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ABSTRACT 
The Capacitated General Routing Problem (CGRP) on mixed graphs is one of the more complex 
combinatorial optimization problems on vehicle routing. It consists basically of finding a set of routes on 
a mixed graph, beginning and ending at the same vertex (depot), with minimum total cost, satisfying 
demands located at links and vertices and with a capacity restriction on the demand satisfied by each 
route. Several particular cases of  this problem have deeply been studied in the operational research 
literature but,  in order to solve the general problem,  we only have found a  heuristic procedure based 
on route-first-partition-next. We present here a new heuristic that seems to work much better according 
to our computational results.  
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RESUMEN 
El Problema General de Rutas con Capacidades (CGRP) sobre grafos mixtos es uno de los más 
complejos problemas de optimización combinatoria sobre rutas de vehículos. Básicamente consiste en 
buscar un conjunto de rutas sobre un grafo mixto, que empiezan y terminan en el mismo vértice 
(depósito), con coste total mínimo, que satisfacen demandas localizadas en vértices y enlaces y con 
una restricción de capacidad sobre la demanda satisfecha por cada ruta. Varios casos particulares de 
este problema han sido estudiados con profundidad en investigación operativa pero, de cara a resolver 
el problema general,  sólo hemos encontrado un algoritmo heurístico basado en ruta-primero-partición-
después. Presentamos aquí un nuevo heurístico que funciona bastante bien de acuerdo con nuestros 
resultados computacionales. 
 
Palabras clave: Rutas de vehículos con capacidades, grafos mixtos, heurístico. 
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1.  INTRODUCTION 
  
 The Capacitated General Routing Problem on Mixed Graphs (CGRP-m) can be defined as follows:  
  
 “Let G = (V, E ∪ A) be a strongly connected mixed graph where:  each link (i,j)∈ E ∪ A has associated a cost 
cij ≥ 0, vertex 1 represents a depot where there are k vehicles with identical capacity W, it exists a set VR ⊆ V 
such that each vertex i∈VR has associated a positive demand qi ≤ W, it exists a set AR ⊆ A such that each arc 
(i,j)∈ AR has associated a positive demand qij ≤ W, it exists a set ER ⊆ E such that each edge (i,j)∈ ER has 
associated a positive demand qij ≤ W and the sum of all demands is not greater than kW. 
  
 Find k tours in G such that each tour passes through the depot, the demands at VR, AR and ER are satisfied, 
each one by exactly one tour,  the total load of each tour does not exceed vehicle capacity W and the sum of 
the cost of the k tours is minimum.” 
  
 Note that in order to ensure feasibility, it is assumed without loss of generality that k is equal to the 
minimum number of vehicles necessary to attend all demands. 
 
 The CGRP-m generalizes many vehicle routing problems that have been studied in the last forty years and 
for which hundreds of papers have been written, either to give exact or heuristic procedures for their 
resolution or to give lower bounds. For example: 
 
- If  A = ∅ = VR  we have the Capacitated Arc Routing Problem (CARP).  

- If A = ∅ = ER  we have the Capacitated Vehicle  Routing Problem (CVRP). 

- If E = ∅ = AR  we have the  Asymmetric Capacitated Arc Routing Problem (ACVRP). 
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- If k = 1 we have the General Routing Problem (GRP).  

- If k = 1 and VR = ∅ we have the Mixed Rural Postman Problem (MRPP). 

- etc. 

 
 With regard to the particular cases with k > 1, it is assumed that problems of realistic size must be tackled 
with heuristic approaches, so the majority of the studies focuses on effective heuristic procedures that either 
improve previous approaches or solve the problem for the first time. As the best heuristics procedures for 
particular cases of the CGRP-m, we must cite among others, the works of Hertz, Laporte and Mittaz (2000) 
for the CARP, Taillard (1993) for the CVRP, Vigo (1996) for the  ACVRP, López (1998) for the GRP, and the 
paper of Corberán, Martí and Romero (2000) for the MRPP.  
 
 The reasons of the extensive study of these problems are due to the fact that there are many real situations 
in which such a set of routes is required: collection or delivery of goods, garbage collection, mail delivery, 
snow removal, school bus routing, pipelines inspections, etc. 
 
 Despite the fact that in a big city, its street network must be modelized as a mixed graph and, for instance, 
in order to collect garbage, several vehicles are needed, so the CGRP-m seems to be appropriate to solve 
optimally this real problem, the CGRP-m, in its general definition, has hardly been considered in the literature. 
In fact, as far as we know, the only paper that gives a procedure (approximate procedure) to solve this 
problem is by Pandit and Muralidharan (1995). This procedure follows the route-first-partition-next 
methodology. Basically it consists of two phases: 
 
 In the first phase they obtain a heuristic solution to the GRP in the graph G, that is, they suppose no 
capacity restrictions so only one vehicle is required to attend all the demands. Then, a Giant Tour that 
satisfies all the demands is obtained. 
 
 In the second phase this Giant Tour is broken into subtours in the following way: start the tour at the depot, 
follow the tour, break the tour when the capacity constraint is violated and return to the depot (first route). Go 
from the depot to the previous break point, follow the tour until the capacity constraint is violated again, return 
to the depot (second route), and so far. 
 
 In this paper we present an alternative heuristic procedure to the one given by Pandit and Muralidharan. 
Our procedure is close to the partition-first-route-next methodology, as it happens in many studies on 
particular cases of this problem, see for example Chapleau et al. (1984), Benavent et al. (1990), Pearn 
(1991) or Vigo (1996). This methodology seems more appropriate in a CGRP-m constructive heuristic, in fact, 
in only one instance from those in which we have compared both heuristics, the algorithm of Pandit and 
Muralidharan provided better result than ours. 
 
 The remainder of this paper is organized as follows. In Section 2 we present our heuristic for the CGRP-m. 
In Section 3, in order to clarify how they work, we apply this heuristic and the one of Pandit and Muralidharan 
to an instance. Finally, in Section 4 we show our computational results on a set of 28 instances with up to 50 
vertices, 98 links and 4 vehicles. 
 
2. HEURISTIC ALGORITHM FOR THE CGRP-m  
 
 The heuristic we present here constructs the routes one after the other. Firstly, for each required arc, edge or 
isolated vertex it finds a minimum cost initial route joining the required element with the depot. To start a vehicle 
route it selects the remaining largest initial route and it inserts, with minimum cost increment of the route, 
demands in this route according with the following preferences. First the nearest required elements to the one 
that defines the initial route, without violate the capacity constraint. Then it inserts demands corresponding to 
required elements traversed by the route but with demands not inserted yet, and finally, if the loaded demand is 
not greater than 0.9W, it tries to insert demands corresponding to required elements that are very close to the 
route. Exceptionally, our procedure may provide more than k routes, as it occurs in all the heuristics procedures 
to solve capacitated routing problems.  
 
 Once we have the solution given by our heuristic, as it implies that we have assigned required elements to 
each vehicle, we may consider that we have k (or more) General Routing Problems on mixed graphs, so in 
order to improve each one of the obtained routes, we apply a GRP heuristic to the set of demands satisfied 
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by each vehicle. This heuristic, based on Monte Carlo techniques is due to López (1998) and it is the more 
recently one that we have found for this problem.       
 
 In what follows in this section, each step of our heuristic is described in more detail. 
 
Notation used by the heuristic: 
 
-  W: Vehicle capacity. 

-  Q: Total demand in the graph. 

- CA:  Accumulated cost of the assigned routes. 

- DA:  Accumulated demand of the assigned routes. 

- Required element: Each required isolated vertex (non incident with required arcs or edges) and each 
required arc or edge together with its two incident vertices. We suppose that the sum of the (at most three) 
demands of a required element is not greater than W. A required element is denoted by (i,j).  
If i = j we understand that this element is a (isolated) vertex (we suppose that G has not loops). 

-  B: the set of  required elements not inserted yet in any route at a given moment. 

-  R(i, j): A route containing the depot and the required element (i, j). 

-  C(i, j): Total cost of the route R(i, j). 

-  D(i, j): Total demand of the route R(i, j).     

-  N:  Number of assigned routes. 

-  SP(u,v):  Shortest path from vertex u to vertex v . 

-  CSP(u,v): Cost of  SP(u,v)  (CSP(u,u)=0). 

-  q0: Minimal demand corresponding to the required vertices (all), arcs and edges not assigned yet to a  
      route at a given moment. 

-  DF:  Demand needed at a given moment to complete the maximal capacity W of  a route. 

-  M0: Statistical median of the costs of all edges and arcs of the graph.  

-  KI(u,v): Insertion path from vertex u to vertex v. If u ≠ v,  KI(u,v) is a segment of a route between vertices 
corresponding to two consecutive required elements in the route, including the depot, both inserted 
in that route, and such that this segment does not contain any other required element inserted in 
the route. Necessarily KI(u,v) = SP(u,v). If u = v, KI(u,u) = {u}. 

 
HEURISTIC 
 
Step 0: (Previous calculations and initialization) 
 
B = The set of all required elements in G (as they where defined above). 
 
- Find the initial route for each (i,j)∈B in the following way: 
 

• For each edge (i,j)∈B its initial route is the one of least cost between  
   R(i,j) = SP(1,i) ∪ (i,j) ∪SP(j,1)  and  R(j,i) = SP(1,j) ∪(j, i) ∪ SP(i,1). 

• For each arc (i,j) ∈ B its initial route is  R(i,j) = SP(1,i) ∪ (i,j) ∪ SP(j,1). 

• For each  isolated vertex (i,i) ∈ B (i = (i,i)) its initial route is  R(i,i) = SP(1,i) ∪ SP(i,1). 
 

- For each pair (u1,u2), (v1,v2) of required elements of the graph, including the depot (remember  
that a vertex u is denoted by (u,u)), calculate the distance between them, defined as min{CSP(u1,v1), 
CSP(u1,v2), CSP(u2,v1), CSP(u2,v2), CSP(v1,u1), CSP(v1,u2), CSP(v2,u1), CSP(v2, u2)}. 

 
- Calculate M0.  
 
- Do  DA = 0,  CA = 0 and N = 0. 
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Step 1:  Do N = N+1,  I = 0. 
 
 Select the initial route R(i,j) with largest cost corresponding to a required element (i,j) ∈ B. Let  
R(i,j) = SP(1,i) ∪ (i,j) ∪ SP(j,1) be this route, consider the insertion paths: KI(1,i), KI(j,1), KI(1,1), KI(i,i) and 
KI(j,j), being (i,j) the first inserted required element in route N. 
 
 Do    D(i, j) = q i  + q i j + q j    and   DF = W – D(i,j). 
 
Step 2: Put in order the demands of the remainder elements of B according to the instance of the required 

element to (i,j) in increasing order of distance. Given this order, calculate the maximal accumulated 
demand Fs  (s implies that Fs corresponds to the first s elements) such that  Fs ≤ DF.   

 
 Note that the demand corresponding to a vertex belonging to several required elements is assigned to the 
first of these required element according to the given order. 
 
 Let  As be the set containing the first s required elements. If As=∅ (s=0) go to Step 5. 
 
 Do   D(i,j) = D(i,j) + Fs    and    DF = W – D(i,j). 
 
Step 3: For each element of As not inserted yet in the route N, calculate the cost increment due to its insertion 

in each one of the new insertion paths KI(ui,vi). This cost is defined in the following way: 
 

•  For each non inserted edge  (u,v) ∈ As, min{CSP(ui,u) + cuv+CSP(v,vi) – CSP(ui, vi),  
   CSP(ui,v) + cuv + CSP(u, vi)  – CSP(ui,vi)}. 

•  For each non inserted arc  (u,v) ∈ As, CSP(ui,u) + cuv + CSP(v,vi)  – CSP(ui, vi).  

•  For each non inserted isolated vertex  u ∈ As, CSP(ui,u) + CSP(u,vi) – CSP(ui,vi). 
 
Step 4: Select the insertion path KI(ui,vi)  and the required element (u,v)∈As for which the minimum cost  
             increment is reached in Step 3.  
 
 Insert this required element in the route N by replacing KI(ui,vi) with SP(ui, u)∪(u,v)∪ SP(v,vi).  R(i,j) is then 
updated: 
 

R(i,j) = {R(i,j)–KI(ui,vi)}∪SP(ui,u)∪(u,v)∪SP(v, vi) 
 
 Remove KI(ui,vi) from the list of insertion paths and add to this list the new insertion paths: KI(ui,u),  KI(v,vi), 
KI(u,u) and KI(v,v) (note that occasionally ui = vi and/or u = v).   
 
 Do   I = I + 1.  If  I < s go to Step 3. 
 
 If  DF < q0  go to Step 10. 
 
Step 5: Consider the demands not inserted yet in any route and located at vertices and links traversed by the 

route R(i,j). Put in order these demands according to their distance to the depot in the route, going to 
or coming from the depot, in increasing order of distance. To do this, consider that a demand 
corresponding to an arc or edge is located in the center of the link. Given this order, calculate the 
maximal accumulated demand Fm (m implies that Fm corresponds to the first m elements) such that  
Fm ≤ DF and let Fn be the total non inserted demand located in R(i,j). 

 
 If Fm = 0 (m = 0) go to Step 6. 
 

D(i,j) = D(i,j) + Fm 
 

DF = DF- Fm. 
 
 If DF< q0  go to Step 10. 
 
 If  Fm = Fn  go to Step 7. 
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Step 6: Put in increasing order the remaining demands not inserted yet in any route and located at vertices 
and links traversed by the route R(i,j). Given this order, calculate the maximal accumulated demand 
Fp  such that  Fp ≤ DF.  

 If  Fp = 0  go to Step 7. 

 Do   D(i,j) = D(i,j) + Fp   and  DF = DF - Fp. 

 If  DF < q0  or  DF≤ 0.10·W go to Step 10. 
 
Step 7: From among the required elements (u,v) ∈ B not present in R(i,j), not labeled and such that at least 

one of its demands qu, quv, qv, is different from zero and little or equal than DF, select the one that 
minimizes min{CSP(ui,u)+CSP(v,ui): ui is a vertex belonging to a required element inserted in R(i,j), 
including the depot} if this minimum is little or equal than 2M0.  

 
 If such required element (u,v) does not exist go to Step 10. 
 
Step 8: Let  duv = qu + quv + qv be the demand of (u,v).  
 
 If  duv  ≤  DF do d0 = duv and go to Step 9. 
  
 From among the six elements qu, qv, quv, qu + qv, qu + quv, qv + quv, select the largest one little or equal than 
DF. Let d0 be this element. 
 
Step 9:  Do       D(i,j) = D(i,j) + d0,  DF = DF - d0 and: 

- R(i,j) = R(i,j) ∪ SP(ui,u) ∪ (u,v) ∪ SP(v,ui)  if d0 contains quv. 
- R(i,j) = R(i,j) ∪ SP(ui,u) ∪ SP(u,ui) if d0 = qu. 
- R(i,j) = R(i,j) ∪ SP(ui,v) ∪ SP(v,ui) if d0 = qv. 
- R(i,j) = R(i,j) ∪ SP(ui,u) ∪ (u,v) ∪ SP(v,ui) if d0 = qu + qv and CSP(ui,u) + cuv + CSP(v,ui) ≤     

                     ≤ CSP(ui,u) + CSP(u,ui) + CSP(ui,v) + CSP(v,ui). 
- R(i,j) = R(i,j) ∪ SP(ui,u) ∪ SP(u,ui) ∪ SP(ui,v) ∪ SP(v,ui)  otherwise. 

 
 If  DF > 0.10·W and DF ≥ q0,  label (u,v) and go to Step 7. 
 
Step 10: Consider route R(i, j) as a definitive route.  

 Do   DA = DA + D(i,j)  and  CA = CA + C(i,j). 

 If DA = Q  STOP. 

 Update B, update the demands of its elements and for each required vertex become isolated, find its initial 
route and calculate its distances to the remaining required elements. Remove the label to the required 
elements labeled in Step 9. 
 
 Go to Step 1. 
 
 The above heuristic has polynomial complexity. In fact, the steps with largest number of  operations are: 
Step 0 with complexity O(|V|3) (in the worst case, the set of its operations is dominated by the computation of 
the shortest path between each ordered pair of vertices in G, which are stored in such a way that we do not 
need to compute them in the following steps);  Step 2 with complexity O(r2) being r = |AR ∪ ER| + |VR| (in the 
worst case, the set of its operations is dominated by the ordering of the demands of all required elements in 
G); Step 3 which, after all the times that the heuristic passes through it, has complexity O(r · |V|2) (r · |V|2 is an 
upper bound on the number of combinations between a required element and an insertion path) and Step 7 
for which it is easy to see that its complexity is O(r · |V|). Then, we may conclude that our heuristic has 
polynomial complexity upper-bounded by O(s3) being s = max{|V|,r} (note that k ≤ r). 
 
3. EXAMPLE OF APPLICATION OF THE HEURISTIC 
 
 In this section we apply our heuristic for the CGRP-m to the mixed graph given in Figure 1, with 20 vertices, 
27 edges, 8 arcs, 12 required vertices (the shady vertices), one of them isolated, 4 required edges (in bold 



 20

lines) and 3 required arcs (in bold lines). Numbers in brackets represent demands and numbers without 
brackets represent link costs. The total demand of the graph is Q = 110 and the vehicle capacity is W = 40, 
then, the minimum number of vehicles to satisfy the demands is k = 4. The statistical median of the link costs 
is M0  = 5 and the minimum individual demand is q0  = 2.  
 
 Once we have the routes given by our heuristic, in order to improve their cost, we will apply to each one the 
GRP heuristic given by López (1998) which, in accordance with computational results, produces optimal or 
nearly optimal solutions in small/medium-sized instances. 

 
Figure 1. Mixed graph where we are going to apply our heuristic. 

 
 Finally, to compare both heuristics, we apply to the same graph the heuristic given by Pandit and 
Muralidharan, obtaining its Giant Tour with the heuristic of López and, in order to guaranty the same 
conditions to both heuristics, we also apply the GRP heuristic to each one of the routes given by the heuristic 
of Pandit and Muralidharan.  
 
 To be brief, we will only show how our heuristic constructs the first route step by step: 
 
Step 1 selects as largest initial route R(18,18) = SP(1,18) ∪ SP(18,1), with C(0,18) = 62. 
 
 R(18,18) = (1,2)(2,8)(8,9)(9,10)(10,11)(11,18)(18,11)(11,10)(10,9)(9,8)(8,3)(3,2)(2,1). N = 1, I = 0, the new 
insertion paths are  KI(1,18), KI(18,1) and KI(18,18). The first required element inserted in the route is vertex 
18,  D(18,18)=q18=10  and  DF =40–10=30. 
 
 Is Step 2, the required elements ordered according to their distance to vertex 18 are {(10,5), (19,15), (15,8), 
(3,4), (14,8), (13,12), (12,7)}, with respective demands {12,19,10,16,15,13,15}. The accumulated demands 
are then {12,31,41,57,72,85,100}.  

 The maximal accumulated demand little or equal than DF is  F1 = 12 (s = 1). 

D(18,18) = 10 +12 = 22. 

As = {(10,5)} 

 From Steps 3 and 4 we obtain that the insertion path KI(18,1) is substituted for SP(18,10) ∪ (10,5) ∪ SP(5,1), 
I = I + 1 = 1 = s, the new insertion paths are  KI(18,10), KI(5,1), KI(10,10) and KI(5,5). 

 R(18,18) is updated:  

R(18,18) = (1,2)(2,8)(8,9)(9,10)(10,11)(11,18)(18,11)(11,10)(10,5)(5,4)(4,3)(3,2)(2,1) 

DF = 18>q0 = 2. 

 In Step 5  the demands present in R(18,18) but not inserted yet are {q4,q43,q3,q8}, ordered according  
to the largest distance to the depot (in the route). The accumulated demands are then {8,13,16,20},  
the maximal accumulated demand little or equal than  DF  is  F3  = 16, Fn = F4 = 20  (F3 < F4),  D(18,18) = 22+ 16 
= 38  and   DF = 2  ≥ q0. 

  

 
 

 

  

  
 
 
 

(a) inicial 
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 In Step 6, the only demand to be considered is  q8 = 4, greater than DF, so it is not inserted. 

 In Step 7 we have that there are nonrequired elements complying with the conditions given in that step so 
the heuristic goes to Step 10, being the first definitive route R(18,18 = (1,2)(2,8)(8,9)(9,10)(10,11) (11,18) 
(18,11)(11,10)(10,5)(5,4)(4,3)(3,2)(2,1), with D(18,18) = 38,  C(18,18) = 69, DA = 0 + 38 = 38, CA = 0 + 69 = 69 
and Q – DA > 0, so the heuristic goes to Step 1 again. 
 
 The second time that the heuristic arrives at Step 10, it obtains the second definitive route  
R(19,15) = (1,2)(2,8)(8,15)(15,16)(16,19)(19,15)(15,14)(14,13)(13,12)(12,6)(6,1), with D(19,15)  = 38  and  
C(19,15) = 41, and the third time it arrives at Step 10 it obtains the last definitive route R(14,8) = 
(1,6)(6,7)(7,14)(14,8) (8,15)(15,14)(14,13)(13,12)(12,7)(7,2)(2,1),  with  D(14,8) = 34 and C(14,8) = 35. The total 
cost of the three routes is CA  = 145. In Figure 2 we show the three routes in the graph (they are represent by 
dotted arcs). 

 

 

Figure 2. Routes given by our heuristic. 
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 The GRP heuristic only improves the third route, with a saving of 2 units of cost. The new third route is 
given in Figure 3. It is R(14,8) = (1,6)(6,12)(12,7)(7,14)(14,8)(8,15)(15,14) (14,13)(13,12)(12,6)(6,1). 
 

 
Figure 3. Improvement of route 3 by means of the GRP heuristic. 

 
 With regard to the heuristic of Pandit and Muralidharan, Figure 4 shows the Giant Tour obtained by the 
GRP heuristic, whereas Figure 5 shows the three routes obtained by this method with cost 77, 51 and 28 
respectively and with load 38, 38 and 34 respectively. Its total cost is then 156. They are: 
  

R1 = (1,2)(2,3)(3,4)(4,5)(5,10)(10,11)(11,18)(18,11)(11,10)(10,9)(9,8)(8,3)(3,2)(2,1). 
  

R2 = (1,2)(2,8)(8,15)(15,16)(16,19)(19,15)(15,14)(14,8)(8,3)(3,2)(2,1). 
 
R3 = (1,2)(2,8)(8,15)(15,14)(14,13)(13,12)(12,7)(7,12)(12,6)(6,1). 

 
Figure 4. Giant Tour in G obtained by the GRP heuristic. 

 
 After applying the GRP heuristic to each one of the three routes obtained by the heuristic of Pandit and 
Muralidharan, we have that this heuristic improves routes 1 and 2 with new costs 69 and 48 respectively. The 
total new cost is then 145 and it represents a saving of 11 units. The first new route is exactly the  
first one given by our heuristic, so we do not reproduce it. The second new route (see Figure 6) is  
(1,6)(6,7)(7,14)(14,8)(8,15)(15,16) (16,19)(19,15)(15,14)(14,13) (13,12)(12,6)(6,1).  
 
 Then we have that without applying the GRP heuristic to any route obtained by both heuristics, the solution 
given by Pandit and Muralidharan represents a cost increment of 7.58 %  with regard to the solution produced 
by our heuristic whereas after applying the GRP heuristic to all routes obtained by both heuristics, the solution 
given by Pandit and Muralidharan represents a cost increment of 1.39 %  with regard to the solution produced 
by our heuristic. 
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Figura 5. The three routes obtained from the Giant Tour. 
 



 24

 Number Q W k |V| |E| |A| |VR| |VRI| |ER| |AR|

1 110 40 3 20 27 8 12 2 4 3 
2 771 300 3 20 25 7 12 3 4 3 
3 462 200 3 20 25 7 7 2 3 2 
4 425 150 3 20 28 9 11 5 3 2 
5 300 110 3 20 25 5 11 2 6 3 
6 460 160 3 20 31 5 17 2 15 3 
7 771 200 4 20 21 6 12 3 4 4 
8 470 170 3 25 35 7 20 2 15 4 
9 1020 500 3 25 35 7 11 3 6 2 

10 130 50 3 25 37 3 12 3 5 0 
11 250 75 4 25 33 5 8 3 5 2 
12 240 90 3 25 40 5 8 3 2 3 
13 190 80 3 30 52 5 14 2 5 5 
14 230 90 3 30 45 5 11 2 3 2 
15 255 100 3 30 47 1 9 6 1 1 
16 186 80 3 30 35 9 9 2 1 4 
17 322 110 3 30 38 7 14 1 7 4 
18 256 100 3 35 54 8 11 3 5 1 
19 252 110 3 35 54 10 10 1 4 4 
20 305 110 3 35 45 11 11 4 1 5 
21 428 230 2 40 70 16 13 3 6 5 
22 564 300 2 40 54 12 19 3 11 4 
23 645 250 3 40 66 9 12 1 6 3 

24 330 150 3 45 82 0 12 3 9 0 

25 370 130 3 45 59 11 16 2 7 3 

26 1343 500 3 50 74 14 21 4 9 3 

27 320 120 3 50 76 11 14 3 3 3 

28 350 130 3 50 97 1 11 8 1 1 

     
    Table 1.  Relevant data of the 28 instances (Q = total demand  and   
                    |VRI| = number of isolated required vertices including  the depot). 

 
Figure 6. Improvement of route 2 of  the heuristic of Pandit and Muralidharan, by means of the GRP heuristic. 

 
4. COMPUTATIONAL RESULTS 

 In this section we compare the 
behavior of our heuristic and the one 
of Pandit and Muralidharan in a set of 
28 instances with 20 ≤ |V| ≤ 50,  
25 ≤ |E| ≤ 97, 0 ≤ |A| ≤ 16 and  
2 ≤ k ≤ 4. These instances where 
manually generated trying to cover 
different situations (demands located 
in clusters, non-directed graphs, total 
demand very close to kW, etc.) with 
the restrictions imposed by the code 
of the GRP heuristic. Our heuristic 
has been partially coded in C++ 
whereas the Giant Tour obtained by 
the GRP heuristic of López has been 
manually broken into subtours, with 
the help of some subroutines coded 
in C++. 

 In Table 1 we show the relevant 
data corresponding to each instance, 
whereas in Table 2 we show the 
costs given by: our heuristic (ASH), 
our heuristic plus the application of 
the GRP heuristic to each obtained 
route (ASH+MC), the heuristic of 
Pandit and Muralidharan (PM) and 
the heuristic of Pandit and 
Muralidharan plus the application of 
the GRP heuristic to each obtained 
route (PM + MC). We also present  
in Table 2 the deviations of the 
results given by PM with respect to 
ASH  (100(PM/ASH - 1), and  the 
deviations of the results given by  
PM + MC with respect to ASH and 
ASH + MC (100((PM + MC)/ASH-1) 
and 100 ((PM + MC)/(ASH + MC) - 1) 
respectively). 
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 From these computational results we obtain that:  

• On average, the heuristic of Pandit and Muralidharan (PM) produces a cost increment in the solution of 
11.05 % with respect to our heuristic and it only produces better  solution than ours in one instance, the 
instance number 8. 

• After applying the GRP heuristic to the routes obtained by both CGRP-m heuristics, we can see that our 
solutions have been slightly improved, in fact, 19 costs where not modified (that means that once demands 
are assigned to a vehicle, our heuristic produces for this vehicle an optimal or nearly optimal tour solution to 
satisfy these demands), whereas the improvements produced in the solutions given by heuristic PM where 
more significant. Anyway, the average cost increment of the second procedure (PM + MC) with respect to 
the first one (ASH + MC) is still significant;  8.41 % and it only produces the best solution in 4 instances 
(instances 3, 8, 21 and 28).  

• Even if we compare PM+MC with our heuristic without improving the routes of the second one, we obtain 
an average cost increment in the solution of  7.17 %, being 4 the number of instances in which PM + MC 
produces better solution than ours (instances 3, 8, 21 and 28). 

• In 2 instances from among 28, our heuristic gave a solution with k + 1 vehicles (instances number 5 and 6), 
whereas the heuristic of Pandit and Muralidharan produced a solution with k + 1 vehicles in 6 instances (ins-
tances 4, 5, 6, 7, 12 and 20).  

 We conclude that, according to these computational results, the CGRP-m heuristic that we have presented 
here improves substantially the results obtained applying the route-first-partition-next procedure proposed by 
Pandit and Muralidharan, which is the only method that we have found in the Operational Research literature 
in order to solve the CGRP-m.  
 
Table 2. Computational results: costs and deviations. AHS = our heuristic; AHS + MC = AHS plus the application  

of the GRP heuristic to each obtained route; PM = heuristic of Pandit and Muralidharan; PM + MC = PM plus 
the application of the GRP heuristic to each obtained route.  

 

Number ASH PM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1

AHS
PM

100  ASH + MC PM + MC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

+
1

MCASH
MCPM

100  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
1

ASH
MCPM

100  

1 145 156 7.58 143 145 1.39 .00 
2 397 480 20.90 397 478 20.40 20.40 
3 323 327 1.23 321 313 -  2.49 -  3.09 
4 113 164 45.13 113 155 37.16 37.16 
5 152 170 11.84 152 164 7.89 7.89 
6 169 200 18.34 169 185 9.46 9.46 
7 495 561 13.33 495 541 9.29 9.29 
8 237 207 - 12.65 211 203 -  3.79 - 14.34 
9 114 118 3.50 114 118 3.50 3.50 

10 130 132 1.53 127 132 3.93 1.53 
11 209 232 11.00 209 230 10.04 10.04 
12 122 130 6.55 116 123 6.03 .81 
13 139 156 12.23 139 143 2.87 2.87 
14 128 138 7.81 128 136 6.25 6.25 
15 92 93 1.08 92 92 .00 .00 
16 153 162 5.88 153 153 .00 .00 
17 180 210 16.66 180 210 16.66 16.66 
18 136 152 11.76 136 152 11.76 11.76 
19 124 148 19.35 124 148 19.35 19.35 
20 156 181 16.02 156 181 16.02 16.02 
21 161 162 .62 156 153 -  1.92 -  4.96 
22 218 235 7.79 218 235 7.79 7.79 
23 193 222 15.02 193 202 4.66 4.66 
24 223 255 14.34 211 255 20.85 14.34 
25 248 283 14.11 244 281 15.16 13.30 
26 1395 1695 21.50 1352 1423 5.25 2.00 
27 179 198 10.61 179 196 9.49 9.49 
28 199 212 6.53 199 196 -  1.50 -  1.50 

Average  11.05  8.41 7.17 
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