
 55

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 1, 2002

FITTING A CONIC A-SPLINE TO CONTOUR IMAGE
DATA
V. Hernández Mederos1, D. Martínez Morera2 y J. Estrada Sarlabous3
Instituto de Cibernética, Matemática y Física, ICIMAF, La Habana, Cuba

ABSTRACT
In this paper an algorithm for constructing contours from image data by means of a G1 conic A-spline is
presented. A conic A-spline is a piecewise smooth chain of connected real quadratic algebraic curves
meeting G1 at the junction points. Once the contour of the image data has been extracted, the algorithm
computes the breakpoints of the conic A-spline, i.e the junction points for the conic curves make up the
curve. Inflection points are also added to the set of junction points of the A-spline. Tangent lines at the
junction points are computed using a weighted least square linear fit instead of the classical divided
difference techniques. The conic A-spline interpolates the junction points along with the tangent
directions and least-squares approximates the given data between junction points. We discuss and
compare our experience with the approaches reported in the recent literature. Additionally, we propose
some improvements.

Key words: fitting data, A-spline

RESUMEN
En este trabajo se presenta un algoritmo para aproximar los contornos de imágenes digitalizadas
usando un A-spline cónico G1-continuo. Un A-spline cónico es una cadena de curvas algebraicas
cuadráticas, reales y conexas, que se pegan de forma G1 en los puntos de unión. Una vez que se han
extraido los puntos del contorno de la imagen, se calcula el conjunto de los puntos de unión del
A-spline, al cual se agregan los puntos de inflexión. En lugar de utilizar las técnicas clásicas de
diferencias divididas, las rectas tangentes en los puntos de unión se calculan usando un ajuste lineal
mínimo cuadrático pesado. El A-spline interpola los puntos de unión y las direcciones tangentes
prefijadas en estos y aproxima en el sentido mínimo cuadrado los datos contenidos entre dos puntos de
unión consecutivos. Se discuten y comparan nuestras experiencias con los enfoques reportados en la
literatura reciente y adicionalmente se proponen mejoras.

Palabras clave: datos dignos, A-spline

MSC: 65Y25, 51N35

1. INTRODUCTION

 The problem of approximating a contour has been extensively treated in the literature Bajaj-Xu (1994),
Bajaj-Xu (1999), Bookstein (1979), Gander et al. (1994), Odensaya et al. (1993), Pavlidis (1983), Ray-Ray
(1994), Sampson (1982), Spaeth (1996), Shumaker (1990). The most common solutions use parametric
splines Gander et. al. (1994), Odensaya et al. (1993), Spaeth (1996), Lozover-Preiss (1983) which requires
the introduction of an artificial parametrization of data. Unfortunately, the accuracy of the fitting process
strongly depends on the selected parametrization.

 In recent years new solutions to the problem has been proposed using implicitly defined algebraic splines
(A-splines) Bajaj-Xu (1999), Bajaj-Xu (1994), Pavlidis (1983), Taubin (1991). Compared to parametric splines,
more local control is obtained from A-splines, since after imposing the continuity conditions, the remaining
free parameters of the A-spline only depend on the data to be fitted for each section of the A-spline curve.
Moreover, in order to compute the coefficients of the parametric spline fitting a set of data points, we have
often to solve a linear system of equations which involves all the coefficients of the spline. In this case, if
some data vary, more than a section of the parametric spline should be computed again.

 In this paper we expect to show, that several important steps of the procedure to construct an A-spline curve
fitting the contour of a digital image may be improved. In section 2 we give some short preliminaries. Section 3
is devoted to conic A-splines. There, we describe how to select the break points of the A-spline, how to detect

E-mail: 1vicky@cidet.icmf.inf.cu

2dimas@cidet.icmf.inf.cu
3matdis@cidet.icmf.inf.cu

 56

the position of the inflection points and finally how to compute the tangent direction at each breakpoint.
Therefore, after section 3 we know how to construct the control polygon of the A-spline curve. In section 4, we
compute each segment of the A-spline fitting the data inside the corresponding control triangle. We study the
problem of selecting a good approximation of the Euclidean distance from a point to a conic, in order to obtain a
precise fitting of the data. Finally, in section 5 we present the results of applying the proposed algorithm to fit the
contours of several digital images that represent cross sections of a human head.

2. PRELIMINARIES

 The main purpose of this paper is to construct a smooth curve approximating the contour of a digital image.
It is well known González-Woods (1992) that the term image refers to a two-dimensional light-intensity
function I(x, y), where the value of I(x, y) at spatial coordinates (x, y) is the intensity (brightness) of the image
at that point. If the continuous image I(x, y) is approximated by equally spaced samples in the form of an
N × M matrix Ĩ(i; k) = I(Xi; Yk), i = 1,..., N , k = 1;...; M we obtain what is commonly called digital image. Each
element of the matrix Ĩ is referred to as pixel. Commonly, the values of N; M and the number of gray levels
are integers powers of two.

 The original data of our problem represents a digital image, i.e we have a matrix Ĩ where the value of Ĩ at a
pixel is the corresponding grey level. This image is converted into a binary image by thresholding. Several
classical techniques (segmentation, conditional dilatation and erosion) of image processing González-Woods
(1992), Sahoo et al. (1988), Doughety (1992) are used to improve the quality of the image in order to obtain a
set of points describing its boundary.

 The set of points qj = (xj; yj), j = 1,...,m on the boundary of the image, where xj = Xi and yj = Yk for some
i and k is computed using an edge detection method. The data points qj, j = 1,...,m obtained by this method
are sorted in the direction of motion of the boundary curve.

 Once we have computed the data points representing the boundary of a digital image, the main steps of the
algorithm to construct an A-spline curve approximating them are the following:

1. Determine the breakpoints of the A-spline, i.e. the points where two consecutive sections of the piece-
wise curve are joined.

2. Compute the tangent directions at each breakpoint. Determine the control polygon of the A-spline curve.

3. Fit the data inside each triangle of the control polygon by means of a conic curve.

4. Display the A-spline curve.

3. CONIC A-SPLINES

Definition 1 (see Figure 1) Given a set of n triangles Ti with vertices ,P,P,P i

2
i
1

i
0 i = 1,...,n satisfying

,1n,...,1i,PP i
2

1i
0 −==+ a conic A-spline S is a piecewise algebraic curve that satisfies the following conditions:

i) Inside of each triangle Ti; S is a conic segment Si , i.e

S|Ti
 = Si where Si = {(x, y) ∈ Ti: fi(x, y) = 0} and fi is a

polynomial of degree 2.

ii) Si interpolates the vertices i

0P and i
2P of the i-th triangle.

iii) The tangent lines to Si at i

0P and i
2P are the sides i

1
i
0PP

and i
2

i
1PP of the triangle Ti respectively.

 Figure 1: Two sections of a conic A-spline.

 The breakpoints ,Pi
0 i = 2,...,n are also called knots and the sequence of triangles Ti, i = 1,..,n control

polygon of the A-spline. If the tangents to the A-spline are continuous at the knots, we say that the A-spline

 57

is G1-continuous curve. According to the previous definition, a conic A-spline S is G1-continuous if the points
,P,P,P 1i

2
i
2

i
1

+ i = 1,...,n - 1 are collinear. If ,PP 1
0

n
2 = then the A-spline S is a closed curve.

 After the previous definition, the first step to compute a conic G1 A-spline, fitting the contour of a digital
image, is to define the control polygon, i.e. a sequence of n triangles Ti with vertices i

2
i
1

i
0 P,P,P meeting at the

vertices, containing the data and such that the points ,P,P,P 1i
1

i
2

i
1

+ i = 1,...,n - 1 are collinear. The breakpoints

,PP 1i
2

i
0

−= i = 2,...,n - 1 of the A-spline are conveniently chosen from the set of contour data points. Then, we

must determine the tangent line at each breakpoint and finally we compute the vertices i
1P of each triangle Ti

as the intersection point of the tangent line at i
2

i
0 PandP respectively.

4. COMPUTATION OF JUNCTION POINTS

 Several techniques have been used in the past to select the junction or break points of a spline (defined in
parametric or implicit form). In this section we mention some of them and explain why some of them could not
be successfully used to obtain the breakpoints of the A-spline curve.

 In Bajaj-Xu (1994) the authors propose a curvature adaptive scheme to choose the breakpoints. They
consider a regular polygon of k sides inscribed in the unit circle and numbers the normal directions to the
polygon boundary with integers from 1 to k: Then, a line segment of the contour boundary is numbered with
the integer i if it has the largest dot product of its normal with the i-th normal of the regular polygon. In this
way, the k normal directions on the circle subdivides the data contour into groups, where each group consists
of a connected sequence of line segments having the same assigned number. The endpoints of the groups
are the breakpoints. It is clear that the sequence of breakpoints in this method doesn't depend on which is the
initial point analyzed. Nevertheless, the method fails for data points representing the boundary of a digital
image, where frequently the data are in form of a stair. In this case, the groups of points having the same
assigned number have few points (frequently only one), and therefore the final sequence of breakpoints
contains too many points .

 Figure 2: Selection of the breakpoints.
Left: using a mask.
Center: discretizing normal directions.
Right: non-parametric sequential method.

 The method considered in Odensaya et al. (1993) is an enhanced version of a similar method proposed by
Lozoover and Preiss Lozover-Preiss (1983). They employ a tolerance window or "mask" to identify the
junction points. Initially, the mask is placed so that its centerline agrees with the segment passing through the
first and the third points in the set. Then, the end of the mask is extended one point at a time, until one
intermediate data point between the mask endpoints falls outside the mask. Backtracking one step, the
corresponding mask endpoints are marked as junction points. From our point of view, this method has one
disadvantage: the final sequence of junctions points depends on the first point where the mask is placed.
Odesanya et al. propose to investigate each data point as a potential starting point for the masking process
and to construct the sequence of junction points and the corresponding (parametric) spline interpolating at
junction points, in order to determine the "optimal" spline approximation. This method can be very expensive
if the amount of data points is large. With respect to the "optimal" mask width there are not any comments.
Obviously, as the mask width grows the number of junction points decrease.

 58

 The method proposed in Ray-Ray (1994) to compress digital image contour can be also used to select the
junction points. This algorithm constructs a polygonal approximation of digital curves looking for the longest
possible line segments with the minimum possible errors. Starting from an arbitrary point Pi on the contour of
the digital image, the algorithm constructs the line rij passing through Pi and Pj with j > i + 1 and increases j
while the function Fj := Lj -Ej grows, where Lj is the length of the segment PiPj and Ej is the sum of the squares
of the distances from the intermediate points to the line rij . Unlike other methods, this algorithm does not
require to specify a priori the allowable error. After our experience, this apparent advantage may lead to get
very coarse approximations, if we deal with contour images possessing some regions where the details are
very important while the remaining are very smooth.

 According to the previous analysis, in order to determine the position of the breakpoints it is convenient to
use a method which allows to approximate the image contour by a polygonal, introducing some control of the
allowable error. In this sense, we propose to employ the method Odensaya et al. (1993) which gives good
results, if we select a mask width capable of ignoring the noise of data, but preserving the important details of
the contour. For instance, in the reconstruction of the human head (see section 5) the breakpoints of the
A-splines approximating the contours of all cross sections where computed using a mask width equal to 5
pixels, except for the corresponding to the ears, where the mask width was selected equal to 3 pixels. On the
other hand, after our experiences, it is expensive and worthless (from the point of view of the quality of the
fitting) to compute the "optimal" spline over different breakpoint sequences, if we use a good approximation of
the Euclidean distance from a point to a conic, to solve the least squares problem (5).

 Since conics don't have inflection points, any inflection point of the A-spline must be a breakpoint.
Therefore, we need a method for automatically determining the position of inflection points from the data
describing the contour of the image. The method should be flexible enough to disregard noise in the data
points and computationally efficient, since in order to locate the inflection points, we have to check a large
number of data points.

 Let's suppose that i

0P and i
2P are two consecutive vertices of the polygonal that approximates the contour,

then we introduce a new vertex between them, if the amount of data that is on the same side of the line
li: li(x, y) = 0 passing through i

0P and i
2P is not greater than 80 percent of the data between both points. More

precisely, let ,qi
j j = 1,..., ni be the points between i

0P and i
2P and denote by

{ }0)q(l)q(lor0)q(l)q(l|q i
1ji

i
ji

i
1ji

i
ji

i
ji <<=Γ −+

the set of points where the sign of the evaluation of li changes. Then, the new breakpoint (corresponding to
an inflection point) is i

j́q such that

}q,||Pq{||min||Pq|| i
i
j2

i
m

i
j2

i
m

i
j́ Γ∈−=−

where i
mP is the middle point of the segment i

2
i
0PP (see Figure 3).

 Figure 3. Locating the position
 of an inflection point.
 The point i

j´q is the new knot
 (inflection point).

 Summarizing, we choose the breakpoints of the A-spline S as the union of the set of juntion points
computed with the algorithm proposed by Odensaya et al. (1993) with the set of inflection points.

 59

5. TANGENT LINE AT JUNCTION POINTS

 In order to compute a G1 A-spline it is necessary to define a control polygon, such as it was introduced in
Definition 1. After computing the breakpoints, which are vertices i

2
i
0 PandP of the control polygon, we must

define the corresponding tangent lines at any of the selected breakpoints. The intersection point of the tangent
lines at two consecutive breakpoints is the vertex i

1P of the control triangle Ti for the i - th section of the A-spline.

 For the computation of the tangent lines, we found several methods in the literature. Bajaj and Xu, Bajaj-Xu
(1994), compute a polynomial interpolating a breakpoint and its closest neighbors, in the set of data points, to
the right and to the left and assign as tangent direction at the breakpoint, the tangent direction corresponding
to this polynomial approximation (parabola). We also tested out the fourth degree polynomial interpolating a
breakpoint and its two closest neighbors to the right and to the left. In all cases, since contour data arising
from a digital image are very noisy, the approximations to the tangent direction based on few neighbors of a
breakpoint provide unaccurate results (see Figure 4). On the other hand, it is well known that numerical
differentiation based on interpolating polynomials is basically an unstable process, and good accuracy can
not be expected, even when the original data are known to be accurate (see Conte-de Boor (1980)).

 In order to overcome these problems, we propose the following procedure. Recall that ,qi

j j = 1,...,ni are the

contour points inside of the i-th triangle of the control polygon. Let { }i
]2n[

i
1

1i
n

1i
1]2n[i /11i/1i

q,...,qq,...,q ==Λ −−
+ −−

 be the

set of "neighbors" of i
0P . In order to simplify the notation, denote by)y,x(p i

j
i
j

i
j = with j = 1,...,mi the set of

points in Λi. Now, consider that i
jp is associated to the parameter value ,ti

j representing the cord length
parametrization, where
 0ti

1 =

,||pp||tt 2
i
j

i
1j

i
j

i
1j −+= ++ j = 1,...,mi - 1

 Note that ,)y,x(pP i
*j

i
*j

i
*j

i
0 −== where ⎥

⎦

⎤
⎢
⎣

⎡ +
= −

2
1n

*j 1i . We are interested in computing the parametric line

r(t) = (x(t), y(t)),

x(t) = a1(t - i
*j

i
*j x)t +

y(t) = a2(t - i
*j

i
*j y)t +

passing through the point i

0P and fiting in the least squares sense the points in the set Λi. More precisely a1
and a2 are free parameters that we determine solving respectively the linear least square problems,

 ∑
=

−
i

1

m

1j

2i
j

i
*j

2
ja

))t(xw(wmin (1)

 ∑
=

−
i

2

m

1j

2i
j

i
*j

2
ja

))t(yy(wmin (2)

where the weights wj are given by ,||pp||/1w 2

i
*j

i
j

2
j −= j = 1,...,mi, j ≠ j*, wj*

 = 1. Observe that the selected
weights are greater for the points closer to the breakpoint. Therefore, the fitting line not only passes through
the breakpoint, but also fits better the points closest to the breakpoint. It is easy to prove that the solution of
the problems (1) and (2) are given respectively by,

 60

 ∑ ∑
= =

−−−=
i im

1j

m

1j

22
*j

i
j

2
j

2
*j

i
j

i
*j

i
j

2
j

*
1)tt(w/)tt)(xx(wa (3)

 ∑ ∑
= =

−−−=
i im

1j

m

1j

22
*j

i
j

2
j

i
*j

i
j

i
*j

i
j

2
j

*
2)tt(w/)tt)(yy(wa (4)

 Therefore, the vector]a,a[*

2
*
1 is the selected as

tangent vector at the breakpoint i
0P .

 Figure 4 shows the tangent line obtained using
different techniques. Observe that the approximations
based on interpolating polynomials happen to be
unsatisfactory for data arising from digital images. On the
other hand, the fitting line passing through the breakpoint
provides a nice approximation to the tangent line.

 Finally, if i

0P is an inflection point, then the previous
tangent direction must be corrected, since the tangent
line at an inflection point should cross the polygon
joining the breakpoints in order to obtain a feasible
control polygon. The new tangent direction is given by
the line passing through i

0P and a data point îq with

*jĵ ≠ located between 1i
0P − and 1i

0P + . The point îq is
selected maximizing the angle between the segments

1i
j

i
0qP − and i

0
1i

0 PP − or between i
j

i
0qP and i

0
1i

0 PP + (see
Figure 5).

6. FITTING WITH CONIC A-SPLINES

6.1. Distance from a point to a conic

 Several methods are available in the literature for
fitting data by conics Bookstein (1979), Bajaj-Xu
(1999), Sampson (1982), Gander et al. (1994),
Pavlidis (1983). Given a set of n data points qj in the
plane, the classical fitting approach consists on
determining a conic C that minimizes the mean
square distance,

 ∑
=

n

1j
j

2)C,q(d
n
1

 (5), where d(qj; C) is the Euclidean distance from qj to C.

 Define the implicit equation of the conic C as

 f(x; y) = 0 (6), where f(x; y) is a polynomial of degree 2.

 Since it is not possible to give a closed expression for the Euclidean distance from a point to a conic, the
most common approach to solve (5) is to use the approximation,

 d(qj, C) = |f(qj)| (7)

 Hence the problem (5) gives rise to the problem of minimizing,

 ∑
=

n

1j
j

2)q(f
n
1 (8)

 Figure 4. Selecting the tangent vector using:
1. Fitting line,
2. Interpolation "parabola",
3. Fourth degree interpolation polynomial.

Figure 5. Correcting the tangent direction at an inflection

 point:
1. Fitting line,
2. Corrected tangent line.

 61

 This formulation of the problem is very popular because (8) is a linear least squares problem for the
coefficients of the conic. Nevertheless, since the implicit equation (5) is homogeneous, a constraint on the
coefficients of the conic has to be imposed in order to obtain a nontrivial solution.

 Some authors have considered linear constraint changing the minimization of (8) into a linear regression
problem, whereas others have proposed quadratic restrictions converting (8) into an eigenvalue problem.
Moreover, depending on the constraints, the fitting methods may possess special properties, for instance
Taubin's generalized eigenvector fit Taubin (1991) and the Bookstein algorithm Bookstein (1979) are invariant
under affine transformations. Unfortunately, any constraint that we impose introduces bias into the selection
of the fitting conic and one should be aware that the bias may eliminate some candidates for best fitting conic.

 The approximation of the Euclidean distance (7), so called algebraic distance, happens to be a good
approximation only if the data are very close to the conic. Therefore, some authors to use better
approximations given by a closed formula Taubin (1994) or an iterative method Ponce et al. (1992),
Hernández et al. (2001) but in that case the corresponding least squares problem is no longer linear. The
more precise the approximations or the iterative method are, the more expensive is the computation of the
best fit, hence a good compromise must be found. In this paper, we use the approximation of the Euclidean
distance given by G. Taubin in Taubin (1994),

||)q(f||

)q(f|
)C,qj(d

j

j

∇
= (9)

and impose constraints that bias the solution against the selection of undesirable degenerate conics (see
section 6.2).

 Finally, let's mention the parametric approach. Since every conic may be represented in parametric form,
the problem (5) can be solved introducing one parameter value for each data point. Thus, it becomes
nonlinear and its dimension grows with the number of data points. Some previous works using this approach
are Spaeth (1996), Gander et. al. (1994).

6.2. Fitting a conic inside of each triangle

 It is well known from the literature Farin (1992), that inside each triangle Ti it is possible to construct a
family of conic sections interpolating the vertices and the prescribed tangent directions. This family depends
on a single parameter that we call ,wi

1 which may be used to fit the data in the interior of the corresponding

triangle. In what follows, we concentrate ourselves in the selection of the value ,wi
1 corresponding to the

conic section Ci that best fits the data)y,x(q i
j

i
j

i
j = , j = 1,...,n inside a fixed triangle.

 In order to handle any triangle in a similar way, we write the conic section in barycentric coordinates with
respect to the vertices of the triangle,

0)vu1(ubva)v,u(g:C i
2

ii =−−−=

where

A

111
PPy
PPx

u

i
y2

i
y1

i
x2

i
x1

= ,
A

111
PyP
PxP

v

i
y2

i
y0

i
x2

i
x0

=

)P,P(P),P,P(P),P,P(P i

y2
i
x2

i
2

i
y1

i
x1

i
1

i
y0

i
x0

i
0 === and A is the area of the corresponding triangle.

 62

 We impose the constraints 0ai ≠ and 0bi ≠ which bias the selection of the fitting conic against the

degenerate conic sections 0)vu1(u)v,u(g:C ii =−−= and 0v)v,u(g:C 2
ii == , respectively. Under these

restrictions, the implicit equation of the conic section may be rewritten as,

0)vu1(u)w(v)v,u(g:C 2i
1

2
ii =−−−=

with 0wi

1 ≠ . Therefore, if we use the algebraic distance as approximation of the Euclidean distance, the
corresponding least squares problem is given by,

 ∑
=

=
i

i
1

n

1j

i
j

i
j

2
i

i

i
1

w
)v,u(g

n
1

:)w(Gmin (10)

where)v,u(i

j
i
j are the barycentric coordinates of i

jq with respect to the vertices of the triangle. This is a linear
problem, whose solution is explicitly given by,

∑

∑

=

=

−−

−−

=
i

i

n

1j

i
j

i
j

2i
j

n

1j

i
j

i
j

i
j

2i
j

2i
1

)vu1()u(4

)vu1(u)v(

)w((11)

 As we previously mentioned, if the points)y,x(q i

j
i
j

i
j = are not very close to a conic, the optimal parameter

(11) gives rise to a conic far from the conic that best fits the data in the Euclidean distance. Therefore we
recommend the approximation of the Euclidean distance (9). If 0)y,x(fi = is the implicit equation of the curve

iC then the corresponding least squares problem may be written as,

 ∑
= ∇

=
i

i
1

n

1j
2i

j
i
ji

i
j

i
j

2
i

i

i
1

w)y,x(f

)y,x(f

n
1

:)w(Gmin (12)

 Since)v,u(g)y,x(f i

j
i
ji

i
j

i
ji = and

()i
j

i
j

iiiii
j

i
ji v,u

y
v

v
g

y
u

u
g

,
x
v

v
g

x
u

u
g

)y,x(f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

=∇

the function)w(G i

1 may be written in terms of the barycentric coordinates)v,u(i
j

i
j of the data points i

jq and

the parameter i
1w . The corresponding least squares problem is nonlinear in i

1w , with the restriction 0w i
1 > .

Since (9) is a better approximation (of the Euclidean distance from a point to a conic) than the algebraic
distance, the corresponding fitting conic, approximates better the contour image.

7. NUMERICAL EXAMPLES

 The algorithm proposed in this paper was successfully applied to the approximation of the contours of
magnetic resonance images (MRI) of a human head (downloaded from Rendering test data set, North
Carolina University, ftp.cs.unc.edu). Figure 6 shows, in the same plot, the conic A-splines which approximate
25 contours. Each contour was obtained from a previous processing of a digital image that corresponds to a
cross section of the human head. The results were obtained from a MATLAB (version 5.3) program that
constructs and displays the A-spline curve approximating the contour data. In order to display each conic
section we use the classical Bernstein-Bezier parametrization of rational curves, Farin (1992). As we
previously pointed out, we used a mask width equal to 5 pixels for all contours, except for the corresponding
to the ears, where the mask width was selected equal to 3 pixels. In the computation of the A-splines fitting

 63

the data inside each triangle, we use the approximation (9) of the Euclidean distance from a point to a conic
and solved the nonlinear least square problem (12).

Figure 6. Approximation of the cross sections of a human head by conic A-splines.

ACKNOWLEDGEMENTS

 The results contained in this paper were partially obtained under the TWAS Research Grant 98-195
RG/MATHS/LA. We would like to express our gratitude to R. Patterson for his long support. We also would
like to the members of the Group of Image Processing from ICIMAF, for their advice on the techniques of
Digital Image Processing and the preprocessing of the MRI of a human head.

REFERENCES

BAJAJ, C. and G. XU (1999): "A-Splines, Local Interpolation and Approximation using Gk-Continuous
Piecewise Real Algebraic Curves", Computer Aided Geometric Design, 16, 557-578.

_________________ (1994): "Data fitting with cubic A-splines", Proceedings: Computer Graphics

International, CGI94, Melbourne, Australia.

BOOKSTEIN, F.L. (1979): "Fitting conic sections to scattered data", Comput. Vision, Graphics

and Image Processing, 9, 56-71.

CONTE, S.D. and C. de BOOR (1980): Elementary Numerical Analysis, Mc Graw-Hill, New York.

DOUGHETY, E. (1992): An Introduction to Morphological Image Processing, SPI-The

International Society for Optical Engineering, Washington.

FARIN, G. (1992): Curves and Surfaces for Computer Aided Geometric Design, Academic

Press, New York.

GANDER, W.; G.H. GOLUB and R. STREBEL (1994): "Least squares fitting of circles and ellipses",

BIT 34, 558-578.

GONZALEZ, R.C. and R.E. WOODS (1992): Digital Image Processing, Addison-Wesley,

Massachusetts.

 64

HERNANDEZ MEDEROS, V.; J. ESTRADA SARLABOUS and P. BARRERA SANCHEZ (2201):
"A new algorithm to compute the Euclidean distance from a point to a conic" (accepted for
publication, Investigación de Operaciones.

LOZOVER, O. and K. PREISS (1983): "Automatic construction of a cubic B-spline representation

for a general curve", Comput. and Graphics, 7(2), 149-153.

ODESANYA, O.S.; W.N. WAGGENSPACK and D.E. THOMPSON (1993): "Construction of

biological surface models from cross sections", IEEE Transactions on Biomedical
Engineering, 40(4), 329-334.

PAVLIDIS, T. (1983): "Curve fitting with conic splines", ACM Trans. on Graphics, 2(1), 1-31.

PONCE, A.; J. HOOGS and D. KRIEGMAN (1992): "On using CAD models to compute the pose of

curved 3D objects", Comp. Vision Graphics and Image Processing 55(2), 184-197.

RAY, B. KR. and K.S. RAY (1994): "A non-parametric sequential method for polygonal

approximation of digital curves", Pattern Recognition Letters 15, 161-167.

SAHOO, P.K.; S. SOLTANI; A.K. WONG and Y.C. CHEN (1988): "A survey of thresholding

techniques", Computer Vision, Graphics, and Image Processing, 41, 233-260.

SAMPSON, P.D. (1982): "Fitting conic sections to very scattered data: an iterative refinement of

Bookstein algorithm", Comp. Vision Graphics and Image Processing, 18, 97-108.

SHUMAKER, L.L. (1990): "Reconstructing 3D objects from cross sections", Computation of Curves

and Surfaces, Kluwer Academic Publishers, Dordrecht, 275-309.

SPAETH, H. (1996): "Orthogonal squared distance fitting with parabolas", Numerical Methods and

Error Bounds, Mathematical Research 89, Akademie Verlag, 261-269.

TAUBIN, G. (1991): "Estimation of planar curves, surfaces and nonplanar space curves defined by

implicit equations with applications to edge and range image segmentation", IEEE Trans.
on Pattern Anal. Machine Intell., 13, 1115-1138.

TAUBIN, G. (1994): "Distance approximations for rasterizing implicit curves", ACM Trans. on

Graphics, 13, 3-42.

