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ABSTRACT 
We propose a modified penalty embedding for solving complementarity problem (LCP). This embedding 
is a special one parametric optimization problem P(t), t∈[0,1]. Under the condition (A3) (a modified 
Enlarged Mangasarian Fromovitz Constrait Qualification), (A4) (P(t) is Jongen- Jonker -Twilt  regular) 
and two technical assumptions (A1) and (A2) there exists a path in the set of stationary points 
connecting the chosen starting point for P(0) with a certain point for P(1) and this point is a solution for 
(LCP). The path may include types of singularities, namely points of Type 2, Type 3 and Type 4 in the 
class of Jongen-Jonker-Twilt. We can follow this path by using pathfollowing procedures (program 
package PAFO) only. We do not have any assumption with respect to the matrix B in the description of 
the (LCP).  The assumption (A4) will justified by two theorems. An illustrative example shows that points 
of Type 2 and 3 could appear. 
 
Key words: Linear complementarity problem, penalty embedding, non degenerate critical points,  

singularities, Jonge-Jonker-Twilt regularity, Mangasarian Fromowitz Constraint, path-
following methods. 

 
RESUMEN 
Se propone un embedding de penalidad modificado para resolver el problema de complementariedad 
lineal (PCL). Esta inmersión es un problema de optimización paramétrica especial P(t), t ∈ [0,1]. Bajo la 
condición (A3) (a modified Enlarged Mangasarian Fromovitz Constraint Qualification), (A4) (P(t) es 
Jongen- Jonker -Twilt  regular) y las hipótesis (A1) y (A2) existe un camino sobre el conjunto de puntos 
estacionarios conectando el punto inicial seleccionado para P(0) con un tal punto para P(1) y este punto 
es una solución de (LCP). El camino puede incluir singularidades, denominadas de Tipo 2, Tipo 3,  
Tipo 4 por-Jonker-Twilt. No se establece condición sobre la matriz B en la descripción del problema. El 
programa PAFO posibilita seguir el camino descrito. La hipótesis (A4) es justificada por dos teoremas. 
Un ejemplo ilustra el procedimiento. 
 
Palabras clave: Problema de complementariedad Lineal, inmersión de penalidad, puntos críticos no 

degenerados, singularidades, Jonge-Jonker-Twilt-regularidad, Condición de regularidad 
de Mangasarian Fromowitz, método de continuación. 

1. INTRODUCTION 
 Let B be an n×n -matrix, q ∈ ℜn , and 
 

ML := {x ∈ ℜn⏐Bx + q ≥ 0, xT Bx + qT x = 0, x ≥ 0}. 
 
 We consider the well known linear complementarity problem (we refer e.g. to Burke-Xu (1998), Cottle, R.W. 
et al. (1992), Ferris, M.C. et al. (1997), Fischer, A. (1995), Kojima, M. et al. (1991), Stoer, J. et al. (1998) and 
the papers cited there) 
 
(LCP)  Find a point  LMx̂∈          (1.1)                                                                          
       
 There are many interesting applications of this problem (cf. for instance Ferris M.C. et al. (1997)).  If we 
introduce  
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hen we can write M in the following form:  
 

ML:= {x ∈ ℜn⏐bjT x + qj ≥ 0, xT Bx + qT x = 0, xj ≥ 0, j ∈ J}, 
 
where J: = {1,..., n} 
 
 We assume that  
 
(A1)    ML ≠ ∅ 
 
 Let E(x1 ,p) := {x ∈ ℜn⏐ ⎜⎜x - x1 ⎜⎜2 ≤ p}, where x1 ∈ ℜn  is an arbitrarily chose and fixed vector and p ∈ ℜ 
with p > 0. 
 
 Then there exists a p0 > 0 such that ML ∩ E(x1 ,p) ≠ ∅ for all  p > p0                                                       (1.2) 
 
 If ML  is compact, then we even have: ML ⊆ E(x ,p) for all p > p0. 

 
 Instead of the (LCP) (cf. (1.1) we now consider the following optimization problem  
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where A is a symmetric n×n matrix (A ∈ ℜn(n+1)-/2 ), here the space of symmetric n×n matrices is identical with  
ℜn(n+1)-2 and x0 ∈ ℜn.  We follow the concept of modified penalty embeddings described in Gollmer R. et al. 
(1993), Gómez, W. et al. (2000), Guddat J. et al. (1997), Guddat J. et al. (1990)) (first used in Gfrerer, H.  
et al. (1985)).  The problem (PL )  will be embedded by 
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where { } ℜ∈ℜ∈= 0

n
21021010 v,z,z,zw,w,wx,x,n,...,1:J are fixed, p > 0, s > 0 sufficiently large. 

 
 We use the pathfollowing procedure  for a suitable chosen 1010 z,z,w,w  obtaining a very good starting 
situation for t = 0.  If we achieve t = 1, we have a solution of the (LCP).  The  use of pathfollowing methods for 
(LCP) (cf. e.g. Burke-Xu (1998), Cottle, R.W. et al. (1992), Kojima M., et al. (1991), Stoer, J. et al. (1998) and 
the papers cited there) is not new.  Modified penalty embeddings (cf. above) are not new either.  What is new 
is the application of this embedding to the (LCP).  We will see that we achieve t = 1 using path following 
procedure only, without any assumption concerning the matrix B, like in Burke-Xu (1998), Fischer, A. (1995), 
Kojima, M. et al. (1991), Stoer, J. et al. (1998) The matrix B could also be indefinite. This is the real 
advantage of this approach. From this point of view it is not necessary to compare our pathfollowing 
procedure with others for (LCP). Section 2 includes a summary of the theoretical background and a short 
description of the program package PAFO.  In Section 3 important properties of P(t) (i.e., the starting situation 
and the singularities that may appear) will be discussed. In Section 4 theorems justifying the chosen 
approach are presented.  An illustrating example is given in Section 5, and it shows us that point so Type 2 
and 3 could appear , we achieve t = 1 and the matrix is indefinite.  We were also successful with all the other 
examples calculated. 
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2. THEORETICAL BACKGROUND AND THE PROGRAM PACKAGE PAFO 
 
 First , we present a very short version of 2.5, 2.6 in Guddat J. et al. (1990).  We consider the general one-
parametric problem: 
 
     P(T) ( ){ } ℜ∈∈ t,)t(Mxt,xfmin  resp. t ∈ [0,1],      (2.1) 
 
where        { }Jj,0)t,x(g,Ii,0)t,x(hx)t(M ji

n ∈≥∈=ℜ∈=  

 
and 
 

f,hi,gj ∈ C3(ℜn × ℜ × ℜ), i ∈ I, j ∈ J. 
 
 Furthermore , we introduce the following notations 
 

( ){ }∑ ℜ×ℜ∈= ,)t(Pofintpocriticaldgeneralizeaisx|t,x: 1n
gc   
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( ) ( )s1

T
m1 g,...,g:G,h,...,h¨:H ==  

 The Linear Independence Constraint Qualification (briefly LICQ) is satisfied at )t(Mx
−

∈  if the vectors 

are)t,x(Jj),t,x(gD,Ii),t,x(hD 0jixix ∈∈  linearly independent, where  J0(x,t): = {j ∈ J⏐ gj(x,t) = 0}. 
 
 The Mangasarian-Fromovitz Constraint Qualification (briefly MFCQ) is satisfied at )t(Mx∈  if: 
 
(MF1) ( ) Ii,y,xhD ix ∈  are lineary independent,  
 
(MF2) There exists a vector withnℜ∈ξ  
 
  ( ) ,Ii,0y,xhD 2

ix ∈=ξ  
 
  ( ) ( )y,xJj,0y,xgD 0jx ∈>ξ . 
 
 Next, we cite our short characterization from Gómez, W. et al. (2000), Guddat, J. et al. (1990) of the class  F 
introduced by Jongen, Jonker and Twilt (Jongen et al.(1986)). In Jongen, H.Th. et al. (1986) the local 
structure of ∑gc  is completely described if  (f,H,G) belongs to a 3

sC -open and dense subset F of  
3
sC (ℜn×ℜ, ℜ)1*ms , where 3

sC denotes the strong (or Whitney-) C3-topology (see Guddat J., et al. (1990), too). 
 
 If (f,H,G) ∈ F,  then ∑gc can be divided into 5 types. 
 
 Type 1: A point gc)t,x(z ∑∈=  is of Type 1 (non-degenerate critical point) if the following conditions are 
satisfied: 
 
There exists )z(Jj,Ii,, 0ji ∈∈ℜ∈µλ  with 
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LICQ is satisfied at )t(Mx∈           (2.3a) 
 
(therefore )z(Jj,Ii,, 0ji ∈∈µλ are uniquely defined) 
 
       )z(Jj,0 0ji ∈≠µ      (2.3b) 
 

)z(T

2
x )t.x(LD  is non singular          (2.3c) 

 
where LD2

x is the Hessian of the Lagrangian 
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and the uniquely determined numbers ji,µλ  are taken from (2.2). Furthermore, T(z) = {ξ ∈ ℜn⏐Dxhi (z)ξ = 0,  

i ∈ I, Dxgj(z)ξ = 0, j ∈ J0(z)} is the tangent space at z and  )z(T
2
x |)z(LD represents ,LVDVV 2

x
T where V is a 

matrix whose columns form a basis of T(z). 
 
 The set ∑gc is the closure of the set of all points of Type 1, the points of the Types 2--5 constitute discrete 
subset of  ∑gc. The points of the Types 2--5 represent three basic degeneracies: 
 
     Type 2 -- violation of (2.3b) 
 
     Type 3 -- violation of (2.3c) 
  
     Type 4 -- violation of (2.3a) and |I| + |J0(x,t)| - 1 < n 
 
     Type 5 -- violation of (2.3a) and $|I| + |J0(x,t)| = n + 1. 

Remark 2.1 In Section 4  we need  a complete description of a point of Type 4 (cf. Gómez, W. et al. (2000)) 
 
 Let α* be fixed J0(x,t) = {1,....., p } 
 
 Dxgp(x*,t*) ∈ span {Dxhi(x*,t*), i ∈ I, Dxgj(x*,t*), j = 1,.........,p - 1 
 

 (x*,t*) ∈ ∑4

gc
,  if the following conditions are satisfied: 

 
a) 1 ≤  m + p ≤ n and it holds (Dxh_1(x*,t*),...,Dxhm(x*,t*), Dxg_1(x*,t*),....,Dxgp(x*,t*)) = m + p -1 
 
b) 0jm ≠α∗

+ for all j ∈{1,........., p} where α*  is fixed and defined in 
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c) (t*,α1*,...,αm+p-1*, x*,0) ∈ Rn+m+p+1 is a non-degenerate critical point of the problem. 
 
 min t|(x,α,t,α0): G(x,α,t,α0) = 0} where 
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G (x,α,t,α0)=
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 The following theorem provides a special perturbation of (f,H,G) with additional parameters that can be 
chosen arbitrarily small such that the perturbed function vector belongs to the class F. Let the space of 

symmetric n× n-matrices be identified by 2
)1n(n

R
+

. 
 

 Let ∑ν
∈ν

gc
}5,...,1{ be the set of g.c.- points of Type ν. The class F is defined by 

 

F = {(f,H,G) ∈ C3(Rn × R, R1+m+s) ∑gc ∑ν
=ν∪⊂

gc
5

1  

Theorem 2.2: Let (f, H, G) ∈ C3(Rn×R,R1+m+s). Then, for almost all (b,A,c,D,e,F) ∈ Rn× 2
)1n(n

R
+

×Rm×Rnm×Rs×Rns, 
(f(x,t) + bTx + xTAx, H(x,t) + c + Dx,G(x,t) + e + Fx) ∈ F. 
 
 Here "almost all" means:  
 
each measurable subset of {(b,A,c,D,e,F)\(f(x,t) + bTx + xTAx,H(x,t) + c + Dx,G(x,t) + e + Fx) ∉ F} has the 
Lebesgue-measure zero. 
 
Definition 2.3:  Let K ⊆ R ∪ {∞}. The problem P(t) is called regular in the sense of Jongen-Jonker-Twilt, 
briefly JJT-regular, (with respect to K) if:  
 

(f,H,G) ∈ F|K ((\Rn×K) ∩ ∑gc ⊂ 5
1=ν∪ ∑ν

gc) 
 

 The following theorem  is essential for our analysis. 
 
Theorem 2.4  (follows from Gefrerer,H. et al. (1985)). We assume 
 
(C1) M(t) is non-empty and there exists a compact set C with M(t) ⊆ C for all t ∈ [0,1]. 
 
(C2) P(t) is JJT-regular with respect to [0,1]. 
 
(C3) There exists a t1 > 0 and a continuous function x:[0,t1) → Rn such that x(t) is the unique stationary point 

for P(t) for t ∈ [0, t1). 
 
(C4) MFCQ is satisfied for all x ∈ M(t) for all t ∈ [0,1]. 
 
 Then there exists a PC2-path in Σstat that connects (x0,0) with some point (x1,1). 
 
 Now we describe the modified penalty embedding used in Gómez W. (1997), Gómez W. et al. (2000), 
Guddat, J. et al. (1997) and denoted by Pp(t) for the general  optimization problem 
 
                (P) min {f(x)  |x ∈M},        (2.4) 
 
where 

M:= {x ∈ Rn  | hi (x) = 0, i ∈ I, gj(x) ≥ 0, j ∈ J} 
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and hi, gj ∈ C3(Rn, R), i ∈ I, j ∈ J 
 
     Pp(t): min{tf(x) + (1-t)(x-x0)TA(x-x0) + (v-v0)TC(v-v0) + (w-w0)TD(w-w0) | (x,v,w) ∈ Mp(t)},     (2.5) 
 

t ∈ [0,1] 
 
where 
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sufficiently large. 
 
 We observe that PL(t) is a special parametrization of Pp(t) (cf. (2.5)) and Pp(t) is a special parametrization of 
P(t) (cf. (2.1)). The main properties of this embedding are included in Theorem 1.1 in Gollmer R. et al. (1993), 
(good starting situation, Mp(t) ≠ ∅  for all  t ∈[0,1], equivalence of Pp(1) and (P).  
 
 To apply Theorem 2.3 we ask for a sufficient condition on the feasible set M of the original problem (P)  
(cf. (2.4)) that (C4) in Theorem 2.3 is satisfied. Here we follow Gómez, W. et al. (2000) and Guddat, J., et al. 
(1997). Under the assumption that M  is non-empty  we fix x0 ∈ Rn and p in such a way that M ∩ E(x0,p) ≠ ∅ 
where E(x0,p):= {x ∈Rnn | \ |x-x0\|2 ≤ p}. 
 
Definition 2.5: The Enlarged Mangasarian-Fromovitz Constraint Qualification (EnMFCQ) is satisfied in M  if, 
for all x ∈ E(x0,p) 
 
 EnMFCQ1  Dxhi(x), i ∈ I , are linearly independent 
         

  EnMFCQ2 There exists a vector $ξ∈Rn with the following properties 
         

hi(x) + Dxhi (x) ξ = 0, i ∈ I 
         
gj(x) + Dxgj(x)ξ > 0,∀j ∈ J with gj(x) ≥ 0, 

         
-2(x-x0)Tξ > 0, if   ||x-x0||2 = p. 

 
 In Gómez, W. et al. (2000) the following Mangasarian-Fromovitz vectors (MF-vectors) are used: 
 
 For all x∈Mp(0) 
 

      η:= (-( x -x0 ), 0, 
2
1

(w1+w0)- w )        (2.6) 

                                                                                      
 For all )w,v,x(  ∈ Mp(t), t ∈ (0,1): 
 
 Let ξ be a vector that realizes the EnMFCQ2. We fix a number 

γgj (
−
x ) + Dgj (

−
x )ξ < 0 for all j ∈ Jpos where J pos := {j∈J⏐gj (

−
x ) > 0}. With this number we define  the following 

wη ∈ ℜs, where the j-th component has the following value: 
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where    { }0)t,y(g|j)t,y(Ĵ j0 ==  and 

  

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−η=η η

−
w),vv(,:: 0  

 
is a MF-vector. 
 
 On the program package PAFO (this is a very short version of Chapter 4.5 and 5.2 in Guddat, J. et al. 
(1990)). 
 
 PAFO (cf. Gómez, W. et al. (2000), cf. Guddat, J. et al. (1990)) is based on a pathfollowing method (called 
PATH III in Guddat, J. et al. (1990) Chapter 4.5) and jumps (called JUMP I in Chapter 5.2 Guddat, J. et al. 
(1990) and JUMP II in Chapter 5.3 Guddat, J. et al.  (1990)) 
 
 We explain the main ideas of PATH III, but not those of JUMP I, II as we do not need them here. 
 
PATH III 
 
 This algorithm computes a numerical description of a compact connected component in  ∑gc, i.e., in 
particular it finds a discretization of an interval [tA,tB], tA < 0 < tB (not necessarily [tA ,tB] ⊃ [0,1]), and 
corresponding g.c. points starting at (x0,0) ∈ ∑gc(cf. (A2)). The algorithm is based on the active index set 
strategy and is a so-called predictor-corrector scheme if the active index set is constant. A Newton corrector 
is used. 
 
 The main point of the approach consists in the computation of the new index sets for the possible 
continuations at points of Type 2 and 5. In our application only points of Type 2 could be appear. This is done 
easily without any numerical problem. 
 
 We note that we do not have any numerical difficulties walking around turning points of the Types 3 or 4. In 
our application only points of Type 3 could appear. 
 
Remark 2.6 
 
 If there exists a PC2-path connecting (x0,0) and a point (x*,1), PAFO constructs a finite number of predictor 
steps in [0,1], i.e., a discretization  
 

0 = t0 ≤...≤  ti ≤ ti+1 ≤...≤ tN = 1 

and, by corrector steps using Newton-like methods, corresponding approximations x
−

(ti) of stationary points 
 

x(ti), i = 1,...,N, 

where the rate of convergence will be at least superlinear and the points )t(x j

−
will be obtained by a finite 

number of Newton-like steps. 
 
3. PROPERTIES OF THE MODIFIED PENALTY EMBEDDING 
 
 We consider the problem (PL) (cf. (1.3)) and the modified penalty embedding PL(t), t ∈ [0,1] (cf. (1.4)). We 
follow here Section 8.2.2 in Gollmer, R. et al., 2001)  for the problem Pp(t) and we consider the special 
problem PL(t). We choose 
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(A2)  x0 , x1, w0 ,w1 ∈ ℜn  with w0 > w1, z0 , z1, z2 ∈ ℜn  with  z0 > z1, and: 
 
  ||x0 - x1||2 + ||w0 - w2||2 + ||z0  - z2||2 + ||v0 -v2||2  < p 
 
Theorem 3.1. Let (A1) and (A2) be satisfied. Then we have  the following  properties for PL(t) 
 
(i)  If we choose the matrix A to be positive definite, then  (x0,w0,z0,v0) is a global minimizer, the unique 

stationary point for $PL(0)$. Furthermore, (x0,w0,z0,v0) is a nondegenerate critical point for PL(0). 
 
(ii) ML(t) is non-empty for all t ∈ [0,1]. 
 
(iii) Let Πx be the orthogonal projection of ℜn×ℜn×ℜn  onto ℜn. Then Πx(ML(1)) = ML ∩ E(x0,p). 
 
 Now we consider a modification of the EnMFCQ. (Definition 2.5). 
 
Definition 3.2 The Modified EnMFCQ is satisfied if it holds for all x Î E(x0 ,p)\ML that: 
 
 EnMFCQ 1  (B+BT)x + q ≠ 0 
 
 EnMFCQ 2 There exists a vector η∈ℜn with the following properties 
 
a) xTBx + qTx + ((B+BT)x + q)T η = 0 
 
b) bjTx + qj + bjTη > 0, j ∈ J   with bjTx + qj ≤ 0 
 
c) xj + ejT η > 0,       j ∈ J     with xj ≤ 0             (ej is the j-th unit vector) 
 
d) -2(x-x0 )Tη > 0 if  ||x-x0||2 = p 
 
Remark 3.3 By a geometrical interpretation of the EnMFCQ it will be obvious that a violation of theEnMFCQ 
is possible, but in exceptional cases only. (If a point belonging to ML is obtained as feasible solution of M(t), 
for some t∈ [0,1], then the problem has been solved). 
 
Theorem 3.4 We assume: 
 
(A3) EnMFCQ is satisfied.  
 
 Then the MFCQ is satisfied for  all y ∈ ML(t) for all t ∈[0,1), where y = (x,w,z,v) 
 
Proof: We use the same MF-vectors η as used in ((2.6) and (2.7)) specialized for ML(t) for t = 0 and  
t ∈ (0,1).  � 
 
 Using the Theorems 2.4, 3.1 and 3.4 we obtain the following summarizing result: 
 
Corollary 3.5 If we choose the matrix  A to be positive definite, and if (A1), (A2), (A3), 
and 
 
(A4) PL(t) is JJT-regular with respect to [0,1] are satisfied, then there exists a PC2-path in ∑stat that 

connects (y0,0) with some point (y*,1). 
 
 The following remark concludes our investigation. 

Remark 3.6 
 
 Using the properties of the functions defining MLL(t) we can apply Theorem 3.1.1 from Bank,B. et al. (1982). 
Then we obtain that the point-to-set mapping t t → ML(t) is closed in a neighbourhood Uε (1), i.e., for each 
sequence {tk} with tk →1 and each sequence {yk} with yk ∈ M(tk) there exists a convergent subsequence of {yk} 
and its limit y’ belonging to  ML(1), i.e, y’ ∈ ML. This is the reason why we are successful with the pathfollowing 
procedure. 
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4 JUSTIFICATION THEOREMS 
 
 Let [ n233

s ]C[ +  = {f:B → ℜ3+2n ⏐ B = {y:||y||2 ≤ p}, f ∈ C3} with the strong topology. We consider the embedding 
 
Pχ(t):   min{(x-x0)TA(x-x0) + (v-v0)2 + ||w-w0||2 + ||z-z0||2 
          s.t.         
              
    t(xTBx+qTx)+(1-t)(v-v1) = 0,                           (1) 
 
                         tx + (1 - t)(z - z1) ≥ 0,                                   (2)     
                  
    t(Bx + q) + (1 - t)(w - w 1) ≥ 0 ,                              (3) 
 
                      ||x - x1||2 + (v - v2)2 + ||w - w2||2 + ||z - z2||2   ≤ p      (4) 
 
Theorem 4.1 For almost all χ = (x0;x1;v0;v1;v2;w0;w1;w2 ;z0;z1;z2 ;A) ∈ ℜ11n+[n(n+1)]/2, Pχ(t) is JJT-regular. 
 
Proof: Let (x,v,w,z,t) = y ∈ ∑gc where the LICQ is satisfied. We will suppose that the compactification 
constraint is active. In the other case the proof is analogous. That means: 
 

2A(x - x0) + λt[(B + BT)x + q] - tB1µ 
1 - tI2 µ

2 - 2µ(x - x1) = 0 
 

2(w - w0) -(1 - t)I1µ1 - 2µ(w - w2) = 0 
 
2(z - z0 - (1 - t)I1µ2 - 2u(z - z2 ) = 0 
 
2(v - v0 - (1 - t)λ - 2µ(v - v2 ) = 0 
 
t(xTBx + qTx) + (1 - t)(v - v1) = 0 
 
txi + (1 - t)(zi - (z1 )i1); i ∈ J0(y,t) = 0 
 
t(B1x + q) + (1 - t)(w - w1) = 0 
 
|x - x1||2 + (v - v2 )2 + ||w - w2 ||2 + ||z - z2||2 = p 

 
where B1, I1 are the sub-matrices of B,In, corresponding to the active constraints of inequalities (2). I2 is 
analogously defined in the case of inequalities (3). As we want to study the characteristics of the critical 
points: the number of multipliers that are zero, and the rank of the Hessian of the Lagrangian, we will consider 
the following system: 
 
    ( ) 0,t,,,,,v,z,w,xLD 21

,,,,,v,z,w,x 21 =χµµµλµµµλ    (1) 

 
    ( ) γ=χµµµλµµλ ,t,,,,,v,z,w,xLD 21

,,,v,z,w,x
2 21    (2) 

 
    ( ) 02

1
3

T
21 =γγγ−γ −    (3) 

     

    ,01
j =µ        j ∈ J0(y,t) \ J+(µ1) 

    ,02
j =µ        j ∈ J0(y,t) \ J+(µ2) 

    0=µ  

where    J+(µi) = {j ∈ J ,0i
j >µ  i = 1,2} 

(4.1)

(4.3)

(4.2)
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 The system (1) presents the equations corresponding to the characterization of the generalized critical 
point, in (2) the equations are taken using the symmetry of the Hessian. If γ1 ∈ ℜk, (2) and (3) imply that the 
Hessian has k eigenvalues that are zero. The last three systems represent  the null multipliers corresponding 
to the active constraints. We are  going to apply the Sard parametric Theorem. The Jacobian U of the system 
(4.2), depending on some of the parameters χ variables and multipliers, is defined by: 
 

U = (Dvariables multipliers,  Dparameters ) 
 

 Dx Dw Dz Dv Dλ Dµ1 Dµ2 Dµ Dγ 

 ⊗ 0 0 0 ⊗ ⊗ ⊗ x
x

−
 

0 

 0 
nIµ

 0 0 0 tI1 

0 

0 w−  0 

 0 0 
nIµ

 
0 0 0 tI2 

0 

z−  0 

 0 0 0 µ  τ 0 0 v−  0 

 ⊗ 0 0 τ 0 0 0 0 0 

smultiplier
iablesvarD = ⊗ τI1 0 0 0 0 0 0 

 ⊗ 0 τI1 0 0 0 0 0 0 

 
x
x  w  z  v  0 0 0 0 0 

 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ I* 

 0 0 0 0 0 0 0 0 I*⏐⊗ 

 0 0 0 0 0 IJ1⏐0 0 0 0 

 0 0 0 0 0 0 IJ20 0 0 

 0 0 0 0 0 0 0 1 0 

(4.4)

(rows from A to w1 ) 

 DA Dx0
 Dw0

 Dz0
 Dv0

 Dw1
 Dz1

 

 I -2A 0 0 0 0 0 

 0 0 -2I 0 0 0 0 

 0 0 0 -2I 0 0 0 

 0 0 0 0 -2I 0 0 

 0 0 0 0 0 0 0 

 0 0 0 0 0 τI1 0 

Dparameters = 0 0 0 0 0 0 -τI2 

 0 0 0 0 0 0 0 

 I* 
0 

0 0 0 0 0 0 

 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 

 
 
 
 
 
 
 

(4.5)
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),vv(2v),zz(2z),ww(2w),xx(2x),t1(,22 1221 −=−=−=−=−=τµ−=µ
−−−−−

 
 
 If the LICQ does not hold in (x,w,z,v), the compactification constraint has to be active. Let (λ,µ1,µ2,µ) be the 
vector unequal to 0, such that: 

               

( )[ ]

( )

0zI)t1(

0wI)t1(

0vt1

0xItBtqxBBt

02

01

0201

Jj
j

12
j

Jj
j

1
j

Jj

j
2
j

Jj
j

1
j

T

=µ+µ−

=µ+µ−

=µ+−λ

=µ+µ+µ+++λ

−

∈

−

∈

−

∈

−

∈

∑

∑

∑∑

   (4.6) 

 
 Without loss of generality we assume that µ = 1. Obviously: (x,w,z;v,λ0,λ1,µ1,µ2,µ), λ0 = 0 the coefficient 
associated with the objective function of P(t) is a generalized critical point of that problem. We will prove that it 
is a point of Type 4 for almost all χ. Type 4 is characterized by the conditions of Remark 2.2. From  
the description of the problem it follows: 1 ≤ 1+ p ≤ 2n + 2 < 3n +1. In addition, the Jacobian of the  
active constraints has rank p since only the compactification constraint is able to introduce the dependence  
of the gradient vectors. Therefore, condition a) is satisfied for all parameter vectors. b): We will prove 
that the components of µ1 and µ2 are all non-zero. We consider the equation system describing 

(x,w,z,v,0, ),,,
21
µµµλ  as a generalized critical point and the equalities µ1 = 0,  j ∈ (J1\ J+(µ1)), 02

j =µ ,  

j ∈ (J2\ J+(µ2)). The Jacobian of this system is: 
 

Dz Dv Dw Dz Dλ D
µ1

 D
µ2

 Dt  

⊗ 0 0 0 ⊗ tB1 τI2 t1
xx1

−
−

  

0 2 0 0 τ 0 0 
t1

)vv(2 2

−
−

  

0 0 2I 0 0 τI1 

0 
0 t1

)ww(2 2

−
−

0 
 

0 0 0 2I 0 0 τI2 

0 t1
)zz(2 2

−
−

 

0 
 

⊗ τ 0 0 0 0 0 
t

vv1 −  (4.7)

⊗ 0 τI1 0 0 0 0 0 t
)ww( 1 −  

0 
 

⊗ 0 0 τI2 0 0 0 t
)zz( 1 −  

0 
 

x
x  v  w  z  0 0  0  

0 0 0 0 0 τI1  0  0  
0 0 0 0 0 0 τI2  0 0  
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1z
D  2v

D  2w
D  1w

D  1z
D  1v

D  
 

2I 0 0 0 0 0 0 
0 2 0 0 0 0 0 
0 0 2I 0 0 0 0 
0 0 0 2I 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

x2−  v2−  w2−  z2−  0 0 0 
0 0 0 0 0 0 0 

constraints 

0 0 0 0 0 0 0 

(4.8)

 
 We denote by (δx, δv, δw, δzδig, δ1, δ2, δc, δµ1, δµ1), the coefficient vectors corresponding to the rows of the 
Jacobian in a linear combination of the rows equal to zero. From the columns corresponding to Dv1, Dw1 , Dz1 
follows that δig,= 0, δ1 = 0, δ2 = 0, δc = 0. Hence, from Dx1, Dw2 , Dz2 , Dv2 it follows that: δx = (x - x1), δv = (v - v2),  
δw = (w-w2), δz = (z-z2). From Dt we obtain: 
 
||x-x1 ||2 + ||w-w2  || +  ||z-z2 ||2 + ||v-v2 ||2 = 0 in contradiction to the fact that compactification constraint is 
active. From Sard's parametrized theorem we obtain that J1 ∪ J2 = ∅ for almost all χ. 
 
 Now let us prove c). According to the latter reasoning the point (0, x, v, e, z, λ, µ1, µ2) is a critical point of 
the problem: 

( )

( )

( ) pzzwwvvxx

0)ww)(t1(qxBt

0))z(z)(t1(tx

0)vv)(t1(xqBxxt

0zB)t1(

0wI)t1(

0v)t1(

0xItBtqx)BB(t

tmin:)t(P

2
2

2
2

2
2

2
1

11

i1ii

1
TT

Jj
j

2
j

Jj
j

1
j

Jj
j

2
j

Jj
j

1
j

T

02

01

0101

][

=−+−+−+−

=−−++

=−−+

=−−++

=µ+µ−

=µ+µ−

=µ+−λ

=µ+µ+µ+++λ

−

∈

−

∈

−

∈

−

∈

−

∑

∑

∑∑

 

 
 In order to see that it is non-degenerate, we will follow the same arguments as in  Gómez, W. et al. (2000). 
We have to prove that for almost every χ the gradient of the objective function (2A(x-x0), 2(w-w0), 2(z-z0),  
2(v-v0)) is not in the subspace generated by 

)vv(200)t1(
)zz(2I)t1(00

)ww(20I)t1(0
)xx(2tItB]qx)BB[(t

2

21

21

121
T

−−−
−−−
−−−
−−++
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 Evidently, the gradient vector of the objective function belongs to the subspace generated by the gradient 
vector of the active constraints iff (x0, v0, w0, z0) belongs to the translated subspace. This fact implies that W 
(Hessian of the Lagrangian of Pχ(t) on the orthogonal subspace of the active constraints of Pχ(t) is 
nonsingular. 
 
 Now let us define the map 
 

    ( )

( ) ( ) ( )
( )

( )
( ) ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−+−+−+−

−−++

−−+

−−++

−+−+−+−−

=χΦ

pzzwwvvxx

)ww)(t1(qBxt

)zz)(t1(tx
)vv)(t1(xqBxxt

zzwwvvxxAxx

2
2

2
2

2
2

2
1

1

1

1
TT

2
0

2
0

2
00

T
0

    (4.9) 

 

 We will consider the Euclidean norm in ℜ
+

+ +
n n

n
( )1

2
8 3

and the Withney topology on [C3
S]3+2n. 

 
Theorem 4.2 [Genericity Theorem] Let (B,q) be fixed, then the set 
 

T={χ⏐Pχ(t) is JJT-regular with respect to (0,1)} 
 

is an open and dense set of  ℜ
+

+ +
n n

n
( )1

2
8 3

with the topology induced by the Euclidean norm. 
 
Proof: 
 
 T is dense: if not, there is a ball B such that Φ(χ) ∉ F for all χ ∈ B. But B has positive Lebesgue measure, 
and this contradicts Theorem 4.1. 
 
 T is open : T is the preimage by Φ of  F, which is an open set of  [C3

S
 ]3+2n with the strong topology. Now let 

us  prove that Φ is continuous: we consider a sequence χn → χ,  then it is clear that Φ(χn) converges uniformly 
to Φ(χ) on {(x,v,w,z) ||x - x1||2 + (v - v2)2 + ||w - w2||2 + ||z - z2||2 ≤ p. But since this set is compact it is equivalent 
to the convergence in the sense of the strong topology. The theorem is proved.     � 

5. AN ILLUSTRATIVE EXAMPLE 
 
 We consider the LCP defined by 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−
=

4
6

1
q,

410
142
114

B  

 
B is a nondefinite matrix.  
 
 We have chosen A =In and  
 

130p
0
0
0

z,
1
1
1

zz,
0
0
0

w,
1
1
1

ww,0v,
0
0
0

xx 120120010 =⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
===

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==  

 
 The Figures 5.1, 5.2 and 5.3, respectively, show the curve of x1, x2 and x3 corresponding to stationary 
points. Note that points of Type 1, 2 and 3 appear for t ∈ [0,1]. 
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