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ABSTRACT 
In this paper we consider a multiobjective stochastic control problem and derive necessary conditions 
for approximate solutions of the control problem using a multicriteria variational principle of Ekeland’s 
type. The restrictions in the multiobjective stochastic control problem are formulated by dynamical 
equations. The solution of this dynamical equations can be obtained applying the Girsanov measure 
transformation. Furthermore, the objective functions are terminal costs gi (x(1)) for which we consider 
the expected value of control u, i.e., Eu [gi(x(1))] = Fi (u) (i = 1,...,l), where Eu denotes the expectation 
constructed from control u. 
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RESUMEN 
En este trabajo consideramos un problema multiobjetivo estocástico y derivamos condiciones 
necesarias para aproximar las soluciones del problema de control usando un principio variacional 
multicriterio del tipo Ekeland. Las restricciones del problema de control estocástico multiobjetivo son 
formuladas mediante ecuaciones dinámicas. La solución de estas ecuaciones dinámicas son obtenidas 
aplicando la medida transformada de Girsanov. Además las funciones objetivo son costos terminales gi 
(x(1)) para los que consideramos el valor esperado del control u, i.e., Eu( (gi (x(1)) = Fi (u) (i = 1,...,l), 
donde Eu denota la esperanza construida desde el control u. 
 
Palabras clave: Martingales; principio variacional, multicriterio 
 

 
1. A MODEL OF A PARTIALLY OBSERVED STOCHASTIC CONTROL PROBLEM 
 
 Let wt be a Brownian motion on a probability space (Ω, A, µ) taking values in Rm. 

 
 The  σ-algebra of measurable states depending on t is denoted by Ft = σ (xs : s ≤ t). In the following we 
assume 

 
(C1) σ is an m x m–matrix–valued mapping σ  = (σij ) defined on [0,1] x C with C = C [0,1], σ (t,x) is  

nonsingular, for 1 ≤ i, j ≤ m, σij (t, x ) is Ft – measurable in its second argument and Lebesgue – 
measurable in its first; each σij satisfies a uniform Lipschitz condition in x 

 
)t(xsupx

st0s
≤≤

= ;  

 
there is a constant k0 < ∞ such that 
 

∫∑ ≤σ
1

0
0

2
ij kdt a.s.P. 

 
 Moreover, we suppose that   
 
(C2) f : [0,1] x C x U → Rm is measurable, continuous in its third component and fu(t,x): = f(t,x,u(t,x)) is causal 

for every u ∈U. 
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 Consider the stochastic differential equation   
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0 ≤ t ≤ 1, 

 
where xt splits into an observed component  yt ∈ Rn and an unobserved component zt ∈ Rm-n.  
 
 Furthermore, consider the observation σ - field Yt generated by Yt := {ys : s ≤ t}. 
 
Definition 1 An admissible partially observable feedback control is defined to be a Yt – predictable mapping  
u : [0,1] x C → U, where U is a Borel subset of R, such that E⏐u(τ,.)⏐< ∞ . 
 
    The set of such controls is denoted by V. We define on V for u1, u2 ∈ V 
 
              }),0)x,t(u)x,t(u:)x,t{((P~)u,u(d 2121 >−=                  (2)
  

where P~ is the product measure of λ and P(λ is the Lebesgue measure on [0,1] and P is the probability 
measure on C[0,1] induced by the Brownian motion). 
 
 We will see in Section 4 that (V,d) is a complete metric space. (cf. Elliott and Kohlmann (1980))  
 
 We recall that a mapping Φ: [0,1] x C → Rm is called causal if Φ is optional, and  
 

)x1(M)x,t()x,t( t
1 +≤Φσ− . 

 
 Under these assumptions it is possible to apply the Girsanov theorem to construct a probability measure 
which is absolutely continuous with respect to P and a given process is a Wiener Process with respect to the 
new probability measure. 
 
 In order to formulate the multicriteria stochastic control problem we introduce the multiobjective function 
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where Eu denotes the expectation (constructed from the control u) with respect to Pu,gi are bounded  
F1 – measurable functions, where Pu is the probability measure on (C,F1) defined by 

 

∫ ∫
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t

1
u dx))x,t()x,t())(x,t(u,x,t(fexp)A(P dPdt))x,t(u,x,t(f))x,t´()x,t())(x,t(u,x,t(f
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 In the following we denote the topological interior of a set C ⊂ Rl by int C, the topological boundary of C by 
bd C and the topological closure of C by cl C.  
 
 We suppose 
 
(C3) K ⊂ Rl is a convex cone with int K ≠ ∅, B ⊂ Rl is a pointed, convex cone with int B ≠ ∅ such that  

cl B +(K \ {0}) ⊂ int B. 
 
 Now, we formulate the multicriteria stochastic control problem under the assumptions (C1) - (C3). 
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(PC): Compute a feasible control ū such that 
 

J (u) ∉ J(ū) − (K \ {0}) 
 
       for all admissible controls u. 
 
 In this way we study an extension of the stochastic control problem introduced by Elliott and Kohlmann 
(1980). 
 
 The aim of our paper is to derive necessary conditions for approximate solutions of multicriteria stochastic 
control problems (Pc) using vector-valued variational principles given by Isac (1996) and Tammer (1992). 
 
2.  VARIATIONAL PRINCIPLES FOR MULTICRITERIA OPTIMIZATION PROBLEMS   
 
 In this section we recall several variationl principles given by Tammer (1992) for multicriteria optimization 
problems which are important for the proof of our main result in Section 5. 
 
 In Section 2 we formulated the multicriteria stochastic control problem (Pc) with an objective function which 
takes its values in the L-dimensional Euclidean space Rl. 
 
 In the following we introduce general concepts for optimal and suboptimal solutions of multicriteria 
optimization problems corresponding to the solution concept in the formulation of problem (Pc) and variational 
principles for such problems. Let us assume: 
 
    (A1): (V,d) is a complete metric space, 

K ⊂ Rl is a convex cone with k0 ∈ int K, 
B ⊂ Rl is a pointed convex cone with int B ≠ ∅ such that 
cl B + (K \ {0}) ⊂ int B  

 
    (A2): F : V → Rl 

is lower semicontinuous with respect to k0 and B in the following sense 
Mr = { v ∈ V | F (v) ∈ rk0 – cl B } is closed for each r ∈ R 

and bounded from below, i.e., F [V] ⊂ y + B for an element y ∈ Rl. 
 
 Now we consider the following vector optimization problem to determine the efficient point set of F [V] with 
respect to K: 
 
(P): Compute the set Eff(F[V], K), 
 
where 
 

Eff(F[V],K) = {F( v ) | v ∈ V and F[V] ∩ (F( v )- (K \{0})) = ∅}. 
 
 Furthermore, we will introduce approximately efficient elements of vector optimization problems. 
 
 The reason for introducing approximately efficient solutions is the fact that numerical algorithms usually 
generate only approximative solutions anyhow and moreover that the set of efficient points may be empty in 
the general noncompact case, whereas approximately efficient points always exist under very weak 
assumptions (see Tammer (1992), where existence results for approximate solutions of a vector optimization 
problem were shown, especially under the assumption that the objective function is bounded from below). 
 
Definition 2 An element F (v∈) ∈ F[V] is called an approximately efficient point of F[V] with respect to K, 
k0 ∈ int K and ∈ > 0, if 
 

F[V] ∩ ( F(v∈) - ∈k0 – (K \{0})) = ∅. 
 
 The approximately efficient point set of F [V] with respect to K, k0 and ∈ is denoted 
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by Eff(F[V], )K 0k∈ , where 0kK∈ := ∈ k0+ K . 
 
 Moreover, we will study approximately efficient elements with respect to the cone B from assumption (A1) 
instead of K. 
 
Theorem 1 [Tammer (1996)] Let the assumptions (A1) and (A2) be fulfilled. 
 
 Then there exists for each ∈ > 0, λ > 0 and for each F(v0) ∈ Eff(F[V], )B 0k∈  an element v∈ ∈ V such that 
the following conditions hold 
 
1. F(v∈) ∈ F(v0) – λd(v0,v∈)k0 – cl B and F(v∈) ∈ Eff(F[V], D∈k0), where D is an open subset of Rl with  

K \ {0} ⊂ D, 0 ∈ bd D and cl D + (K \ {0}) ⊂ D,  
 
2.  d(v0,v∈) ≤ ∈/ λ, 
  
3. )v(F 0k ∈λ ∈ Eff(Fλk0 [V], K), 
  
where )v(F 0kλ := F(v)+ λd(v,v∈) k0. 
 
 The following theorem follows immediately from Theorem 1 regarding the fact that under the given 
assumptions there always exists an approximately efficient element v0 ∈ V with 
 

F(v0) ∈ Eff(F[V], )B 0k∈  
 
(cf. Tammer [1992]. 
 
Theorem 2  Assume (A1), (A2). 
 
 Then for every ∈ > 0 there exists some point v∈ ∈ V such that  
 
1. F[V]  ∩ (F(v∈) – ∈k0 – (K \ {0})) = ∅, 
 
2. F

∈k0[V] ∩ (F
∈k0 (v∈) – (K \ {0})) = ∅, 

 
where 
 
F
∈k0(v) := F(v) + d(v,v∈) ∈ k0. 

 
Remark 1: Theorem 1 is slightly stronger than Theorem 2. The main difference concerns condition 2. in 

Theorem 1, which gives the whereabouts of point v∈ in V. 
 
Remark  2:  The main result of the last theorems (statement 3 Theorem 1 and statement 2 in Theorem 2)  

says that v∈ is an efficient solution of a slightly perturbed vector optimization problem. This 
statement can be used in order to derive necessary conditions for approximately efficient 
elements. In our papers Tammer (1993a, 1993b) we have shown ∈ - Kolmogorov – conditions 
for approximately efficient solutions of abstract approximation problems applying the third 
condition in Theorem 1. In the next chapter we will use Theorem 2 in order to derive an  
∈ - minimum-principle in the sense of Pontrjagin for suboptimal solutions of multicriteria 
stochastic control problems. 

 
3.  APPLICATION OF THE VARIATIONAL PRINCIPLE TO MULTICRITERIA STOCHASTIC CONTROL 
     PROBLEMS 
 
 In this section we assume that for the multicriteria stochastic control problem (Pc) the assumptions of 
Theorem 2 are fulfilled. 
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 Consider the space V of all partially observable admissible controls and the distance d on V introduced  
by (2).Then it holds 
 
Lemma 1 (cf. Elliott and Kohlmann, 1989)    
 
 (V,d) is a complete metric space. 
 
 Furthermore, we introduce a vector-valued mapping F associated with the multicriteria control problem (Pc) 
for which the assumptions of the variational principle in Theorem 1 are fulfilled. 
 
Lemma 2 (cf. Elliott and Kohlmann, 1989) 
 
 Suppose (C1) – (C3). Then the mapping F : (V,d ) →( l

R
l .,R ) defined by 

 

F(u):= 
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is continuous. 
 
Remark 3:  Lemmata 1 and 2 show together with assumption (C3) that the assumptions (A1), (A2) of 
Theorem 2 are fulfilled for the multicriteria stochastic control problem (Pc). 
 
4. AN ∈-MINIMUM PRINCIPLE FOR A MULTICRITERIA STOCHASTIC CONTROL PROBLEM 
 
Theorem 3  Assume (C1) – (C3).  
  
 For any ∈ > 0 there exists an Ft-predictable process γ∈, such that for any t ∈ [0,1], any A ∈ [0,1] and any 
admissible control u ∈ V the following statements are true 
 
1. For the control u∈ ∈ V it holds  
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2. For τ > 0 we get the following assertion  
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dsdP)ff()u(p)u(p

dsdP)ff()u(p)u(p

L  ∉ - ∈k0 τ P(A) – (K \ {0}), 

 
where u

sf := f(s,x(s), u(s,x)). 
 
Proof: We consider the vector-valued function F: u → J(u) and the space V of admissible controls u: [0,T] → U. 
 
 From Lemma 1 we get that (V,d) is a complete metric space. Lemma 2 yields that F is lower 
semicontinuous with respect to k0 and B and bounded from below on V. So we can conclude that the 
assumptions of Theorem 2 are fulfilled and we can apply Theorem 2 to the vector-valued function F. This 
yields an admissible control u∈ ∈ V such that 
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(i)F(u∈) ∈ Eff(F[V], K
∈k0), 

 
(ii) F(u∈) ∈ Eff(F

∈k0 [V],K), 
 
where 
 

F
∈k0(u) := F(u) + ∈k0d(u,u∈). 

 
 So we derive from (i ) 
 

J(u) ∉ J(u∈)− ∈k0−(K\{0}) 
 
for all feasible controls u, i.e., statement 1 is fulfilled. 
 
 Furthermore, the families of conditional expectations 
 

[ ] ,l,...,1iF))1(x(gEG tiu
t
i ==

∈
 

 
are martingales and so they have the representation 
 

,l,...,1idw)u(FG
t

0
ii

t
i =γ+= ∫ ∈∈∈  

 
where w∈ is the process defined by 
 

)dtfdx(dw u1 ∈−σ= −
∈ , 

 
such that we can conclude from Girsanov’s Theorem that w∈ is a Brownian motion under the measure Pu∈

. 
 
 In order to prove statement 2 we take t ∈ [0,1], A ∈ Yt  and u ∈ V and define vτ ∈ V for τ > 0 by:  
 

( ]
[ ] ( ] ( ]⎩

⎨
⎧

×τ+∪′×τ+∪×∈
×τ+∈

=
∈

τ ,C1,tAt,tCt,0)x,s(:)x,s(u
At,t)x,s(:)x,s(u

:)x,s(v   

 
where A’ = Ω \ A. 
 
 The indicator function of B = (t, t + τ] x A, denoted by IB is a Yt - predictable map. Regarding that vτ can be 
written as I

Bu + I
B’u∈

 it follows that vτ is predictable and an admissible control in V. 
 
 Now, we apply the martingale representations given above for t = 1 and i = 1,..., l:  
 

.dw)u(F))1(x(g i

1

0
ii ∈∈∈ γ+= ∫  

 
 So we get                      
 

[ ] ( ) ( ) ( ) .dsffIEuFvFgE uu1
i

t

t
Aviiiv ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−σγ+== ∈

τ

−
∈

τ+

τ∈τ ∫  

 
 Then we may conclude from statement 2. in Theorem 2 F(u∈) ∈ E f f(F∈k0 [V], K), such that  
 

F(vτ) + ∈k
0
d(uτ,u∈) ∉ F(u∈)− (K \ {0}). 
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 Regarding 
 

d(vτ,u∈) ≤ τP(A) 
 
it follows  
 

F(vτ) + ∈k
0
τP(A) ∉ F(u∈)− (K \ {0}). 

 
 Together with the definition of Puτ and the properties given above we derive 
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 Using the martingal representation results given above we derive the following necessary condition which 
the approximate solution u∈ must satisfy. This is a condition of the following kind: u∈ must be a ∈ k0 – weakly 
efficient element of the conditional expectation of a certain Hamiltonian. 
 
Theorem 4  Consider the stochastic control problem (Pc) under the assumptions (C1) – (C3).  
 
 Then for each ∈ > 0 there exists an admissible control u∈, such that 
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for all feasible controls u ∈ V, 
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for all u ∈ V and the Ft – predictable process 
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Proof: We will differentiate the left hand side in the vector-valued inequality of statement 2. in Theorem 3. So 
we derive for (τ > 0) 
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.Kint)A(Pk
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 Now, we compute the left hand side of this variational inequality. Yt is countably generated for any rational 
number r, 0 ≤ r ≤ 1 by sets {Anr}, n = 1, 2,..., since the trajectories are continuous, almost surely.  
 
 Furthermore, unr can be considered as an admissible control over the time interval (t,t + τ] for t ≥ r and we 
can consider a perturbation of u∈ by unr for t ≥ r and x ∈ A ∈ Yt, as in the above section. Under the given 
assumptions the following limit exists and it holds  
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for almost all t ∈ [0,1], i.e., there is a set T1 ⊂ [0,1] of zero measure, such that the equation given above is 
true for t ∉ T1 and all n,m,r. 
 
 Moreover, there is a set T2 ⊂ [0,1] of zero measure, such that if t ∉ T2  
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 Then we can conclude applying Lemma 5.1 in Elliott and Kohlmann [4]  
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for t ∉ T1 υ T2, all r ≤ t and all n, m. 
 
 Finally, this implies that 
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for all u ∈ V and a Ft – predictable process 
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Remark: Using martingale representation results and a variational principle for multicriteria optimization  

problems we obtain a necessary condition which u∈ must satisfy. 
 
 In fact, almost surely P~ , u∈ is a ∈ - weakly minimal solution in the sense of multicriteria optimization for the 
conditional expectation of a certain Hamiltonian of the stochastic system. Here the expectation is taken with 
respect to the observed σ field. 
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