COMBINATORIAL OPTIMIZATION HEURISTICS IN PARTITIONING WITH NON EUCLIDEAN DISTANCES

Eduardo Piza¹, Javier Trejos², y Alex Murillo³, CIMPA, Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica

ABSTRACT

We study some criteria that can be applied for the partitioning of a set of objects when non Euclidean distances are used; particularly, these criteria can be used when the data are described by binary variables. These criteria are based on aggregations that measure the homogeneity of a class and some are generalizations of variance or inertia. Properties of the criteria are studied and partitioning methods are proposed, based on metaheuristics of global optimization, such as simulated annealing and tabu search. Finally, comparative results on binary data are shown.

Key words: binary data, qualitative data, clustering, automatic classification, simulated annealing, tabu search, generalized inertia.

RESUMEN

Se estudian criterios que se pueden aplicar para particionar un conjunto de objetos cuando se usan distancias no euclídeas; en particular, los criterios pueden ser usados cuando los datos son descritos por variables binarias. estos criterios están basados en agregaciones que miden la homogeneidad de una clase y algunos son generalizaciones de la varianza o inercia. Se estudian algunas de las propiedades de los criterios de agregación y se proponen métodos de particionamiento basados en el uso de metaheurísticas de optimización global, como sobrecalentamiento simulado y búsqueda tabú. Finalmente, se muestran resultados comparativos sobre datos binarios.

Palabras clave: datos binarios, datos cualitativos, análisis de conglomerados, clasificación automática, búsqueda tabú, sobrecalentamiento simulado, inercia generalizada.

MSC: 90C27

1. INTRODUCTION

Usual methods of partitioning (Forgy, k-means, dynamical clusters transfers, Isodata, etc.) find locall optima of the inertia (or general variance) criterion since they are based on procedures of locall search (Anderberg (1973), Bock (1974), Diday et.al (1982)). In the Euclidean case, the authors have employed combinatorial optimization techniques, such as simulated annealing, tabu search and evolutionary strategies for optimizing the criterion, obtaining excellent results (see Trejos **et al.** (1998) or Piza **et al.** (1999)). In the case of non quantitative data, or if one wants to use a non Euclidean distance, it is necessary to adapt the criterion, since Huygens theorem and other theoretical results hold only in an Euclidean context. The use of the L_1 distance in the quantitative case has been considered in Jajuga (1987) or Späth (1985) and it is proved that the best center adapted to a class is the vector of variable medians.

In this paper we study six aggregation indexes that can be used for measuring the homogeneity or compactness of a partition when general dissimilarity indexes are used. We deal with some theoretical properties of these aggregations, such as monotonicity and up-downdating formulas when methods of transfers are used. Also, a Huygens-like property is deduced.

2. THE PROBLEM OF PARTITIONING IN A NON-EUCLIDEAN CONTEXT

Let D = $(d(x,x^1)_{nxn})$ be a dissimilarity matrix on a set of n objects $\Omega = \{x_1, x_2, \dots, x_n\}$.

We seek for a partition $P = (C_1, C_2, \dots, C_k)$ of k clases of objects, and a numerial criterion W must be defined for measuring the quality of the partition. That is, we want to solve the problem

¹E-mail:<u>epiza@cariari.ucr.ac.cr</u>. Fax: +(506) 207 4397

²E-mail:<u>jtrejos@cariari.ucr.ac.cr</u>. Fax: +(506) 207 4397

³E-mail:<u>murillo@cariari.ucr.ac.cr</u> Fax: +(506) 556 7020

$$\min_{P \in P_{k}} W(P) = \sum_{j=1}^{k} \delta(C_{j})$$
(1)

where P_k is the set of all partitions of Ω in k or less classes, and $\delta(C)$ is some aggregation measure. Objects in Ω may be described by a set of variables, not necessarily numerical (binary or categorical). In this case, there are several dissimilarity indices that can be used, such a Jaccard, Dice or Russel-Rao in the binary case, and X² or Hamming in the categorical case.

Usually one uses the within-inertia criterion for measuring the homogeneity of the partition (see Bock (1974) and Diday **et al.** (1982)). Classes are represented by a "center" which is the centroid of the class, that is the mean vector in the Euclidean space or the median vector in the L₁ space. In the context of non-quantitative data, Diday (1980) has proposed to use a "center" that minimizes the sum of distances to the rest of elements of the class, and to proceed with the dynamical clusters algorithm. We do not follow this way since the dynamical clusters algorithm finds local minima and also because a center in this context can be heard to find and may be an element without representative sense, as often occurs in practice.

For the clustering of Ω there are three ways to proceed:

- To use the classical *hierarchical classification* theory (see Bock (1974), Diday **et al**. (1982) or Piza (1987)) with a dissimilarity index and one of the aggregations adapted in the non Euclidean case (for example, single linkage, complete linkage or average linkage in the agglomerative approach).
- To use the multidimensional scaling (MDS) theory (see for example Borg and Groenen (1997), Trejos and Villalobos (in press) or Villalobos and Trejos (in press) in this volume). Metric MDS finds a configuration in an Euclidean space so that Euclidean distances are as near as possible as the original dissimilarities. Then, classical clustering methods can be used for finding a partition of Ω .
- To define a good aggregation index δ and solve the problem using an adapted heuristic for partitioning.

We proceed in the last way, studying some aggregation indexes δ and proposing algorithms based on well known techniques of optimization.

3. AGGREGATION INDEXES

A dissimilarity index d on Ω satisfies:

(i) Symmetry: $d(x,x') = d(x', x), \forall x, x' \in \Omega$.

(ii)
$$d(x,x) = 0, \forall x \in \Omega$$
.

We will suppose that d is a dissimilarity index defined on Ω . We study the following agggregation indexes defined on 2^{Ω} : for a class C $\subseteq \Omega$, let |C| be the number of objects in C and define:

a. Single linkage:

 $\delta_1(C) = \min\{d(x, x'): x, x' \in C\}$

b. Complete linkage: *

 $\delta_2(C) = max\{d(x,x'): x, x' \in C \}$

c. Sum of the dissimilarities:

$$\delta_{3}(C) = \sum_{\substack{\mathbf{x}, \mathbf{x}' \in C \\ \mathbf{x} \neq \mathbf{x}'}} d(\mathbf{x}, \mathbf{x}')$$

d. Späth aggregation:

$$\delta_4(\mathbf{C}) = \frac{1}{2 |\mathbf{C}|} \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C} \\ \mathbf{x} \neq \mathbf{x}'}} d(\mathbf{x}, \mathbf{x}')$$

e. Average of the dissimilarities:

$$\delta_{5}(C) \ \frac{1}{\mid C \mid (\mid C \mid -1)} \ \sum_{\substack{x, x' \in C \\ x \neq x'}} d(x, x')$$

and $\delta_5(\mathbf{C}) = 0$ if $|\mathbf{C}| = 1$

f. Variance of the dissimilarities:

$$\delta_6(\mathbf{C}) = \frac{1}{\mid \mathbf{C} \mid (\mid \mathbf{C} \mid -1)} \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C} \\ \mathbf{x} \neq \mathbf{x}'}} \left[\mathsf{d}(\mathbf{x}, \mathbf{x}') - \boldsymbol{\mu}(\mathbf{C}) \right]^2,$$

where $\mu(C) = \delta_5(C)$ is the average of the dissimilarities, we define $\delta_6(C) = 0$ if |C| = 1.

3.1. Properties

The following property is necessary for consistency of the partitions obtained in automatic classification.

Definition 1. (Monotonicity property) Let $P = (C_1,...,C_k) \in P_k^*$ and $P' = (C'_1,...,C'_{k+1}) \in P_{k+1}^*$ be partition of Ω in k and k+1 non-empty classes, respectively. We say that the aggregation index δ on 2^{Ω} satisfies the monotonicty property, if for all instances of the data, we have

$$\min_{\boldsymbol{P}' \in \boldsymbol{P}_{k+1}^{\star}} \boldsymbol{W}(\boldsymbol{P}') = \sum_{j=1}^{k+1} \delta(\boldsymbol{C}_{j}') \leq \min_{\boldsymbol{P} \in \boldsymbol{P}_{k}^{\star}} \boldsymbol{W}(\boldsymbol{P}) = \sum_{j=1}^{k} \delta(\boldsymbol{C}_{j}),$$

for every number of classes k < n. That is, the value of the objective function W(P) of the solution of the optimization problem for k+1 classes is no greater than the corresponding value of the optimization problem for k classes.

Remark : Here P_k^* denotes the set of all partitions of Ω in k non-empty classes, while P_k is the set of all partitions of Ω in k or less classes.

Theorem 1. All aggregations $\delta_1, \dots, \delta_6$ satisfy the monotonicity property.

Proof: Let us consider the partition $\hat{P} = (C_1,...,C_k)$ is k non-empty classes, solution of the optimization problem of min {W(P): $P \in P_k$ }. Then, it is enough to construct, from \hat{P} , a new partition Q in k+1 non-empty classes, such that $W(Q) \leq W(\hat{P})$: begining with \hat{P} we can construct Q by transfering one of the objects $x_i \in \Omega$ from a non-unitary class of \hat{P} (say the first class C_1 to a new unitary class or singleton: $Q = (C_1 \setminus \{x_i\}, C_2,...,C_k, \{x_i\})$. The reader can easily precise the way to choose $x_i \in \Omega$ (in each case it depends on the aggregation index $\delta_1,...,\delta_6$) such that $W(Q) \leq W(\hat{P})$.

Theorem 2 (Single linkage partition). Let x_p and x_q be objects of Ω with minimal dissimilarity. Then, a solution to the optimization problem corresponding to the index δ_1 (single linkage), $\min_{P \in P_k} W(P) = \sum_{j=1}^k \delta_1(C_j)$, is

obtained for the partition $P^* = (C_1^*, ..., C_k^*)$ of Ω in k classes, which has the first k - 1 unitary classes and the last class C_k^* of size n - k + 1, where $\{x_p, x_q\} \subseteq C_k^*$.

Proof: For any partition $P = (C_1, ..., C_k)$ of Ω in k classes, we have

$$W(P) = \sum_{j=1}^{k} \delta_1(C_j) = \sum_{j=1}^{k} \min \left\{ d(x, x') : x, x' \in C_j \right\} \le \min \left\{ d(x, x') : x, x' \in \Omega \right\} = d(x_p, x_q) .$$

Then, it is enough to choose any k - 1 objects of Ω , different from x_p and x_q and to distribute them in the initial k - 1 classes C_j , constructing singletons. The partition $P^* = \left(C_1^*, ..., C_k^*\right)$ constructed by this way is such that $W(P^*) = d(x_p, x_q)$.

Theorem 3 Let P_{opt} be the set of all solutions to the optimization problem.

$$\min_{\mathsf{P}\in\mathsf{P}_k}\mathsf{W}(\mathsf{P})=\sum_{j=1}^k\delta(\mathsf{C}_j).$$

Then, for all aggregation indexes $\delta_1,...,\delta_6$, there exist a solution $P^* \in P_{opt}$ that has non empty classes. Moreover, the aggregation indexes δ_3 (sum of dissimilarities) and δ_4 (Späth aggregation), all partitions $P \in P_{opt}$ have non empty classes.

Proof: The theorem holds for aggregation δ_1 , as it was already proved. For the other aggregations δ_r , con $r \in \{2,...,6\}$, let $P = (C_1,...C_k) \in P_{opt}$ and suppose that P has an empty class. Let us see how to "fill" that class by transfering an object x_i , chosen in any of the other non unitary classes, say from class C, in such a way that inequality $\delta_r(C \setminus \{x_i\}) \leq \delta_r(C)$ is satisfied. If the inequality is strict, then we obtain a contradiction to the fact that $P \in P_{opt}$, and thus P_{opt} does not have partitions with empty classes. We use the recursive formulae shown later in theorem 5 for the computation of $\delta_r(C \setminus \{x_i\})$.

- (a) Aggregation δ_2 : it can be chosen any $x_i \in C$, since it is always satisfied max{d(x,x'): x,x' $\in C \setminus \{x_i\}\} \le \max \{d(x,x'): x,x' \in C\}$, for any $x_i \in C$.
- (b) Aggregation δ_3 : any choice of $x_i \in C$ is useful, since $\delta_3(C \setminus \{x_i\}) = \delta_3(C) \sum_{x \in C} d(x, x_j) < \delta_3(C)$. Remark that the inequality is strict, hence the partition obtained by the transfer of x_i always improves the criterion.
- (c) Aggregation δ_4 : solving the inequality $\delta_4(C \setminus \{x\}) \le \delta_4(C)$, we obtain the equivalent inequality $\delta_4(C \setminus \{x_i\}) \le \sum_{x \in C} d(x, x_i)$ which is always strictly satisfied when we choose the object $x_i \in C$ that maximizes $\sum_{x \in C} d(x, x_i)$.
- (d) Aggregation δ_5 : solving the inequality $\delta_5(C \setminus \{x_i\}) \le \delta_5(C)$, we obtain the equivalent inequality $\delta_5(C) \le \frac{1}{|C|-1} \sum_{x \in C} d(x, x_i)$. The same choice of any object $x_i \in C$ that maximizes $\sum_{x \in C} d(x, x_i)$ is useful. However it must be remarked here that the equality holds when all the dissimilarities between objects of C are equal.
- (e) Aggregation δ_6 : the inequality $\delta_6(C \setminus \{x_i\} \le \delta_6(C)$ is satisfied al least when we choose any object $x_i \in C$ that maximizes the quantity $\frac{1}{|C|(|C|-1)} \sum_{x \neq x' \in C} [d(x, x') \mu(C)]^2$. Also in this case the quantities $\delta_6(C \setminus \{x_i\})$ and

 $\delta_6(C)$ are equal when all the dissimilarities between objects of C are equal.

This reasoning is repeated by transfering objects from non unitary classes to fill the empty classes of P, until in the partition P^{*} made by this way there are no more empty classes. It is clear that $W(P^*) \leq W(P)$ and the inequality is always strict when aggregations δ_3 and δ_4 are used. It can be also remarked that aggregations δ_5 and δ_6 have a tendency to produce optimal partitions without empty classes, with the pointed out exceptions.

Lemma 4 (Huygens decomposition using δ_6) For any class $C \subseteq \Omega$ and any real number β , it holds the decomposition:

$$\frac{1}{\mid C \mid (\mid C \mid -1)} \sum_{\substack{x,x' \in C \\ x \neq x'}} \left[d(x,x') - \beta \right]^2 = \delta_6(C) + \left[\mu(C) - \beta \right]^2.$$

Proof: We have that

$$\begin{split} \sum_{\substack{x,x'\in C\\x\neq x'}} & \left[d(x,x') - \beta \right]^2 = \sum_{\substack{x,x'\in C\\x\neq x'}} & \left[d(x,x') - \mu(C) \right]^2 + \sum_{\substack{x,x'\in C\\x\neq x'}} & \left[\mu(C) - \beta \right]^2 \\ & + 2 \sum_{\substack{x,x'\in C\\x\neq x'}} & \left[d(x,x') - \mu(C) \right] \\ & = |C|(|C| - 1) \left\{ \delta_6(C) + \left[\mu(C) - \beta \right]^2 \right\} \\ & + 2 [\mu(C) - \beta] \sum_{\substack{x,x'\in C\\x\neq x'}} & \left[d(x,x') - \mu(C) \right]. \end{split}$$

The last term is clearly mull, since $\mu(C)$ is the mean of all dissimilarities d(x, x') between objects of C.

3.2 Transfers of objects: up and downdating formulae

Many classification methods are based on the transfers of objects from one class to another class. This is the case of the k-means (Anderberg (1973), Bock (1974)) and three methods based on metaheuristics, proposed by the authors in Trejos **et al**. (1998). In the non-Euclidean context, we will also propose methods based on transfers of objects, hence we need to study the up and downdating formulas for the proposed aggregation indexes.

Let $P = (C_1,...,C_k)$ and $\tilde{P} = (\tilde{C}_1,...,\tilde{C}_k)$ be two partitions on Ω , such that object i is transferred from class C_j to class \tilde{C}_ℓ (this transfer will be noted $(C_j \xrightarrow{i} \tilde{C}_\ell)$. So, we need to calculate the following new aggregation, in terms of the actual values for $\delta(C_\ell)$ and $\delta(C_j)$.

- $\delta(C_{\ell} \cup \{x_i\})$: the aggregation of the augmented class, in terms of $\delta(C_{\ell})$.
- δ (C_i \ {x_i}): the aggregation of the reduced class, in terms of δ (C_i).

The following are the up and downdating formulae that we found, for the aggregation indexes $\delta_1 \dots \delta_6$.

Theorem 5. Recursive formulae for the computation of $\delta(C_{\ell} \cup \{x_i\})$:

$$\delta_1(C_\ell \cup \{x_i\}) = \min(\delta_1(C_\ell), \min\{d(x, x_i) : x \in C_\ell\}.$$

$$\delta_2(C_\ell \cup \{x_i\}) = \max(\delta_2(C_\ell), \max\{d(x, x_i) : x \in C_\ell\}$$

$$\begin{split} &\delta_3(C_\ell \cup \{x_i\}) = \delta_3(C_\ell) + \sum_{x \in C_\ell} d(x, x_i). \\ &\delta_4(C_\ell \cup \{x_i\}) = \frac{n_\ell}{n_\ell + 1} \delta_4(C_\ell) + \frac{1}{n_\ell + 1} \sum_{x \in C_\ell} d(x, x_i). \end{split}$$

$$\delta_5(C_\ell \cup \{x_i\}) = \frac{n_\ell - 1}{n_\ell + 1} \delta_5(C_\ell) + \frac{2}{n_\ell(n_\ell + 1)} \sum_{x \in C_\ell} d(x, x_i).$$

$$\delta_{6}(C_{\ell} \cup \{x_{i}\}) = \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell} \cup \{x_{i}\}) - \mu(C_{\ell}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x$$

Here $\,n_\ell = \mid C_\ell \mid$. In the last formula we have that $\delta_6\,(C_\ell \cup \{x_i\}) = 0$, when $\,n_\ell = 0$.

Proof: Formulae for aggregation δ_1 , δ_2 and δ_3 are elementary. We will deal only with the rest:

Aggregation δ_4 :

$$\begin{split} \delta_4(C_\ell \cup \{x_i\}) &= \frac{1}{2(n_\ell + 1)} \sum_{\substack{x, x' \in C_\ell \cup \{x_i\} \\ x \neq x'}} d(x, x') \\ &= \frac{1}{n_\ell + 1} \left\{ \sum_{\substack{x, x' \in C_\ell \\ x \neq x'}} d(x, x') + \sum_{x \in C_\ell} d(x, x_i) + \sum_{x \in C_\ell} d(x_i, x) \right\} \\ &= \frac{1}{2(n_\ell + 1)} \left\{ 2n_\ell \delta_4(C_\ell) + 2\sum_{x \in C_\ell} d(x, x_i) \right\} \\ &= \frac{n_\ell}{n_\ell + 1} \delta_4(C_\ell) + \frac{1}{n_\ell + 1} \sum_{x \in C_\ell} d(x, x_i). \end{split}$$

Aggregation δ_5 :

$$\begin{split} \delta_5(C_\ell \cup \{x_i\}) &= \frac{1}{(n_\ell + 1)n_\ell} \sum_{\substack{x, x' \in C_\ell \\ x \neq x'}} d(x, x') \\ &= \frac{1}{(n_\ell + 1)n_\ell} \left\{ \sum_{\substack{x, x' \in C_\ell \\ x \neq x'}} d(x, x') + 2 \sum_{x \in C_\ell} d(x, x_i) \right\} \\ &= \frac{1}{(n_\ell + 1)n_\ell} \left\{ n_\ell (n_\ell - 1) \delta_5(C_\ell) + 2 \sum_{x \in C_\ell} d(x, x_i) \right\} \\ &= \frac{n_\ell - 1}{n_\ell + 1} \delta_5(C_\ell) + \frac{2}{(n_\ell + 1)n_\ell} \sum_{x \in C_\ell} d(x, x_i). \end{split}$$

Aggregation δ_6 : we use Huygens lemma 4:

$$\begin{split} \delta_{6}(C_{\ell} \cup \{x_{i}\}) &= \frac{1}{(n_{\ell} + 1)n_{\ell}} \sum_{\substack{x, x' \in C_{\ell}\{x_{i}\}\\ x \neq x'}} \left[d(x, x') - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{1}{(n_{\ell} + 1)n_{\ell}} \left\{ \sum_{\substack{x, x' \in C_{\ell}\\ x \neq x'}} \left[d(x, x') - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + 2 \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \right\} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{2}{n_{\ell}(n_{\ell} + 1)} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{n_{\ell} - 1}{n_{\ell} + 1} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \delta_{6}(C_{\ell}) + \frac{n_{\ell} - 1}{n_{\ell} + 1} \left[\mu(C_{\ell}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{n_{\ell} - 1}{n_{\ell} + 1} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} + \frac{n_{\ell} - 1}{n_{\ell} + 1} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2} \\ &= \frac{n_{\ell} - 1}{n_{\ell} + 1} \sum_{x \in C_{\ell}} \left[d(x, x_{i}) - \mu(C_{\ell} \cup \{x_{i}\}) \right]^{2}$$

Theorem 6. Recursive formulae for the computation of $\delta(C_i \setminus \{x_i\})$:

$$\begin{split} \delta_{3}(C_{j} \setminus \{x_{i}\}) &= \delta_{3}(C_{j}) - \sum_{x \in C_{j}} d(x, x_{i}) . \\ \delta_{4}(C_{j} \setminus \{x_{i}\}) &= \frac{n_{j}}{n_{j} - 1} \delta_{4}(C_{j}) - \frac{1}{(n_{j} - 1)} \sum_{x \in C_{j}} d(x, x_{i}) . \\ \delta_{5}(C_{j} \setminus \{x_{i}\}) &= \frac{n_{j}}{n_{j} - 2} \delta_{5}(C_{j}) - \frac{2}{(n_{j} - 1)(n_{j} - 2)} \sum_{x \in C_{j}} d(x, x_{i}) . \\ \delta_{6}(C_{j} \setminus \{x_{i}\}) &= \frac{n_{j}}{n_{j} - 2} \delta_{6}(C_{j}) - [\mu(C_{j} \setminus \{x_{i}\}) - \mu(C_{j})]^{2} - \frac{2}{(n_{j} - 1)(n_{j} - 2)} \sum_{x \in C_{j} \setminus \{x_{i}\}} [d(x, x_{i}) - \mu(C_{j})]^{2} . \end{split}$$

Here $n_j = |C_j|$. The value of $\delta_r(C_j \setminus \{x_i\})$ is 0 when there is division by 0 in the preceding formulae. The dissimilarities δ_1 and δ_2 do not have a recursive formula for the computation of $\delta(C_j \setminus \{x_i\})$.

Proof: The formula for δ_3 is elementary. We will deal only with the rest.

Aggregation δ_4 : for $n_j \ge 2$ we obtain:

$$\begin{split} \delta_4(C_j) &= \frac{1}{2n_j} \sum_{\substack{x, x' \in C_j \\ x \neq x'}} d(x, x') = \frac{1}{2n_j} \left\{ \sum_{\substack{x, x' \in C_j \setminus \{x_i\} \\ x \neq x'}} d(x, x') + \sum_{x \in C_j} d(x, x_i) + \sum_{x \in C_j} d(x_i, x) \right\} \\ &= \frac{1}{2n_j} \left\{ 2(n_j - 1) \delta_4(C_j \setminus \{x_i\}) + 2\sum_{x \in C_j} d(x, x_i) \right\} \\ &= \frac{n_j - 1}{n_j} \delta_4(C_j \setminus \{x_i\}) + \frac{1}{n_j} \sum_{x \in C_j} d(x, x_i). \end{split}$$

٦

Result for $\delta_4(C_i \setminus \{x_i\})$ is easily deduced.

Aggregation δ_5 : for $n_j \ge 2$ we obtain:

$$\begin{split} \delta_{5}(\mathbf{C}_{j}) &= \frac{1}{n_{j}(n_{j}-1)} \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C}_{j} \setminus \{\mathbf{x}_{i}\}\\\mathbf{x} \neq \mathbf{x}'}} d(\mathbf{x}, \mathbf{x}') = \frac{1}{n_{j}(n_{j}-1)} \begin{cases} \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C}_{j} \setminus \{\mathbf{x}_{i}\}\\\mathbf{x} \neq \mathbf{x}'}} d(\mathbf{x}, \mathbf{x}') + 2 \sum_{\mathbf{x} \in \mathbf{C}_{j}} d(\mathbf{x}, \mathbf{x}_{i}) \end{cases} \\ &= \frac{n_{j}-2}{n_{j}} \delta_{5}(\mathbf{C}_{j} \setminus \{\mathbf{x}_{i}\}) + \frac{2}{n_{j}(n_{j}-1)} \sum_{\mathbf{x} \in \mathbf{C}_{j}} d(\mathbf{x}, \mathbf{x}_{i}). \end{split}$$

Result for $\delta_5(C_i \setminus \{x_i\})$ is then deduced.

Aggregation δ_6 : for $n_j \ge 2$ we obtain:

$$\begin{split} \delta_{6}(\mathbf{C}_{j}) &= \frac{1}{n_{j}(n_{j}-1)} \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C}_{j} \\ \mathbf{x} \neq \mathbf{x}'}} \left[d(\mathbf{x}, \mathbf{x}') - \mu(\mathbf{C}_{j}) \right]^{2} \\ &= \frac{1}{n_{j}(n_{j}-1)} \left\{ \sum_{\substack{\mathbf{x}, \mathbf{x}' \in \mathbf{C}_{j} \setminus \{\mathbf{x}_{i}\} \\ \mathbf{x} \neq \mathbf{x}'}} \left[d(\mathbf{x}, \mathbf{x}') - \mu(\mathbf{C}_{j}) \right]^{2} + 2 \sum_{\substack{\mathbf{x} \in \mathbf{C}_{j} \setminus \{\mathbf{x}_{i}\} \\ \mathbf{x} \in \mathbf{x}'}} \left[d(\mathbf{x}, \mathbf{x}_{i}) - \mu(\mathbf{C}_{j}) \right]^{2} \right\} \end{split}$$

The last term is descomposed using the Huygens lemma 4:

$$\sum_{x \in C_j \setminus \{x_i\}} [d(x, x_i) - \mu(C_j)^2 = (n_j - 1)(n_j - 2) \left\{ \delta_6(C_j \setminus \{x_i\}) + [\mu(C_j) - \mu(C_j \setminus \{x_i\})]^2 \right\}$$

By substitution in the preceding formula, the formula for $\delta_6(C_i \setminus x_i)$ is deduced.

4. METAHEURISTIC OF OPTIMIZATION

In Trejos **et al**. (1998) and Piza **et al**. (1999) we study the application of general metaheuristics to the partitioning problem, such as the simulated annealing, tabu search and genetic algorithm, in an Euclidean context. Results are significantly better than those of usual k-means or Ward methods.

4.1. Simulated annealing

We begin choosing an initial random partition. For each "temperature" parameter t_m , we iterate with the following procedure.

At each step, we choose at random one object, say x_i . We also choose at random the index ℓ of the new group to which the object x_i could be transfered. The transfer is actually made with probability min $\{1, e^{-\Delta W/t_m}\}$ (Metropolis Rule), where ΔW is the change produced in the objetive function W(P).

After some iterations, we change the temperature parameter $t_{m+1} < t_m$ (cooling the system) and repeat the transfering process, until a stop criteria is reached.

The cooling schedule used is:

- 1. Initial temperature: t_o is calculated in such a way that, at the begining, the approximate probability of accepting new "bad partitions" (those that increase W(P)), is about $\chi \times 100$ %. This is done choosing $t_o := \Delta W_{prom}^+ / \ln(1/\chi)$, where ΔW_{prom}^+ is the average of the change in the objetive function W(P), for partitions worst than the initial partition. We use $\chi = 0.7$ with success.
- 2. **Cooling the temperature**: we calculate $t_{k+1} = \lambda t_k$, where $\lambda = 0.92$ or another constant in [0.9,1).
- 3. Large of iterative transfering process for each temperature t_k : we use the homogeneous approach, in which the maximum large of the Markov chain is n_{over} steps. However, if n_{limit} new "bad partitions" were already accepted, then the temperature process stops. We use $n_{over} = min(100n^2(k 1),20000)$ and $n_{limit} = min(10n^2(k-1),4000)$
- 4. **Final temperature**: the algorithm stops at temperature $t_{n_{final}}$. However, we stop the algorithm if in the last n_{cad} temperature values no transfer was made. We use $n_{final} = 150$ and $n_{cad} = 3$ with success.

In theory, the simulated annealing algorithm converges asymptotically to an optimal solution of the problem, with probability 1.

4.2. Tabu search

A description of tabu search can be found in Murillo (in press). For the application of tabu search, a state is defined as a partition P and the neighbourhood is the set of all partitions P' defined by possible transfers $C_j \xrightarrow{i} C_{\ell}$. Object i and class ℓ are chosen such that ΔW in minimum, acording to the tabu list handling (see for example Murillo (in press) or Trejos **et al**. (1998)). The indicator of the class of object i that is transfered, enters in the tabu list. Then, tabu list forbids i to be again with the same objects together in a class (at least until the indicator remains in the tabu list). The neighbourhood of a partition P has length n(k - 1). If this number is large, tabu search spends too much time for generating the neighbourhood. In these cases, we use a sample of the neighbourhood, choosing at random some objects and come classes for making these transfers. This procedure works fine in the Pejibaye data set that will be presented later.

5. RESULTS

We present the results of our simulated annealing and tabu search methods on two data sets of objects described by binary variables. We computed three disimilarities between the objects. For two objects i,j, these disimilarities -among others- are based on the definition of: a_{ij} the number of attributes simultaneously present in x_i , and x_i , b_{ij} the number of attributes present in x_i and n_i the number of attributes present in x_i . The indexes are:

a. Jaccard (1901):

$$d_{1}(x_{i}, x_{j}) = \begin{cases} 1 - \frac{a_{ij}}{a_{ij} + b_{ij}c_{ij}} & \text{if } a_{ij} + b_{ij} + c_{ij} \neq 0 \\ 1 & \text{if } a_{ij} + b_{ij} + c_{ij} = 0 \end{cases}$$

b.Czekanowski (1913), Dice (1945), Sorensen (1948):

$$d_{2}(x_{i},x_{j}) = \begin{cases} 1 - \frac{2a_{ij}}{n_{i} + n_{j}} & \text{if } n_{i} + n_{j} \neq 0 \\ \\ 1 & \text{if } n_{i} + n_{j} = 0 \end{cases}$$

c. Russel y Rao (1940):

$$d_3(x_i, x_j) = 1 - \frac{a_{ij}}{P}.$$

5.1 Fictitious data

The fictitious data set is presented in Table 1; 20 objects are described by 6 binary variables and it is clear that there are 4 natural clusters: $\{1,2,3,4,5\}$, $\{6,7,8,9,10\}$, $\{11,12,13,14,15\}$ and $\{16,17,18,19,20\}$.

We used the six aggregation indexes defined above. Tabu search runned 100 iterations with a tabu list of length 15; parameters for simulated annealing are described in the preceding section. Results for δ_1 and δ_2 are not interesting.

With simulated annealing and tabu search we obtained the same solutions for δ_3 and δ_4 , which is the natural partition; criteria W for δ_3 are 10 and 20 for d₁,d₂ and d₃, respectively, and for δ_4 they are 2, 2 and 4. This natural partition was obtained in all runs of both methods.

For δ_5 and δ_6 we also obtained solutions that reach the global optimum of W, however these solutions are not interesting. For example, for δ_5 and d_1 a solution is {11,12,13,14,15}, {18}, {20} and the remaining 13 objects in another class, with W = 0.5833. Aggregation δ_5 has a tendency to make singleton classes and to fill a class with many objects. On the other hand, a solution obtained for δ_6 and d_2 is, for example, {10,16,17,18,19,20},{11,12,13,14,15}, {1,2,3,4,5}, {6,7,8,9} which missclassifies object 10, but for this aggregation this missclassification has no effect since the partition is optimal and the criterion is W = 0, as in the natural partition.

 Table 1. The fictitions binary data.

Object							
	1	1	1	1	1	1	
י ר	1	1	1	1	1	1	
2	1	1	1	1	1	1	
3	1	1	1	1	1	1	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	
6	1	1	1	0	0	0	
7	1	1	1	0	0	0	
8	1	1	1	0	0	0	
9	1	1	1	0	0	0	
10	1	1	1	0	0	0	
11	0	0	0	1	1	1	
12	0	0	0	1	1	1	
13	0	0	0	1	1	1	
14	0	0	0	1	1	1	
15	0	0	0	1	1	1	
16	0	0	0	0	0	0	
17	0	0	0	0	0	0	
18	0	0	0	0	0	0	
19	0	0	0	0	0	0	
20	0	0	0	0	0	0	

In all cases, both methods found the global optimum solution in few seconds, even if for some aggregation indexes (δ_1 , δ_2 , δ_5 , δ_6) this solution is not the natural one.

5.2. Pejibaye data

The pejibaye (*Bactris gasipaes*) is a palm of the American humid tropic of great economical importance for this zone. We analizad the "genetic trace" of 6 different populations of pejibaye coming from Brazil, Perú, Bolivia, Colombia, Panama and Costa Rica, deduce form a phytogenetic study made at the University of Costa Rica. The data set has 87 objects (genomic polymorphic fragments of pejibaye's plants) described by 60 binary variables (DNA genetic trace). The data are shown in Table 2.

We applied the simulated annealing and tabu search methods, using dissimilarities d_1, d_2, d_3 and aggregations $\delta_1, \ldots, \delta_6$. Tabu search was applied with 200 iterations and we sampled 20 % of the neighbours for deciding where to go in each iteration.

Solutions for δ_1 and δ_2 are not stable and may change on the runs; they are not reported here. Solutions for δ_3 and δ_4 are presented in Table 3. The partitions for the three dissimilarity indexes were always the same, for all runs with both methods.

Table 2. The pejibaye data set.

1: 1111011000000111000000110111011110001111
2: 1101011000110111100000010111011110101111
2 1101011000110111100000010111011110101111
2
3: 1001011000100111000000010111011110101111
4: 111001100010011111100011111101011001011001100110001000
5: 1101011000010111000000001111011110111
6.110101100000010100000001111011110101111011101110010000
7: 010101100010011100000010110001011011101101100101
8.1100011000100111010000101110001111100101
9: 1100011000010101110000111100010111101111
$10 \cdot 1110011000010111000000011111011110$
12: 0100011000010101110000011100010110101111
13.110101100001010100000011111100111001
14: 110101100010011110000011011101011011111010
15: 110111100011011100000010010101111110101101101101111
16.1110111000001000010000111101110000001110000
16: 111011100000010000100000111101110000000
17: 101011100000001101100000110100110110001110000
18: 111011111100000110010001001101110110001110000
18. 1110111110000011011001000100110111010000
19: 011010000000001100100001001100110010000110000
20.1110110010101010100000100110011010011111
21: 1110111010000101010000010010011101101111
22: 1110110010010111001000010010011101101010
22. 01100110101101100100010011001101001100010011011010
23: 01100110110111001000010011001101000010011010
24: 0110011110000101001000000100111100101111
25: 111011000000111000000110000011001011011
26: 11011000000101110000000000110111000011010
27.1110010010110111000000000010011100101010
28: 11100110101010101000001111100110100000111010
29: 0111011010110101000001101000110110001110000
20.0111011010000011000000100010111011010000
30. 01110110100000110000010010111011011010000
31: 001011010010111100000101100000110000000
32.0010110100101111100000011000001100001111
33: 00101100001011111010000110000011000001100101
34: 001011000010101110000101100000110000011001101111
25.001011010000111111100101100000110000011001111
55: 00101101000011111100101100000110000011001111
36: 00101100001011100000010110000111001000100110111010
37.001001010101110000001011000011100101010000
38: 00100101000011111000010110000011001011100100101
39: 0010110100101111100001011000001100101110011010
40,001011010010111110000001100000110001111001001110000
40: 00101101001011111000000110000011000111001001110000
41: 00101101001010010000000110000111000111100100111010
42.0010110100101100100000011000001110011111
43: 001001010010101110000001100000011001001
44: 00110100010111000100010110100010001110111010
45,0000000011111110010110111011100000001100101
43: 0000000011111100101101111011100000001100101
46: 01110100110111000001010110111000111100111000100010000
47:00100000011111100100011110110010011000111010
47.0010000001111110010001110010011001100000
48: 000010011101100000011001001001001101010000
48: 000001001110110000001110110010010011001100110000
47: 0010000011111100100011101100100110110010000
47:00100000110111000001110110010010011001
47:0010000001111101001001100110011001101010
47.00100000111111001000111011001001100110
47:001000000111111001001110011001001000000
47. 0010000001111110010001110011001100110101
47:00100000011111100100011101100100110011
47:00100000110111100100111011001001100110
47. 00100000011111100000111011001001100110
47. 0010000001111110010011100110011001100000
47.00100000011111100000011101100100110011
47. 0010000011111100000111011001001100110101
47. 0010000001111110000001110011001100110101
47. 00100000011111100000111011001001100110
47. 0010000001111110000011100110011001101010
47. 0010000001111110000001110011001100110101
47. 00100000111111000001110110010011001100
47. 00100000011111100000111011001001100110
47. 00100000011111100000111011001001100110
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100100000
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 00100000011111100000011100110011011010000
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 0010000001111110000001110011001100110101
47. 00100000011111100000011100110011001100
47. 0010000001111110000001110011001100110101
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 0010000001111110000001110011001100110101
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47:00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 00100000011111100000011100110011001100
47. 10100000011111100000011100110011001100
47.10010000001111110000001110011001100110
47.1010000011111100000011100110011001100000

Partition obtained with δ_4 corresponds to the six countries of the pejibaye palms. In the sense, it is the natural and optimal solution. The difference between solutions for δ_3 and δ_4 , is that object 74 is classified in class C_3 when it is used the sum of dissimilarities and in class C_6 when it is used the Späth aggregation. One may think that δ_3 makes a missclassification of object 74, however, the value of W is less with the obtained classification using δ_3 than with classifying object 74 in class C_6 . That is, the solution found by our methods is better (for δ_3 aggregation) than the "geographical" one.

δ_3 (sum of dissimilarities)	δ_4 (Späth aggregation)			
$C_1 = \{1,2,3,4,5,6,7,8,9,10, \ 11,12,13,14,15\}$	$C_1 = \{1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15\}$			
$C_2 = \{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}$	$C_2 = \{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}$			
$C_3 = \{31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 74\}$	$C_3 = \{31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43\}$			
$C_4 = \{44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57\}$	$C_4 = \{44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57\}$			
$C_5 = \{58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72\}$	$C_5 = \{58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72\}$			
$C_6 = \{73, 74, 75, 76, 77, 78, 78, 80, 81, 82, 83, 84, 85, 86, 87\}$	$C_6 = \{73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87\}$			

Table 3: Partitions for the pejibaye data using simulated annealing and tabu search.

Values of the criterion for different aggregations and dissimilarities are shown in Table 4. These results are for simulated annealing, and they are equal for tabu search using δ_3 and δ_4 . For δ_5 and δ_6 they differ slightly in some runs.

Table 4. Criterion W for the pejibaye data using simulated annealing according to 4 aggregations and 3 dissimilarities.

Aggregation	Jaccard (d ₁)	Dice et al (d ₁)	Russel & Rao (d ₃)
δ_3	263.904 (stable)	174.24 (stable)	406.47(stable)
δ4	18.19 (stable)	12.016 (stable)	28.018 (stable)
δ_5	0.637 (stable)	0.477 (stable)	0.768 (stable)
δ ₆	0.0115(non-stable)	0.012 (non-stable)	0.00296(non-stable)

6. CONCLUSIONES

This study of aggregation indexes for non-Euclidean data shows that some aggregation indexes not involving the notion of center can be used for clustering data described by binary variables. Results obtained for the sum of dissimilarities and Späth aggregations are better than for the rest of agregations. Simulated anneanling and tabu search find usually global optimum solutions for the data sets considered. Further research is undertaken for comparing our approach to methods that use centers and hierarchical clustering, as well as an extension for the use of aggregation indexes on categorical data. Genetic algorithms can also be applied for these aggregation indexes, since they satisfy the monotonicity property, even if not always there exist a decomposition of total inertia as in the Euclidean case.

REFERENCES

ABDALLAH, H. and G. SAPORTA (1998): "Classification d'un ensemble de variables qualitatives", **Revue de Statistique. Appliquée** XLVI (4):5-26.

ANDERBERG, M. R. (1973): Cluster Analysis for Applications, Academic Press, New York.

BORG, I. and P.J.F. GROENEN (1997): Modern Multidimensional Scaling, Springer, New York.

BOCK, H.H. (1974): Automatische Klassifikation, Vandenhoeck & Ruprecht, Göttingen.

CAILLIEZ, F. and J.P. PAGES (1976): Introduction à l'Analyse des Données, SMASH, París.

DIDAY, E. (1980): Optimisation en Classification Automatique, (2 vol.), INRIA, Le Chesnay.

DIDAY, E.; J. LEMAIRE; J. POUGET and F. TESTU (1982): **Eléments d'Analyse des Données**, Dounod, París.

- ESPINOZA, J.L. and J. TREJOS. (1989): "Clasificación por particiones". Revista de Ciencia y Tecnología 8 (1-2): 129-154.
- JAJUGA, K. (1987): "A clustering method based on the L₁-norm", **Computational Statistics Data Analysis** 5: 357-371.
- MURILLO, A. (in press): "La búsqueda tabú en el análisis de conglomerados", to appear in Investigación Operacional.
- PIZA, E. (1987): "Clasificación automática jerárquica aglomerativa", **Revista de Ciencias** Económicas 7(1).
- PIZA, E.; A. MURILLO y J. TREJOS (1999): "Nuevas técnicas de particionamiento en clasificación automática", **Revista de Matemática: Teoría y Aplicaciones** 6(1): 51-66.
- SPÄH, H. (1985): Cluster Dissection and Analysis. Theory, Fortran programs, Examples, Ellis Horwood, Chichester.
- TREJOS, J.; A. MURILLO and E. PIZA (1998): "Global stochastic optimization techniques applied to partitioning", in: A. Rizzi, M. Vichi & H.-H. Bock (Eds.), Advances in Data Science and Classification, Springer, Berlin.
- TREJOS, J. and M. VILLALOBOS. (in press): "Application of tabu search in metric multi-dimensional scaling", to appear in **Investigación Operacional.**
- VILLALOBOS, M. and J. TREJOS. (in press): "Application of simulated annealing in metric multidimensional scaling", to appear in **Investigación Operacional**.