 
center adapted to a class is the vector of variable medians. 
 
   In this paper we study six aggregation indexes that can be used for measuring the homogeneity or 
compactness of a partition when general dissimilarity indexes are used. We deal with some theoretical 
properties of these aggregations, such as monotonicity and up-downdating formulas when methods of 
transfers are used. Also, a Huygens-like property is deduced. 
 
2. THE  PROBLEM  OF  PARTITIONING  IN  A  NON-EUCLIDEAN  CONTEXT 
 
 Let D = (d(x,x1)nxn be a dissimilarity matrix on a set of n objects Ω = {x1,x2,....,xn}. 
 
 We seek for a partition P = (C1, C2, .....Ck) of k clases of objects, and a numerial criterion W  must be 
defined for measuring the quality of the partition. That is, we want to solve the problem 
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where Pk is the set of all partitions of Ω in k or less classes, and δ(C ) is some aggregation measure. Objects 
in Ω may be described by a set of variables, not necessarily numerical (binary or categorical). In this case, 
there are several dissimilarity indices that can be used, such a Jaccard, Dice or Russel-Rao in the binary 
case, and X2 or Hamming in the categorical case. 
    
 Usually one uses the within-inertia criterion for measuring the homogeneity of the partition (see Bock (1974) 
and Diday et al.  (1982)). Classes are represented by a "center" which is the centroid of the class, that is the 
mean vector in the Euclidean space or the median vector in the L1  space. In the context of non-quantitative 
data, Diday (1980) has proposed to use a "center" that minimizes the sum of distances to the rest of elements 
of  the class, and to proceed with the dynamical clusters algorithm. We do not follow this  way since the 
dynamical clusters algorithm finds local minima and also because a center in this context can be heard to find 
and may be an element without representative sense, as often occurs in practice. 
    
 For  the clustering of Ω there are three ways to proceed: 
 
• To use the classical hierarchical classification theory (see Bock (1974), Diday  et al. (1982) or Piza (1987)) 

with a dissimilarity index and one of the aggregations adapted in the non Euclidean case (for example, 
single linkage, complete linkage or average linkage in the agglomerative approach). 

• To use the multidimensional scaling (MDS) theory (see for example Borg and Groenen (1997), Trejos and 
Villalobos (in press) or Villalobos and Trejos (in press) in this volume). Metric MDS finds a configuration in 
an Euclidean space so that Euclidean distances are as near as possible as the original dissimilarities. 
Then, classical clustering methods can be used for finding a partition of Ω. 

• To define a good aggregation index δ and solve the problem using an adapted heuristic for partitioning. 
  
 We proceed in the last way, studying some aggregation indexes δ and proposing algorithms based on well 
known techniques of optimization. 
 
3. AGGREGATION INDEXES 
 
 A dissimilarity index d on Ω satisfies: 
 
(i)   Symmetry: d(x,x´) = d(x´, x), ∀x, x´∈ Ω. 

(ii) d(x,x) = 0, ∀x ∈ Ω. 
 
 We will suppose that  d is a dissimilarity index defined on Ω. We study the following agggregation indexes 
defined on 2Ω: for a class C ⊆  Ω, let  |C| be the number of objects in C and define: 
 
a. Single linkage:        

δ1(C) = min{d(x, x´): x, x´ ∈ C} 
 
b. Complete linkage: * 

δ2 (C) = max{d(x,x´): x, x´∈ C } 
 
 
c. Sum of the dissimilarities: 
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d. Späth aggregation:  
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e. Average of the dissimilarities: 
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 and δ5(C)  = 0 if |C| = 1                                                            
 

f. Variance of the dissimilarities:                       
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 where µ(C) = δ5(C) is the average of the dissimilarities, we define δ6(C) = 0 if  |C| = 1. 
 
3.1. Properties 
 
 The following property is necessary for consistency of the partitions obtained in automatic classification. 
 
Definition 1. (Monotonicity property) Let P = (C1,...,Ck) ∈ *

kP  and P' = ( ) *
1k

'
1k

'
1 PC,...,C ++ ∈  be partition of Ω in 

k and k+1 non-empty classes, respectively. We say that the aggregation index δ on 2Ω satisfies the 
monotonicty property, if for all instances of the data, we have 
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for every number of classes k < n. That is, the value of the objective function W(P) of the solution of the 
optimization problem for k+1 classes is no greater than the corresponding value of the optimization problem 
for k classes. 
 
Remark : Here *

kP  denotes the set of all partitions of Ω in k non-empty classes, while Pk  is the set of all 
partitions of Ω in k  or less classes. 
 
Theorem 1. All aggregations δ1,....,δ6 satisfy the monotonicity property. 
 
Proof: Let us consider the partition P̂ = (C1,...,Ck) is k non-empty classes, solution of the optimization problem 
of min {W(P): P ∈ Pk}. Then, it is enough  to construct, from P̂ , a new partition Q in k+1 non-empty classes, 
such that  W(Q) ≤  W(P̂ ): begining with P̂ we can construct Q by transfering one of the objects xi ∈ Ω from a 
non-unitary class of P̂ (say the first class C1 to a new unitary class or singleton: Q = (C1\ {xi}, C2,...,Ck ,{xi}). 
The reader can easily precise the way to choose xi ∈ Ω (in each case it depends on the aggregation index 
δ1,....,δ6) such that  W(Q) ≤ W(P̂ ). ν 
 
Theorem 2 (Single linkage partition). Let xp and xq be objects of Ω with minimal dissimilarity. Then, a 

solution to the optimization problem corresponding to the index δ1 (single linkage), ),C(
1j

)P(Wmin j1

k

PP k
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obtained for the partition P* = ( )*
k

*
1 C,...,C  of Ω in k classes, which has the first k - 1 unitary classes and the 

last class *
kC of size n - k + 1, where {xp,xq} *

kC⊆ . 
 
Proof:  For any partition P = (C1,.....,Ck) of Ω in k classes, we have           
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 Then, it is  enough to choose any k - 1 objects of Ω, different from xp and xq and to distribute them in the 

initial k - 1 classes Cj, constructing singletons. The partition P* = ⎟
⎠
⎞⎜

⎝
⎛ *

kC,...,*
1C  constructed by this way is such 

that W(P*)= d(xp,xq).       
 

Theorem 3 Let  Popt be the set of all solutions to the optimization problem.  
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 Then, for all aggregation indexes δ1,.....δ6, there exist a solution P* ∈ Popt that has non empty classes. 
Moreover, the aggregation indexes δ3 (sum of dissimilarities) and δ4 (Späth aggregation), all partitions P ∈ Popt 
have non empty classes. 
 
Proof: The theorem holds for aggregation δ1, as it was already proved. For the other aggregations δr, con  
r ∈ {2,...,6}, let P = (C1,...Ck) ∈ Popt and suppose that P has an empty class. Let us see how to "fill" that class 
by transfering an object xi, chosen in any of the other non unitary classes, say from class C, in such a way 
that inequality δr(C\{xi}) ≤  δr(C) is satisfied. If the inequality is strict, then we obtain a contradiction to the fact 
that P ∈ Popt, and thus Popt does not have partitions with empty classes. We use the recursive formulae 
shown later in theorem 5 for the computation of δr(C\{xi}). 
 
(a) Aggregation δ2: it can be chosen any xi ∈ C, since it is always satisfied max{d(x,x´): x,x´ ∈ C\{xi}} ≤  

max {d(x,x´): x,x´ ∈ C}, for any xi ∈ C. 
 
(b) Aggregation δ3: any choice of xi ∈ C is useful, since δ3(C\{xi}) = δ3(C) - ).C()ix,x(d

Cx
3δ<

∈
∑  Remark that 

the inequality is strict, hence the partition obtained by the transfer of xi  always improves the criterion. 
 
(c) Aggregation δ4: solving the inequality δ4(C\{x})≤ δ4(C), we obtain the equivalent inequality δ4(C\{xi}) 

)x,x(d i
Cx
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≤  which is always strictly satisfied when we choose the object xi ∈ C that maximizes 

).x,x(d i
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(d) Aggregation δ5: solving the inequality δ5(C\{xi}) ≤ δ5(C), we obtain the equivalent inequality 

δ5(C) ).x,x(d
1|C|

1
i

Cx
∑
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≤  The same choice of any object  xi ∈ C that maximizes )x,x(d i
Cx
∑
∈

is useful. 

However it must be remarked here that the equality holds when all the dissimilarities between objects of 
C are equal. 

 
(e) Aggregation δ6: the inequality δ6(C\{xi} ≤ δ6(C) is satisfied al least when we choose any object xi ∈ C that  

 maximizes the quantity [ ]2
C´xx

)C(´)x,x(d
)1|C(||C|

1
µ−

− ∑
∈≠

. Also in this case the quantities  δ6(C\{xi}) and 

δ6(C) are equal when all the dissimilarities between objects of C are equal. 
 
 This reasoning is repeated by transfering objects from non unitary classes to fill the empty classes of  P, 
until in the partition P* made by this way there are no more empty classes. It is clear that W(P*) ≤  W(P) and 
the inequality is always strict when aggregations δ3 and δ4 are used. It can be also remarked that 
aggregations δ5 and δ6 have a tendency to produce optimal partitions without empty classes, with the pointed 
out exceptions. 

 
Lemma 4 (Huygens decomposition using δ6) For any class C ⊆  Ω and any real number β, it holds the 
decomposition: 
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 The last term is clearly mull, since µ(C) is the mean of all dissimilarities d(x,x´) between objects of C.       
 
3.2 Transfers of objects: up and downdating formulae 
    
 Many classification methods are based on the transfers of objects from one class to another class. This is 
the case of the k-means (Anderberg (1973), Bock (1974)) and three methods based on metaheuristics, 
proposed by the authors in Trejos et al. (1998).  In the non-Euclidean context, we will also propose methods 
based on transfers of objects, hence we need to study the up and downdating formulas for the proposed 
aggregation indexes. 
 
   Let P = (C1,....,Ck) and )C

~
,,C

~
(P~ k1 L=  be two partitions on Ω, such that object i is transfered from class Cj to 

class lC
~

 (this transfer will be noted )C
~

C( i
j l⎯→⎯ . So, we need to calculate the following new aggregation, in 

terms of the actual values for δ(C l ) and δ(Cj). 
 
• δ :})x{C( i∪l  the aggregation of the augmented class, in terms of ).C( lδ  
 
• δ (Cj \ {xi}): the aggregation of the reduced class, in terms of δ (Cj). 
 
 The following are the up and downdating formulae that we found, for the aggregation indexes δ1....δ6. 
 
Theorem 5. Recursive formulae for the computation of :})x{C( i∪δ l  
 

∑

∑

∈

∈

+
+δ

+
=∪δ

+δ=∪δ

∈δ=∪δ

∈δ=∪δ

l

l

l
l

l

l
l

ll

lll

lll

Cx i4i4

Cx
i3i3

i2i2

i1i1

).x,x(d
1n

1)C(
1n

n
)}x{C(

).x,x(d)C()}x{C(

}.Cx:)x,x(d{max),C((max)}x{C(

}.Cx:)x,x(d{min),C((min})x{C(

 

 

{ } ∑ ε+
+δ

+
−

=∪δ
lll

l
l

l
l Cx i5i5 ).x,x(d

)1n(n
2)C(

1n
1n

)xC(  



 8

{ } [ [ ]2
ii

Cx

2
i6i6 })x{C()x,x(d

)1n(n
2)]C()}x{C(

1n
1n

)C(
1n
1n

)xC( ∪µ−
+

+µ−∪µ
+
−

+δ
+
−

=∪δ ∑
∈

l
ll

ll
l

l
l

l

l
l

l

 

 
 Here .|C|n ll = In the last formula we have that δ6 { } 0)xC( i =∪l , when 0n =l . 
 
Proof: Formulae for aggregation δ1,δ2 and δ3 are elementary. We will deal only with the rest: 
 
Aggregation δ4:  
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Aggregation δ5: 
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Aggregation δ6: we use Huygens lemma 4: 
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Theorem 6. Recursive formulae for the computation of δ(Cj\{xi}): 
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 Here nj = |Cj|. The value of δr(Cj \ {xi}) is 0 when there is division by 0 in the preceding formulae. The 
dissimilarities δ1 and δ2 do not have a recursive formula for the computation of δ(Cj \ {xi}). 
 
Proof: The formula for δ3 is elementary. We will deal only with the rest. 
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 Result for δ4(Cj \ {xi}) is easily deduced. 
 
Aggregation δ5: for nj ≥ 2 we obtain: 
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 Result for δ5(Cj \ {xi}) is then deduced. 
 
Aggregation δ6: for nj ≥ 2 we obtain: 
 



 10

[ ]

[ ] [ ]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

µ−+µ−
−

=

µ−
−

=δ

∑∑

∑

∈
≠

∈

≠
∈

2
ji

}x{\Cx

2
j

´xx
}x{\C´x,xjj

2
j

´xx
C´x,xjj

j6

)C()x,x(d2)C(´)x,x(d
)1n(n

1

)C(´)x,x(d
)1n(n

1)C(

ijij

j

 

 
 The last term is descomposed using the Huygens lemma 4: 
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 By substitution in the preceding formula, the formula for δ6(Cj\{xi}) is deduced.   
 
4. METAHEURISTIC OF OPTIMIZATION  
 
   In Trejos et al. (1998) and Piza et al. (1999) we study the application of general metaheuristics to the 
partitioning problem, such as the simulated annealing, tabu search and genetic algorithm, in an Euclidean 
context. Results are significantly better than those of usual k-means or Ward methods. 
    
4.1. Simulated annealing 
 
   We begin choosing an initial random partition. For each "temperature" parameter tm, we iterate with the 
following procedure. 
 

At each step, we choose at random one object, say xi..We also choose at random the index 
l  of the new group to which the object xi could be transfered. The transfer is actually made 
with probability { }mt/We,1min ∆− (Metropolis Rule), where ∆W is the change produced in the 
objetive function W(P). 
 

   After some iterations, we change the temperature parameter tm+1 < tm (cooling the system) and repeat the 
transfering process, until a stop criteria is reached. 
 
   The cooling schedule used is: 
 
1. Initial temperature: to is calculated in such a way that, at the begining, the approximate probability of 

accepting new "bad partitions" (those that increase W(P)), is about χ × 100 %. This is done choosing 
to : = ),/1ln(/Wprom χ∆ + where +∆ promW  is the average of the change in the objetive function W(P), for 
partitions worst than the initial partition. We use χ = 0.7 with success. 

 
2. Cooling the temperature: we calculate tk+1 = λtk, where λ = 0.92 or another constant in [0.9,1). 
 
3. Large of iterative transfering process for each temperature tk: we use the homogeneous approach, in 

which the maximum large of the Markov chain is nover steps. However, if nlimit new "bad partitions" were 
already accepted, then the temperature process stops. We use nover = min(100n2(k - 1),20000) and  
nlimit = min(10n2(k-1),4000) 

 
4. Final temperature: the algorithm stops at temperature .t

finaln  However, we stop the algorithm if in the last 
ncad  temperature values no transfer was made. We use nfinal  = 150 and ncad  = 3 with success. 

   
 In theory, the simulated annealing algorithm converges asymptotically to an optimal solution of the problem, 
with probability 1.  
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4.2. Tabu  search 
 
 A description of tabu search can be found in Murillo (in press). For the application of tabu search, a state is 
defined as a partition P and the neighbourhood is the set of all partitions P' defined by possible transfers  

´i
j CC l⎯→⎯ . Object i and class l  are chosen such that ∆W in minimum, acording to the tabu list handling 

(see for example Murillo (in press) or Trejos et al. (1998)). The indicator of the class of object i that is 
transfered, enters in the tabu list. Then, tabu list forbids i to be again with the same objects together in a class 
(at least until the indicator remains in the tabu list). The neighbourhood of a partition P has length n(k - 1). If 
this number is large, tabu search spends too much time for generating the neighbourhood. In these cases, we 
use a sample of the neighbourhood, choosing at random some objects and come classes for making these 
transfers. This procedure works fine in the  Pejibaye data set that will be presented later. 
 
5. RESULTS 
 
 We present the results of our simulated annealing and tabu search methods on two data sets of objects 
described by binary variables. We computed three disimilarities between the objects. For two objects i,j, these 
disimilarities -among others- are based on the definition of: aij the number of attributes simultaneously present in 
xi, and xj, bij the number of attributes present in xj and ni the number of attributes present in xi. The indexes are: 
 
a. Jaccard (1901): 
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b. Czekanowski (1913), Dice (1945),Sorensen (1948): 
                         

                          d2(xi,xj) = 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+

≠+
+

−

0nnif1

0nnif
nn

a2
1

ji

ji
ji

ij

 

 
c. Russel y Rao (1940):       

                                        
P
ija

1)x,x(d ji3 −= . 

 
5.1 Fictitious data 
 
 The fictitious data set is presented in Table 1; 20 objects are described by 6 binary variables and it is clear 
that there are 4 natural clusters: {1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15} and {16,17,18,19,20}. 
 
 We used the six aggregation indexes defined above. Tabu search runned 100 iterations with a tabu list of 
length 15; parameters for simulated annealing are described in the preceding section. Results for δ1 and δ2 
are not interesting. 
 
 With simulated annealing and tabu search we obtained the same solutions for δ3 and δ4,which is the natural 
partition; criteria W for δ3 are 10 and 20 for d1,d2 and d3, respectively, and for δ4 they are 2, 2 and 4. This 
natural partition was obtained in all runs of both methods. 
 
   For δ5 and δ6 we also obtained solutions that reach the global optimum of W, however these solutions are 
not interesting. For example, for δ5 and d1 a solution is {11,12,13,14,15}, {18}, {20} and the remaining  
13 objects in another class, with W  =  0.5833. Aggregation δ5 has a tendency to make singleton classes and 
to fill a class with many objects. On the other hand, a solution obtained for δ6 and d2 is, for example, 
{10,16,17,18,19,20},{11,12,13,14,15}, {1,2,3,4,5}, {6,7,8,9} which missclassifies object 10, but for this 
aggregation this missclassification has no efect since the partition is optimal and the criterion is W = 0, as in 
the natural partition. 
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1: 111101100000011100000011011101111000111101101111000100011100 
2: 110101100011011110000001011101111010111101100111000100011100 
3: 100101100010011100000001011101111010111101100111000100000000 
4: 111001100010011111100011111101011100101101100111001100001000 
5: 110101100001011100000000111101111010111101110111000100011100 
6: 110101100000010100000000111101111010111101110111001000011100 
7: 010101100010011100000010110001011011101101100101001000001100 
8: 110001100010011101000010111001111100101101110101001100010100 
9: 110001100001010111000011110001011110111101101111001100000100 

10: 111001100001011100000001111101111010111101101111001100001100 
11: 010001100011010110000000110001111110101101101111001100011100 
12: 010001100001010111000001110001011010111101101111001100001100 
13: 110101100001010100000011111101011100111101101111001100000100 
14: 110101100010011110000011011101011011111101101111000100000100 
15: 110111100011011100000010010101111110101101101111000100011100 
16: 111011100000010000100000111101110000001110000000111111010010 
17: 101011100000001101100000110100110110001110000000111111000010 
18: 111011111000001100100001001101110110001110000000111101010100 
19: 011010000000001100100001001100110010000110000000110101100110 
20: 111011001010010101000001001100110100111110000001110101100011 
21: 111011101000010101000001001001110110111100000100111111100111 
22: 111011001001011100100001001001110110101100000001111111101000 
23: 011001101011011100100001001100110110100110000100111110001110 
24: 011001111000010100100000010011110010111110000001010110001110 
25: 111011000000011100000001100000110010110110100001110111011110 
26: 110110000001011100000000001101110000110100100000111101110110 
27: 111001001011011100000000001001110010110100000000111101100010 
28: 111001101011010101000001111100110100001110000000110110000011 
29: 011101101011010101000001101000110110001110000100110110010010 
30: 011101101000001100000001000101110110110100000101111111010010 
31: 001011010010111100000101100000110000000001011111100010110101 
32: 001011010010111110000001100000110000111111111111100010110101 
33: 001011000010111110100001100000110000011001011111100010111101 
34: 001011000010101110000101100000110000011001101111100100101000 
35: 001011010000111111100101100000110000011001111110100100000000 
36: 001011000010111000000101100001110010001001101110101110011100 
37: 001001010010111000000101100001110010101000001010111111011101 
38: 001001010000111110000101100000110010111001001011111011111001 
39: 001011010010111110000101100000110010111001101011111001111011 
40: 001011010010111110000001100000110001111001001110000001111111 
41: 001011010010100100000001100001110001111001001110100100111101 
42: 001011010010110010000001100001110011111001001110101110001000 
43: 001001010010101110000001100000110010001001001111111110011000 
44: 001101000101110001000101101000100011101110101101100000010000 
45: 000000000111111100101101111011100000001100101101100000000000 
46: 011101001101110000010101101110001111001110001000100000000000 
47: 001000000111111001000111101100100110001110101000000000000000 
48: 000001001110110000000110001000000110001110101100010000000000 
49: 001100000111110000000100010111100111001110001110010000000000 
50: 000001001111001101011100110010100011001110101111100000010000 
51: 011000000111000100000101011000100111011110101111100000010000 
52: 000101000101000101001001001000100011011110111111111000000001 
53: 001000000100001101000110101101100010101111101111111000000110 
54: 001000000110110100011111010010000101001101111011100000000000 
55: 000101000111110100000011011010000101001101101010000000000000 
56: 011000000111110000000001011111000001001101101010000000010101 
57: 001100000101111100011100111100000001001101111011100000011000 
58: 000001011000000111000000000101101001100110101110000000001010 
59: 011001001000000111000000001101100111100110101110000000000010 
60: 000011001000000011100000011111100010101111101110000000000010 
61: 000001001000000111000000001011100110100110101100000100000010 
62: 011001011000000111000000011011100010110110101111000000000010 
63: 000001011000000101000000010011100010111110100111000000000010 
64: 001011001000001111000000000101100111111110100111000100000011 
65: 000001001000001111000000001111001011000110100110000100000011 
66: 001001011000001111000000001011101000110110100110100000000110 
67: 001001011000001100000000000111011011101110100110110100001110 
68: 001001011000001111000000011011101011110110101111000100001110 
69: 001001011000001110000000011011101011100110101110000000001110 
70: 001011001000001110000000000001100110101110100110110100001110 
71: 001011001000001110000000001111100000100110100110000000001110 
72: 001011001000001110001000001011100000110110100110000000001110 
73: 001001000101110110000001101000000010111101110111110011000100 
74: 001001000000001110000001100000100001111101000111010011000100 
75: 000001001100110000000001100010001000110111100111000001001000 
76: 001001000011111001000000100111001000010101010111000001000110 
77: 001001000100110000000000100010001000010101001111000001000110 
78: 001001001000111101000001100010001100110101110011100001000110 
79: 001001000000110100000001110010001100110101110011011001100000 
80: 000001000000000101000001100011100100111101010111001001100110 
81: 001001001000110101000001100011000100001011011110001001000100 
82: 001001000000111101000001101111000100011101000110001001000101 
83: 001001011010111100000000110011001000010101000111000101100110 
84: 001001000010110100000000110011001000011101101111110101100110 
85: 001001000010100100000000101001000101100101010110010101000101 
86: 001001001000101000000000100011001101010101100111001101001101 
87: 001001000000101000000001100011001000100101001110000101001101 

 In all cases, both methods found the global 
optimum solution in few seconds, even if for some 
aggregation indexes (δ1, δ2, δ5, δ6) this solution is not 
the natural one. 
 
5.2. Pejibaye data 
    
 The pejibaye (Bactris gasipaes) is a palm of the 
American humid tropic of great economical 
importance for this zone. We analizad the "genetic 
trace" of 6 different populations of pejibaye coming 
from Brazil, Perú, Bolivia, Colombia, Panama and 
Costa Rica, deduce form a phytogenetic study made 
at the University of Costa Rica. The data set has  
87 objects (genomic polymorphic fragments of 
pejibaye´s plants) described by 60 binary variables 
(DNA genetic trace). The data are shown in Table 2. 
 
    We applied the simulated annealing and tabu 
search methods, using dissimilarities d1,d2,d3 and 
aggregations δ1,....,δ6. Tabu search was applied with 
200 iterations and we sampled 20 % of the neigh-
bours for deciding where to go in each iteration. 
 
   Solutions for δ1 and δ2 are not stable and may 
change on the runs; they are not reported here. 
Solutions for δ3 and δ4 are presented in Table 3. The 
partitions for the three dissimilarity indexes were 
always the same, for all runs with both methods. 
 

 
 

Table 2. The pejibaye data set. 

Table 1. The fictitions binary data. 
 

Object  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1   1   1   1   1   1 
1   1   1   1   1   1 
1   1   1   1   1   1 
1   1   1   1   1   1 
1   1   1   1   1   1 
1   1   1   0   0   0 
1   1   1   0   0   0 
1   1   1   0   0   0 
1   1   1   0   0   0 
1   1   1   0   0   0 
0   0   0   1   1   1 
0   0   0   1   1   1 
0   0   0   1   1   1 
0   0   0   1   1   1 
0   0   0   1   1   1 
0   0   0   0   0   0 
0   0   0   0   0   0 
0   0   0   0   0   0 
0   0   0   0   0   0 
0   0   0   0   0   0 
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 Partition obtained with δ4 corresponds to the six countries of the pejibaye palms. In the sense, it is the 
natural and optimal solution. The difference between solutions for δ3 and δ4, is that object 74 is classified in 
class C3 when it is used the sum of dissimilarities and in class C6 when it is used the Späth aggregation. One 
may think that δ3 makes a missclassification of object 74, however, the value of  W is less with the obtained 
classification using δ3 than with classifying object 74 in class C6. That is, the solution found by our methods is 
better (for δ3 aggregation) than the "geographical" one. 
 

Table 3: Partitions for the pejibaye data using simulated annealing and tabu search. 
 

δ3 (sum of dissimilarities) δ4 (Späth aggregation) 
C1 = {1,2,3,4,5,6,7,8,9,10,  11,12,13,14,15} 
C2 = {16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}   
C3 = {31,32,33,34,35,36,37,38,39,40,41,42,43,74} 
C4 = {44,45,46,47,48,49,50,51,52,53,54,55,56,57}          
C5 = {58,59,60,61,62,63,64.65, 66,67,68,69,70,71,72}    
C6 = {73,74,75,76,77,78,78,80,81, 82,83,84,85,86,87}  

C1 = {1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15} 
C2 = {16,17,18,19,20,21,22,23, 24,25,26,27,28,29,30}    
C3 = {31,32,33,34,35,36,37,38, 39,40,41,42,43}          
C4 = {44,45,46,47,48,49,50,51, 52,53,54,55,56,57}         
C5 = {58,59,60,61,62,63,64,65, 66,67,68,69,70,71,72}    
C6 = {73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87}  

 
 Values of the criterion for different aggregations and dissimilarities are shown in Table 4. These results are 
for simulated annealing, and they are equal for tabu search using δ3 and δ4. For δ5 and δ6 they differ slightly in 
some runs. 
 

Table 4. Criterion W for the pejibaye data using simulated annealing according 
to 4 aggregations and 3 dissimilarities. 

 
Aggregation Jaccard (d1) Dice et al  (d1) Russel & Rao (d3) 

       δ3 

           δ4 

           δ5 
       δ6 

263.904 (stable) 
18.19 (stable) 
0.637 (stable) 

  0.0115(non-stable)   

174.24 (stable) 
12.016 (stable) 
0.477 (stable) 
0.012 (non-stable) 

406.47(stable) 
28.018 (stable) 

0.768 (stable)  
0.00296(non-stable)  

 
6. CONCLUSIONES 
 
 This study of aggregation indexes for non-Euclidean data shows that some aggregation indexes not 
involving the notion of center can be used for clustering data described by binary variables. Results obtained 
for the sum of dissimilarities and Späth aggregations are better  than for the rest of agregations. Simulated 
anneanling and tabu search find usually global optimum solutions for the data sets considered. Further 
research is undertaken for comparing our approach to methods that use centers and hierarchical clustering, 
as well as an extension for the use of aggregation indexes on categorical data. Genetic algorithms can also 
be applied for these aggregation indexes, since they satisfy the monotonicity property, even if not always 
there exist a decomposition of total inertia as in the Euclidean case. 
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