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ABSTRACT 
In this paper we introduce the concept of maximal covers and provide some characterizations that make 
the identification of the maximal covers from the set of covers implied by a 0-1 knapsack constraint 
easier. By construction, these maximal covers induce non-dominated valid inequalities for the set of 
feasible solutions for the Knapsack constraint. So, their identification can help to tightening 0-1 models. 
We also show some situations where a procedure taken from the literature for identifying non-dominated 
inequalities from certain types of covers only obtains a small subset of maximal covers. 
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RESUMEN 
En este trabajo se introduce el concepto de cubrimiento maximal y se proporcionan algunas 
caracterizaciones que facilitan la identificación de los cubrimientos maximales respecto del conjunto de 
cubrimientos implicados por una restricción de tipo mochila con variables 0-1. Por construcción, estos 
cubrimientos maximales inducen desigualdades no dominadas que son válidas para el conjunto de 
soluciones factibles para la restricción de tipo mochila. Así pues, su identificación puede contribuir al 
reforzamiento de modelos 0-1. Asimismo, se muestran algunas situaciones en las que un 
procedimiento descrito en la literatura que identifica desigualdades no dominadas a partir de ciertos 
tipos de cubrimientos únicamente obtiene un pequeño subconjunto de cubrimientos maximales. 
 
Palabras clave: tapas máximas, formulaciones más firmes, constreñimiento de la mochila,  
                              desigualdades dominadas,  

 
1. INTRODUCTION 
 
 Consider the 0-1 linear programming problem 
 

    max { } ,Jj1,0x,Iibxaxc
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                                             (1) 

 
where J = {1,...,n} and I = {1,...,m}. 
 
 The LP relaxation of (1) is the same problem (1) where each variable xj is allowed to take any value in the 
interval [0,1]. 
 
 We say that two constraint systems Ax ≤ b and A’x ≤ b’ are equivalent if they admit exactly the same set of 
0-1 solutions. The system A’x ≤ b’ is said to be as tight as the system Ax ≤ b if it is equivalent to Ax ≤ b and 
{x Є [0,1] n  ⏐ A’x ≤ b’} ⊆ {x Є [0,1] n  ⏐ Ax ≤ b}.The system A’x ≤ b’ is  said  to  be  tighter   than  the  
system  Ax ≤ b  if  it  is  equivalent  to  Ax ≤ b  and  {x Є [0,1]n⏐ A’x ≤ b’} ⊂ {x Є [0,1]n⏐ Ax ≤ b}. 
  

 We say that the inequality ∑
=

≤
n

1j
jj bxa  is valid for a set R ⊆ IRn if it is satisfied by any vector (x1,...,xn) Є R. 

 
 The tighter a 0-1 model, the  smaller could the gap be between the optimal values of the related 0-1 
problem and its LP relaxation, and, less computational effort could be required to solve the problem. Thus, we 
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are interested in finding tighter formulations for problem (1), see {Dietrich et.al. (1993), Hoffmann-Padberg 
(1991), Padberg (1975), Savelsberg (1994)] among others. Obviously, a scheme for obtaining as-tight-as 
formulation for (1) consist of appending to the constraint system of (1) valid inequalities for its feasible region. 
It is well known that the scheme can be more effective by appending valid inequalities that have been violated 
by feasible solutions for the LP relaxation of (1). See Johnson et al.(2000) for a good survey on the subject. 
 
 The main contribution of this paper is the introduction of the concept of maximal covers and its related  
characterization. This concept is defined as a generalization of the concept of maximal cliques, see Muñoz 
(1999). A maximal cover from a set of  covers is a cover whose induced inequality is not dominated by the 
inequality induced by any other cover from the set. The inequalities induced by the maximal covers from the 
set of covers implied by a knapsack constraint of problem (1) are valid for its feasible region, and they can be 
used in constraint reformulation. We show that these maximal covers can be characterized as the extensions 
of certain minimal covers. 
 
 This paper is organized as follows: Sections 2 and 3 review classical types of covers and introduce the 
concept of maximal covers. A theoretical background is also given to state in Section 4 a characterization of 
those valid inequalities. Section 5 draws some conclusions from this work. 
 
2. COVERS IMPLIED BY A CONSTRAINT  
 
 Given a set of variables {x1,...,xn} and a set F⊆ {1,...,n}, let us denote X(F) ≡ ∑

∈Fj
j.x  

 
 See e.g. [12] for more details about some of the concepts defined throughout the paper. See also the 
references compiled in Aardal-Weismantel (1997). 
 
Definition 1. A cover C is a set of indices of variables that can be expressed as the union of two disjoint sets, 
say C+ and C-, such that 
 
      X(C+) – X(C-) ≤ kc –⏐C-⏐,                                        (2) 
 
where kc is an integer with 1 ≤ kc ≤ ⏐C⏐. Inequality (2) is said to be induced by C. 
 
Definition 2. A trivial cover is a cover C such that kc = ⏐C⏐.        
 

Definition 3. A cover C with induced inequality (2) is implied by the inequality ∑
=

≤
n

1j
jj bxa if (2) is a valid 

inequality for {(x1,...,xn) ∈ {0,1}n ⏐ ∑
=

n

1j
jjxa ≤ b }. 

  
 
We consider knapsack constraints from problem (1) of the form  
 
        ∑

∈

≤
0Jj

jj ,bxa               (3) 

 
where 0 < aj ≤ b  ∀j ∈ J0 and aj ≤ aj’      ∀j, j’ ∈ J0  with j < j’. (Note that any constraint in 0-1 variables can be put 
in this form). Without loss of generality, we assume that ∑

∈ oJj
ja > b. Let F0 be the set of 0-1 solutions that 

satisfy constraint (3), i.e., F0 = {(xj) j Є J Є {0,1}n ⏐ ∑
∈

≤
0Jj

jj bxa }. 

 
 Lemmas 1 and 2 state some necessary and sufficient conditions for a subset of J  to be a non-trivial  
cover implied by constraint (3). These conditions lead to the characterization given in Proposition 1, which will 
be used to state in Theorem 1 a necessary and sufficient condition for certain covers to be implied by 
constraint (3).  
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Lemma 1. Let C+, C- ⊆ J be two disjoint sets with non-empty union and let kc be an integer such that  
kc ≤ ⏐ C+⏐ + ⏐C-⏐ -1. If X(C+)- X(C-) ≤ kc - ⏐C-⏐ is a valid inequality for F0, then 
 
(1) ⏐C+ ∩ J0⏐ ≥ 2. 
 
(2) kc  ≥ ⏐C+ \ J0 ⏐ + ⏐C-⏐ + 1. 
 
(3) ∑

∈Fj
ja > b   ∀F ⊆ C+ with ⏐F⏐ = kc - ⏐C-⏐ + 1. 

 
Proof. (1) Suppose that ⏐C+ ∩ J0⏐ ≤ 1 and let xj = 1 ∀j ∈ C+ and xj = 0  ∀j ∈ J \ C+. Since b > 0, aj ≤ b ∀j ∈ J0  
and ⏐C+⏐ ≥ kc - ⏐C-⏐ + 1, we have that  ∑ ∑ ∑ ∑

∈ ∩∈ ∈ ∈+ + −

=−≤=
0 0Jj JCj Cj Cj

jjjjj xxandbaxa ⏐C+⏐ > kc - ⏐C-⏐, 

which contradicts the fact that X (C+) – X (C-) ≤ kc –⏐C-⏐ is a valid inequality for F0. 
 
(2) Suppose that kc <⏐C+ \ J0⏐ + ⏐C-⏐ + 1 and let k Є C+ ∩ J0, xj = 1 ∀j Є (C+ \ J0) υ {k} and xj = 0 ∀j Є J \  

((C+ \ J0) υ {k}). Then ∑
∈

≤=
0Jj

kjj baxa  and ∑ ∑
+ −∈ ∈

−
Cj Cj

jj xx = ⏐C+ \ J0⏐+ 1 > kc - ⏐C-⏐, contradicting the 

initial hypothesis. 
 
(3) Let F ⊆ C+ be such that ⏐F⏐ = kc - ⏐C-⏐ + 1 and suppose that ∑

∈

≤
Fj

j ba . Choosing xj = 1 ∀j Є F and  

xj = 0 ∀j Є J \ F it results ∑ ∑
∈ ∈

≤=
0Jj Fj

jjj baxa and ∑ ∑
+ −∈ ∈

=−
Cj Cj

jj xx ⏐F⏐ > kc - ⏐C-⏐, which is a 

contradiction.     � 
 
Lemma 2.  Let  C+, C- ⊆  J  be  two  disjoint  sets  and  let  kc  be  an  integer  such  that kc ≤ ⏐C+⏐ + ⏐C-⏐ - 1.   
If kc ≥ ⏐C-⏐ - 1  and ∑

∈Fj
ja > b ∀F ⊆  C+  with ⏐F⏐ = kc -⏐C-⏐ + 1, then X(C+) – X(C-) ≤ kc –⏐C-⏐ is a valid 

inequality for F0.   
 
Proof. Let (xj) j∈J Є {0,1}n and +

1C  = {j Є C+⏐xj = 1}. If ∑ ∑
+ −∈ ∈

−
Cj Cj

jj xx > kc -⏐C-⏐, then ∃  F ⊆ +
1C  

such that ⏐F⏐ = kc - ⏐C-⏐+ 1, since +
1C  = ∑

+∈Cj
jx ≥ ∑ ∑

+ −∈ ∈

−
Cj Cj

jj xx and kc -⏐C-⏐+ 1 ≥ 0. Therefore 

∑ ∑ ∑
∈ ∈ ∈

=≥
0Jj Fj Fj

jjjjj axaxa  > b.   � 

 
Proposition 1. Let C ⊆ J be a non-trivial cover with induced inequality (2). 
 
 Then C is implied by constraint (3) if and only if kc  ≥ ⏐C+ \ J0⏐+ ⏐C-⏐+ 1 and ∑

∈Fj
ja > b   ∀F ⊆ C+  with  

⏐F⏐= kc - ⏐C-⏐+ 1. 
 
Proof. It follows from claims (2) and (3) of Lemma 1 and from Lemma 2.   � 
 
Lemma 3. Let C ⊆ J and l be an integer such that ⏐C \ J0⏐+ 2 ≤ l ≤⏐C⏐. Then the following statements are 
equivalent: 
 
(1) ∑

∈Fj
ja > b  ∀F ⊆ C with ⏐F⏐= l. 

 
(2) ∑

∈Fj
ja > b   ∀F ⊆ C ∩ J0  with ⏐F⏐= l - ⏐C \ J0⏐. 
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Proof. (1) ⇒ (2) Let F ⊆ C ∩ J0 be such that ⏐F⏐= l -⏐C \ J0⏐. Since ∑
∈

=
Fj

ja ∑
∪∈ )J\C(Fj 0

aj, F U (C \ J0) ⊆ C and 

⏐F U (C \ J0)⏐= l, we have that ∑
∈Fj

ja > b. 

 
(2) ⇒ (1) Let F ⊆ C be such that ⏐F⏐ = l. Them ∃  F’ ⊆  F ∩ J0 with ⏐F’⏐= l - ⏐C \ J0⏐, since ⏐F ∩ J0⏐= ⏐F⏐ -

⏐F \ J0⏐= l -⏐F \ J0⏐ ≥ l - ⏐C \ J0⏐ > 0. So, ∑
∈Fj

ja ≥ ∑
∈ 'Fj

ja > b.   � 

  
 Given a non-empty set C ⊆ J0, let ml(C) be the set of the l smallest indices of C, where l is an integer such 
that 1 ≤ l ≤⏐C⏐, and let γ  (C) = min {j⏐j Є C} and γ  (C) = max {j⏐j Є C}. 
 
Proposition 2. Let C ⊆ J be a non-trivial cover with induced inequality (2). 
 

Then C is implied by constraint (3) if and only if kc ≥⏐C+ \ J0⏐+ ⏐C-⏐+1 and 
 

⎟
⎠
⎞⎜

⎝
⎛ ∩+

+−−+−

∑
∈ 0JC

1c0J\cck
mj

aj >b. 

 
Proof. It follows from Proposition 1 and Lemma 3, since aj ≤ aj’  ∀j, j’ ∈ J0  with  j < j’.      � 
 
 
Theorem 1. Let C ⊆ J be a cover with induced inequality (2) such that C+ ∩ J0 ≠ φ. 
 
 Then C is implied by constraint (3) if and only if kc ≥ ⏐C+ \ J0⏐+⏐C-⏐+ lc, where  lc = max {l⏐

( )
∑

∩∈ +
0l JCmj

aj ≤ b}. 

 
Proof. (⇒) If C is a trivial cover, it results kc = ⏐C+ ∩ J0⏐+ ⏐C+ \ J0⏐+⏐C-⏐≥⏐C+ \ J0⏐+⏐C-⏐+ lc. 
 
 If C is a non-trivial cover, by Proposition 2 we have that ∑

∩∈ +
+−−+−

)JC(mj 01C0J\Cck

 aj > b,  hence  

lc ≤ kc -⏐C+ \ J0⏐-⏐C-⏐. 
 
  
 (⇐) If C is a trivial cover, it is clear that C is implied by constraint (3). If C is a non-trivial cover, it follows 
that kc ≥ ⏐C+ \ J0⏐+⏐C-⏐+ 1 and  ∑

∩∈ +
+−−+−

)JC(mj 01|C||0J\C|Ck

aj > b, since 1 ≤ lc ≤ kc -⏐C+ \ J0⏐- ⏐C-⏐; thus, by 

Proposition 2, C is implied by constraint (3).     � 
 
3. MAXIMAL COVERS FROM A SET OF COVERS 

Definition 4. The inequality ∑
=

n

1j
jj xa  ≤ b is dominated by the inequality ∑

=

n

1j
jj x'a ≤ b’ if {(x1,...,xn) Є [0,1]n ⏐ 

∑
=

n

1j
jj x'a ≤ b’} ⊆ {(x1,...,xn) Є [0,1]n ⏐ ∑

=

n

1j
jj xa ≤ b}. 

 
Definition 5. Given a set of covers C, C Є C is a maximal cover from C if its induced inequality is not 
dominated by the inequality induced by C’  ∀C’ Є C such that C’+ ≠ C+ or C’- ≠ C- or kc’ ≠ kc. 
 
 There are several ways for tightening the formulation of problem (1) by using maximal covers whose 
induced inequalities are valid for its feasible region. It can be done by appending those induced inequalities to 
the constraint system of (1) (e.g., provided that they are violated by the optimal solution of its LP relaxation) 
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and by increasing or reducing the coefficients of some constraints in (1), [see Dietrich et al. (1993),  
Escudero et al. (1998), Escudero-Muñoz (1998), Muñoz (1999)] among others. 
 
 Example 1 illustrates he case where the coefficient reduction method proposed in (4) [see also Escudero-
Muñoz (1998), Muñoz (1999)] can be applied to a knapsack constraint by using a maximal cover from the set 
of covers implied by that constraint, but it cannot be applied by using a non-maximal cover. 
 
Example 1.  Consider the 0-1 knapsack constraint 
 
               x1 + x2 + 4x3 + 7x4 + 8x5 + 9x6 ≤ 10         (4) 
 
 Consider the covers C = {3, 4, 5, 6} and C’ = {3, 4, 5}, and let (5) and (6) be their induced inequalities, 
respectively. 
 
       x3 + x4 + x5 + x6   ≤  1             (5) 
 
       x3 + x4 + x5  ≤  1             (6) 
 
 It can be shown that C is a maximal cover from the set of covers implied by constraint (4), see Theorem 3. 
On the other hand, C’ is implied by (4), but it is not a maximal cover from the set of covers implied by (4), 
since inequality (6) is dominated by inequality (5). 
 
 By applying a coefficient reduction approach (see Dietrich-Escudero-Chance (1993) to constraint (4) using 
the cover C, we obtain the constraint 
 
             x1 + x2 – 4x3 – x4  + x6  ≤ 2          (7) 
 
 (See that the constraint system given by (7) and (5) is tighter than constraint (4)). 
  
 On the contrary, the coefficients of constraint (4) cannot be reduced by using the cover C’. 
 
 Based on Definition 5, identifying maximal covers from the set of covers implied by constraint (3) can be a 
hard task. It is useful to introduce some characterizations that make easier the identification of such covers. 
 
Proposition 3. Let X(C+) – X(C-) ≤ kC –⏐C-⏐ and X(C’+) –X(C’-) ≤ kC’ –⏐C’-⏐ be the inequalities induced by the 
covers C and C’ respectively.  If kC – kC’ ≥ ⏐C+ \ C’+⏐+⏐C- \ C’-⏐,  then  the inequality induced by C is 
dominated by the inequality induced by C’. 
 
 Proof. Let (xj)j∈C∪C’ Є [0,1]⏐C∪C’⏐ be such that  ∑ ∑

+ −∈ ∈

−
'Cj 'Cj

jj xx ≤ kC’ –⏐C’-⏐. 

 
 Considering that ∑

++∩∈ C'Cj

 xj ≤  ∑
+∈ 'Cj

xj and C’- = (C’-∩C-) ∪ (C’- \ C-), it results ∑
++∩∈ C'Cj

 xj – ∑
−−∩∈ C'Cj

xj ≤ kC’ – 

(⏐C’-⏐-⏐C’- \ C-⏐) = kC’ – (⏐C-⏐-⏐C- \ C’-⏐). 
 
  
 Therefore we have that ∑

+∈Cj

xj – ∑
−∈Cj

xj ≤ kC’ – ⏐C-⏐+⏐C- \ C’-⏐+⏐C+ \ C’+⏐≤ kC –⏐C-⏐,since ∑
+∈Cj

xj –  

∑
−∈Cj

xj = ∑
++∩∈ 'CCj

xj + ∑
++∈ 'C\Cj

xj – ∑
−−∩∈ 'CCj

xj – ∑
−−∈ 'C\Cj

xj.        � 

 
Proposition 4. Let X (C+) – X (C-) ≤ kC –⏐C-⏐ and X (C’+) –X (C’-) ≤ kC’ –⏐C’-⏐ be the inequalities induced by 
the covers C and C’ respectively. If C is a non-trivial cover and its induced inequality is dominated by the 
inequality induced by C’, then C’ is a non-trivial cover and kC – kC’  ≥ ⏐C+ \ C’+⏐+⏐C- \ C’-⏐. 
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Proof. The result will follow if it can be shown that ∃ (xj)j∈C∪C’  Є [0,1]⏐C∪C’⏐ such  that  ∑
+∈ 'Cj

xj – ∑
−∈ 'Cj

xj ≤ kC’ –

⏐C’-⏐and ∑
+∈Cj

xj – ∑
−∈Cj

xj ≥ kC’ +⏐C+ \ C’+⏐-⏐C- ∩ C’-⏐. In  this  case  we have that  kC –⏐C-⏐ ≥ kC’ +⏐C+ \ 

C’+⏐-⏐C- ∩ C’-⏐, from which  kC – kC’  ≥ ⏐C+ \ C’+⏐+⏐C- \ C’-⏐;  so, C’ is a non-trivial cover, since  kC’ 
≤⏐C+⏐+⏐C-⏐- 1 -⏐C+ \ C’+⏐-⏐C- \ C’-⏐=⏐C+∩C’+⏐+⏐C-∩C’-⏐-1≤⏐C’⏐- 1. 
 
• If  kC’  ≥ ⏐C- ∩ C’-⏐, suppose that ⏐C+ ∩ C’+⏐ ≤ kC’ -⏐C- ∩ C’-⏐ and let xj = 1   ∀j Є C+ ∪(C’- \ C)  and  xj = 0   
∀j Є C- ∪(C’+ \ C). Considering that C’+ = (C’+ ∩ C) ∪ (C’+ \ C), C’- = (C’- ∩ C-) ∪ (C’- \ C-) and C is a  
non-trivial cover, it results ∑

+∈ 'Cj

xj – ∑
−∈ 'Cj

xj = ⏐C’+ ∩ C+⏐-⏐C’- \ C-⏐ ≤ kC’ –⏐C’- ∩ C-⏐-⏐C’- \ C-⏐ = kC’ –⏐C’-⏐ 

and ∑
+∈Cj

xj – ∑
−∈Cj

xj = ⏐C+⏐ > kC – ⏐C-⏐, contradicting the initial hypothesis. Consequently, it must 

be ⏐C+ ∩ C’+⏐ > kC’ – ⏐C- ∩ C’-⏐ and,  thus, ∃  F ⊆ C+ ∩ C’+  with ⏐F⏐ = kC’ –⏐C- ∩ C’-⏐. 
 
Now, let xj = 1  ∀j Є F∪(C+ \ C’+) ∪(C’- \ C-) and xj = 0  ∀j Є (C’+ \ F)∪C-. Since C’+ = F∪(C’+ \ F),  
C’- = (C’- ∩C-)∪(C’- \ C-) and C+ = (C+∩C’+)∪(C+ \ C’+),  it  follows  that ∑

+∈ 'Cj

xj – ∑
−∈ 'Cj

xj = ⏐F⏐-⏐C’- \ C-⏐ = 

kC’ –⏐C’-⏐ and ∑
+∈Cj

xj – ∑
−∈Cj

xj = ⏐F⏐+⏐C+ \ C’+⏐ = kC’ + ⏐C+ \ C’+⏐- ⏐C- ∩ C’-⏐. 

 
•  If  kC’  < ⏐C- ∩ C’-⏐,  we  have  that  0 < ⏐C- ∩ C’-⏐- kC’ < ⏐C- ∩ C’-⏐. Accordingly, ∃  F ⊆ C- ∩ C’-  with  

|F| = ⏐C- ∩ C’-⏐- kC’  and, choosing  xj = 1   ∀j Є (C+ \ C’+) ∪ F ∪ (C’- \ C) and xj = 0   ∀j Є C’+ ∪ (C- \ F), it 
results ∑

+∈ 'Cj

xj – ∑
−∈ 'Cj

xj = - (⏐C’- \ C-⏐+⏐F⏐) = kC’ –⏐C’-⏐ and ∑
+∈Cj

xj – ∑
−∈Cj

xj = ⏐C+ \ C’+⏐ -⏐F⏐ = kC’ 

+⏐C+ \ C’+⏐-⏐C- ∩ C’-⏐.      � 
 
Corollary 1. Let X(C+)- X(C-) ≤ kC -⏐C-⏐ and X(C’+) – X(C’-) ≤ kC’ -⏐C’-⏐ be the inequalities induced by the 
covers C and C’ respectively. If C is a non-trivial cover and any of the following conditions is satisfied, then 
the inequality induced by C is not dominated by the inequality induced by C’. 
 
(1) kC’ = ⏐C’⏐. 
 
(2) kC < kC’ . 
 
(3) kC = kC’ and C+ ⊄ C’+.  
 
(4) kC = kC’ and C- ⊄ C’-. 
 
 Proposition 5 provides a procedure for obtaining some covers implied by constraint (3) whose induced 
inequalities dominate the inequality induced by a given cover implied by (3). 
 
Proposition 5. Let C be a cover implied by constraint (3) with induced inequality (2). 
  
 If C+ ∩ J0 ≠ φ,  then  for  any  pair  of  sets  C’+, C’-  and  any  integer  kC’  such  that  C+ ∩ J0 ⊆ C’+ ⊆ C+,  
C’- ⊆ C-  and ⏐C’+ \ J0⏐+⏐C’-⏐+ lC  ≤ kC’ ≤ kC -⏐C+ \ C’+⏐ - ⏐C- \ C’-⏐,  where lC = max {l⏐ ∑

∩∈ + )JC(mj 0l

 aj ≤ b}, the 

following properties hold: 
 
(1) C’+ ∪ C’- is a cover implied by constraint (3), and inequality (8) is induced by C’+ ∪ C’-. 

 
       X (C’+) – X (C’-) ≤ kC’ -⏐C’-⏐           (8) 
 
(2) If C is a non-trivial cover, then kC’ ≤⏐C’+⏐+⏐C’-⏐- 1. 
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(3) Inequality (2) is dominated by inequality (8).  
 
Proof. (1)  Since C’+ ∩ J0 = C+ ∩ J0,  we have that  C’+ ∩ J0 ≠ φ  and  kC’  ≥ ⏐C’+ \ J0⏐+⏐C’-⏐+  
max {l⏐ ∑

∩∈ + )J'C(mj 0l

aj ≤ b}. On  the  other   hand,  considering  that  kC  ≤ ⏐C+⏐+⏐C-⏐ it results  kC’  ≤ ⏐C+⏐-⏐C+ 

\ C’+⏐+⏐C-⏐-⏐C- \ C’-⏐=⏐C’+⏐+⏐C’-⏐. Hence, by Theorem 1, C’+∪ C’- is a cover implied by constraint (3) and 
inequality (8) is induced by it. 
 
(2) It follows from the proof of claim (1) above. 
 
(3)  It follows from Proposition 3.     � 
 
Note. Given a cover  implied  by constraint (3) with induced  inequality (2), it is obvious that  there  exist  two  
sets,  say  C’+ and C’-, such  that  C+ ∩ J0 ⊆ C’+ ⊆ C+  and  C’- ⊆ C-. Furthermore, if  C+ ∩ J0  ≠ φ,  by  Theorem 
1  we have that  kC  ≥ ⏐C+ \ J0⏐+⏐C-⏐+ lC  and, since ⏐C+ \ J0⏐=⏐C+ \ C’+⏐ + ⏐C’+ \ J0⏐ and ⏐C-⏐ =⏐C- \ C’-

⏐+⏐C’-⏐, it results ⏐C’+ \ J0⏐+⏐C’-⏐+ lC  ≤ kC -⏐C+ \ C’+⏐-⏐C- \ C’-⏐. 
 
 Therefore the hypotheses of Proposition 5 are correct. 
 
 Proposition 6 states some conditions to be satisfied by a maximal cover from the set of covers implied by 
constraint (3). These conditions lead to the characterization given in Theorem 2, which will be improved in 
Theorems 3 and 4.  
 
Proposition 6. Let C be a maximal cover from the set of covers implied by constraint (3). Then C is a non-
trivial cover, C ⊆ J0 and its induced inequality is X (C) ≤ max {l⏐  ∑

∈ )C(mj l

aj ≤ b}.  

 
Proof. Let (2) be the inequality induced by C. It can easily be verified that C is a non-trivial cover; so, by claim 
(1) of Lemma 1 it follows that C+ ∩ J0 ≠ φ.Thus, choosing C’+ = C+ ∩ J0, C’- = φ and kC’ = lC in Proposition 5, it 
results that C+ ∩ J0 is a cover implied by constraint (3), and the inequality  X(C+) – X(C-) ≤ kC -⏐C-⏐ is 
dominated by the inequality X (C+ ∩ J0) ≤ lC. Consequently, it must be C+ = C+ ∩ J0, C- = φ and kC = lC, 
whence C ⊆ J0 and its induced inequality  is X(C) ≤ max {l⏐ ∑

∈ )C(mj l

aj ≤ b}.     � 

 
Theorem 2.  C  is a maximal cover from the set of covers implied  by constraint (3) if and only  if C is a maximal 
cover from the set of non-trivial covers C’ ⊆ J0  with induced inequality  X(C’) ≤ max {l⏐ ∑

∈ )'C(mj l

aj ≤ b}. 

 
Proof. (⇒) It follows from Proposition 6 and Theorem 1. 
 
    (⇐) Let C’ be a  cover  implied  by  constraint  (3)  with  induced  inequality  X(C’+) –X(C’-) ≤ kC’ -⏐C’-⏐ such 
that C’+ ≠ C  or  C’- ≠ φ  or  kC’ ≠ max {l⏐ ∑

∈ )C(mj l

aj ≤ b}. By Theorem 1, it suffices to prove that the inequality 

induced by C is not dominated by the inequality induced by C’. 
 
 
 If C’ is a trivial cover, by Corollary 1 the inequality induced by C is not dominated by the inequality induced 
by C’. 
 
 
 If C’ is a non-trivial cover, by claim (1) of Lemma 1 we have that C’+ ∩ J0 ≠ φ. 
 
 Let X(C’+ ∩ J0) ≤ max {l⏐ ∑

∩∈ + )J'C(mj 0l

aj ≤ b} be the inequality induced by C’+ ∩ J0. Then, by Proposition 5, 

C’+ ∩ J0 is a non-trivial cover implied by constraint (3) and the inequality induced by C’ is dominated by the 
inequality induced by C’+ ∩ J0. 
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• If C’+ ∩ J0 = C, the inequality induced by C’ is dominated by the inequality induced by C. Therefore, by 
Proposition 4 it follows that the inequality induced by C is not dominated by the inequality induced by C’. 

 
• If C’+ ∩ J0 ≠ C,  the inequality  induced by C is not dominated by  the inequality  induced by C’+ ∩ J0, since 

C’+ ∩ J0  is a non-trivial cover  with  induced  inequality X(C’+ ∩ J0)  ≤ max {l⏐ ∑
∩∈ + )J'C(mj 0l

  aj ≤ b}.     � 

 
 Given a maximal cover from the set of covers implied by constraint (3), Proposition 7 shows that either 
adding another variable to the left-hand-side of its induced inequality, or deleting a variable from the left-hand-
side and simultaneously reducing in one unit the right-hand-side, the resulting inequalities are not valid for the 
set F0. Proposition 8 shows the converse. 
 
Proposition 7. Let C be a maximal cover from the set of covers implied by constraint (3) with induced 
inequality X(C) ≤ kC. Then the inequalities X(C ∪ {k}) ≤ kC and X(C \ {k’}) ≤ kC – 1, where k Є J \ C and  
k’ Є C, are not valid for F0.  
 
Proof. Trivial.     � 
 
Proposition 8.  Let  C ⊆ J0  be  a  non-trivial  cover  with  induced  inequality  X(C)  ≤  kC,  where kC = max {l⏐ 

∑
∈ )C(mj l

 aj ≤ b}. If for all k Є J0 \ C and k’ Є C the inequalities X(C ∪ {k}) ≤ kC and X(C \ {k’}) ≤ kC – 1 are not 

valid for F0, then C is a maximal cover from the set of covers implied by constraint (3). 
 
Proof.  Let C’ ≠ C  be  a  non-trivial  cover  in  J0  with  induced  inequality  X(C’)  ≤  kC’, where  
kC’ = max {l⏐ ∑

∈ )'C(mj l

aj ≤ b}. If it can be shown that kC  - kC’ < ⏐C \ C’⏐, by Proposition 4 and Theorem 2 it will 

follow that C is a maximal cover from the set of covers implied by constraint (3). 
 
 Indeed, by Theorem 1 it results that X(C’) ≤ kC’ is a valid inequality for F0. 
 
 Suppose that kC – kC’ ≥⏐C \ C’⏐ and let (xj)j∈J Є F0. 
 
 If  C’ ⊄  C, let  k Є C’ \ C.  Since  C ∪ {k} ⊆ C’ ∪ (C \ C’),  we  have  that ∑

∪∈ }k{Cj

xj ≤ ∑
∈ 'Cj

xj + ∑
∈ 'C\Cj

xj  ≤ kC’ 

+⏐C \ C’⏐ ≤ kC, which is a contradiction.  
 
 If  C’ ⊂  C, let  k’ Є C \ C’.  Since C \ {k’} = C’ ∪((C \ C’) \ {k’}), it follows that  ∑

∈ }'k{\Cj

xj = ∑
∈ 'Cj

xj + 

∑
∈ }'k{\)'C\C(j

xj  ≤ kC’ +⏐C \ C’⏐- 1 ≤ kC – 1, which is also a contradiction.      � 

 
 Theorem 3 states a necessary and sufficient condition for a proper subset of J0  to be a maximal cover from 
the set of covers implied by constraint (3). 
 
Theorem 3.  Let  C ⊂ J0  be  a  non-trivial  cover  with  induced  inequality  X(C)  ≤  kC, where kC = max {l⏐ 

∑
∈ )C(mj l

aj ≤ b}. Then C is a maximal cover from the set of covers implied by constraint (3) if and only if 

∑
∈ )C(mj ck

aj + a γ (J0\ C)  ≤ b and ∑
γ∈ )})C({\C(mj ck

aj ≤ b. 

 
Proof.  (⇒) Let C ⊂ J0 be a maximal cover from the set of covers implied by constraint (3). Then the 
inequalities X(C∪{ γ (J0 \ C)}) ≤ kC and X(C \ { γ  (C)}) ≤ kC – 1 are not valid for F0. 
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 Let  us  consider  the  inequality  X(C ∪ { γ (J0\C)})  ≤  kC.  By  Proposition  2, it  results 

 
( )

∑
γ∪∈ + )C\J{C(mj 01ck

 aj ≤ b; therefore mkc+1(C ∪ { γ (J0\C)}) ≠ mkc+1(C), since ∑
+∈ )C(mj 1Ck

aj > b. Moreover 

mkc+1 (C ∪ { γ (J0\C)}) = mkc (C) ∪ {min{ γ (J0\C), γ (C\mkc
(C))}} and mkc+1(C) = mkc

(C) ∪ { γ (C\mkc
(C))};  

thus,  it  must  be  mkc+1(C ∪ { γ (J0\C)}) = mkc
(C)∪ { γ (J0 \ C)}, whence ∑

∈ )C(mj
Ck

aj + a γ (J0 \ C)  ≤ b. 

 
 Now, let us consider the inequality  X (C \ { γ (C)}) ≤ kC –1. If  kC = 1, we have that 

( )
∑

γ∈ })C{\C(mj ck

 aj ≤ b 

If  kC > 1, by Proposition 2 it follows that  
( )

∑
γ∈ })C{\C(mj ck

aj ≤ b. 

 
 (⇐)  Let C ⊂ J0  be  a  non-trivial  cover  with  induced  inequality  X (C)  ≤  kC  such  that  

( )
∑

∈ Cmj Ck

aj + a γ (J0 \C)  ≤ b  and   
( )

∑
γ∈ })C{\C(mj ck

aj ≤ b,  and  let  k Є J0 \ C  and  k’ Є C. 

 
 By Theorem 1 and Proposition  8, it suffices to prove that the inequalities X (C ∪ {k}) ≤ kC and  
X (C \ {k’}) ≤ kC –1 are not valid for F0. 
 
 Considering that mkc+1(C∪{k}) = mkc

(C) ∪ {min {k, γ (C \ mkc
(C))}}, it results ∑

∪∈ + })k{Cmj 1ck

 aj  ≤  
( )

∑
∈ Cmj ck

 aj + 

ak  ≤  
( )

∑
∈ Cmj ck

 aj + a γ (J0 \ C)  ≤  b and,  by Proposition 2, the inequality X(C∪{k}) ≤ kC is not valid for F0. 

 
 If kC = 1, the inequality X (C \ {k’}) ≤ kC – 1 is not valid for F0.  If  kC > 1 and it can be shown that  

∑
∈ })'k{\C(mj ck

 aj ≤ b, by Proposition 2 the inequality X (C \ {k’}) ≤ kC – 1 will not be valid for F0. 

 

• If  k’ Є mkC
(C), it follows that mkC

(C \ {k’}) = mkc+1(C) \ {k’}, hence ∑
∈ })'k{\C(mj ck

 aj = )C(aγ  + ∑
γ∈ )})C({\C(mj ck

 aj – 

ak’ ≤ 
( )

∑
γ∈ }C{\C(mj Ck

  aj ≤ b. 

 
•  If  k’ Є C \ mkC (C), we have that mkC

(C \ {k’}) = mkC
(C) and, consequently, 

∑
∈ })'k{\C(mj Ck

 aj   ≤ ∑
+γ∈ }))C({\C(mj Ck

aj ≤ b.       � 

 

 The characterization given by Theorem 3 is not valid if C = J0, since in this case γ (J0 \ C) is not defined. 
Theorem 4 states a necessary and sufficient condition for J0 to be a maximal cover from the set of covers 
implied by constraint (3). 
 

Theorem 4.  Let X (J0) ≤ k0  be the inequality induced by the cover J0,  where k0 = max{l⏐ 
( )
∑

∈ 0l Jmj
 aj ≤ b}. 

Then J0 is a maximal cover from the set of covers  implied by constraint (3) if and only if ∑
γ∈ )})J({\J(mj 000k

 aj ≤ b. 

 
Proof. It follows from the proof of Theorem 3.  (Note that  J0  is a non-trivial cover).     � 
 
Example 2.  Consider the 0-1 knapsack constraint   



 145

      x1 + 4x2 + 4x3 + 5x4 + 7x5 ≤ 8           (9) 
 

 Consider the cover C1 = {2, 4, 5} and let X (C1) ≤ 1 be its induced inequality. By Theorem 3, C1 is a maximal 
cover from the set of covers implied by constraint (9), since a2 + a3 = 8. 
 
 Consider the cover C2 = {3,4} and let X (C2) ≤ 1 be its induced inequality. By Theorem 3, C2 is not a 
maximal cover from the set of covers implied by constraint (9), since a3 + a5 = 11. 
 
 Consider the cover C3 = {1, 2, 3, 4, 5} and let X (C3) ≤ 2 be its induced inequality. By Theorem 4, C3 is a 
maximal cover from the set of covers implied by constraint (9), since a2 + a3 = 8. 
 
4.  MINIMAL COVERS AND EXTENSIONS 
 
Definition 6. A non-trivial cover C implied by constraint (3) such that C- = φ is said to be minimal with respect 
to constraint (3) if 

{ }
∑
∈ k\Cj

aj ≤ b    ∀k Є C. 

 
Definition 7.  Let  C  be  a  minimal  cover  with  respect  to constraint  (3).  The  set E (C) = C ∪ {j Є J0⏐j > γ (C)} 
is called the extension of C. 
 
 For the sake of completeness, let the well-known three propositions below. 
 
Proposition 9. If C is a minimal cover with respect to constraint (3), then kC =⏐C⏐ -1 and C ⊆ J0. 
 
Proof. Let k Є C, xj = 1   ∀j Є C \ {k} and  xj = 0   ∀j Є J \ (C \ {k}). Since (xj)j∈J  Є F0,  it must be kC =⏐C⏐ -1. 
Therefore, by Proposition 1 we have that  ∑

∈Cj

aj > b. Now, if  ∃  k Є C \ J0  then ∑
∈ }k{\Cj

aj = ∑
∈Cj

aj > b, 

contradicting the fact  that C is a minimal cover with respect to constraint (3).      � 
 
Proposition 10.  A set C ⊆ J0 is a minimal cover with respect to constraint (3) with induced inequality  
X(C) ≤⏐C⏐-1 if and only if ∑

∈Cj

aj > b and ∑
γ∈ )}C({\Cj

 aj ≤ b. 

 
Proof. It follows from Propositions 1 and 9.     � 
 
 
Proposition 11. If C is a minimal cover with respect to constraint (3), then 
 
(1) E (C)  is a non-trivial cover implied by constraint (3),  and the inequality  X (E(C)) ≤⏐C⏐-1 is induced  

by E(C). 
 
(2) The inequality induced by C is dominated by the inequality X (E(C)) ≤⏐C⏐-1. 
 
Proof. (1) It follows from Proposition 2, since m⏐C⏐(E(C)) = C and ∑

∈Cj

aj > b. 

          (2) Trivial.      � 
 
 Theorem 5 shows that every maximal cover from the set of covers implied by constraint (3) is the extension 
of a unique minimal cover with respect to (3).  
 
 Accordingly, for identifying these maximal covers it suffices to identify the minimal covers with respect to 
(3), see Propositions 9 and 10. A characterization of those minimal covers whose extensions are maximal 
covers from the set of covers implied by constraint (3) is given in Theorem 6. Proposition 12 is required by the 
proof of Theorem 5.  
 
Proposition 12. Let C and C’ be two minimal covers with respect to constraint (3). 
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 If  E(C) = E(C’), then C = C’. 
 
Proof.  Without loss of generality, suppose that γ (C) ≤ γ (C’). If ∃  j Є C \ C’, it follows that j < γ (C’) and,  
so, j ∉ E(C’), which contradicts the fact that C ⊆ E(C) = E(C’). 
  
 Consequently, it must be  C ⊆ C’.  Now, if  C ⊂ C’, choosing  k Є C’ \ C  we  have  that ∑

∈ }k'\{Cj

aj ≥ ∑
∈Cj

aj > b, 

whence C’ is not a minimal cover with respect to constraint (3).       � 
 
Theorem 5. If C is a maximal cover from the set of covers implied by constraint (3), then there exists a unique 
minimal cover with respect to constraint (3), say C’, such that E(C’) = C. 
 
Proof. By Proposition 6, C ⊆ J0 and its induced inequality is X(C) ≤ kC, where kC = max {l⏐ ∑

∈ )C(mj l

 aj ≤ b} 

<⏐C⏐.  Let C’ = mkC+1(C). Considering that  mkC
(C \ { γ  (C)}) = C’ \ { γ (C’)}, by Theorems 3 and 4 it results 

∑
γ∈ )}'C('\{Cj

aj ≤ b. Therefore, by Proposition 10 it follows that C’ is a minimal cover with respect to constraint (3) 

and its induced inequality is X(C’) ≤ kC. 
 
 If C = J0,  it is clear that  E(C’) = C.  If  C ⊂ J0,  by the proof of Theorem 3 we have that γ (J0 \ C) < γ (C \ 

mkC
(C)) and, since γ (C \ mkC

(C)) = γ (C’), it results E(C’) = C.  
 
 Hence, by Proposition 12, C’ is the unique minimal cover with respect to constraint (3) such that  
E(C’) = C.     �  
 
Theorem 6. Let C be a minimal cover with respect to constraint (3) and let X (E(C)) ≤⏐C⏐- 1 be the inequality 
induced by E(C). Then E(C) is a maximal cover from the set of covers implied by constraint (3) if and only if 
one of the two following conditions is satisfied: 
 
(1) E(C) ⊂ J0 and ∑

γ∈ )}C({\Cj

aj + a γ (J0\ E (C))   ≤  b. 

(2) E(C) = J0. 
 
Proof. It follows from Theorems 3 and 4. (Note that ∑

∈Cj

aj > b  and ∑
γ∈ )}C({\Cj

 aj ≤ b, from which  

max {l⏐ ∑
∈ ))C(E(mj l

aj ≤ b}=⏐C⏐-1 and ∑
γ∈ − ))})C(E({\)C(E(mj 1C

 aj ≤ b).      �  

 
 Theorems 5 and 6 show that the extensions of the strong covers defined in Balas (1975) are the maximal 
covers from the set of covers implied by the related 0-1 knapsack constraint. So, this type of maximal covers 
can be used to obtain facets of the knapsack polytope, see e.g. [Balas (1975), Balas-Zemel (1978), Padberg 
(1975), Weismantel (1997) Wolsey (1976). 
 
 REMARK. In [2]  it  was  shown  that, given a  0-1 knapsack constraint, the inequality induced by the  
extension  of  a  strong cover C is not dominated  by any other inequality of  the  form X(E(C’)) ≤⏐C’⏐-1,  
where C’ is a minimal cover with respect to the  knapsack constraint and ⏐C’⏐ =⏐C⏐. It is worthy of note that 
we have shown that the inequality induced by the extension of a strong cover is not dominated by any other 
inequality of the form X(C’+) – X(C’-) ≤ kC’ -⏐C’-⏐,  where C’+  ∪ C’- is a cover implied by the knapsack 
constraint. 
 
Example 3. Consider the 0-1 knapsack constraint  
 
         2x1 + 3x2 + 3x3 + 5x4 + 6x5 + 7x6 + 7x7  ≤ 12.         (10) 
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 Let C1 = {1, 4, 6}, C2 = {2, 4, 5} and C3 = {1, 2, 3, 4}. By Proposition 10 it results that C1, C2 and C3 are 
minimal covers with respect  to (10);  their extensions are  E(C1) = {1, 4, 6, 7}, E(C2) = {2, 4, 5, 6, 7} and 
E(C3) = {1, 2, 3, 4, 5, 6, 7}. 
 
 Let (11), (12) and (13) be the inequalities induced by E(C1), E(C2) and E(C3) respectively. 
 

 x1       + x4        + x6 + x7   ≤  2           (11) 
 
        x2          + x4 + x5 + x6 + x7   ≤  2           (12) 
 
 x1 + x2 + x3 + x4 + x5 + x6 + x7    ≤  3           (13) 

 
 Then, by Theorem 6 it follows that E(C1) is not a maximal cover from the set of covers implied by constraint 
(10), but E(C2) and E(C3) are maximal covers.  
 
Example 4.  Consider the following 0-1 knapsack constraint taken from Example 2.1 in [15]. 
 
      x1 + x2 + x3 + x4 + 3x5 + 4x6 ≤ 4          (14) 
 
 It can be shown from Proposition 10 and Theorem 6 that the inequalities induced by the maximal covers 
from the set of covers implied by constraint (14) are (15)-(25). 
 
      x1                              + x6  ≤  1            (15) 
 

        x2                       + x6  ≤  1          (16) 
 
               x3                + x6  ≤  1            (17) 
 
                      x4         + x6  ≤  1            (18) 
 
                              x5 + x6  ≤  1             (19) 
 

 x1 + x2                + x5 + x6  ≤  2             (20) 
 
 x1          + x3       + x5 + x6  ≤  2              (21) 

 
 x1                + x4 + x5 + x6  ≤  2                     (22) 
 
         x2 + x3           + x5 + x6  ≤  2               (23) 
 
         x2        + x4 + x5 + x6  ≤  2                                   (24) 
 
                x3 + x4 + x5 + x6  ≤  2                           (25) 

 
 Thus, it can easily be verified that inequalities (26)-(30) are induced by covers implied by constraint (14), 
see inequalities (20) and (25).  
 
      x1 + x2 + x3       + x5 + x6  ≤  3             (26) 
 
      x1 + x2       + x4 + x5 + x6  ≤  3         (27) 
   
      x1        + x3 + x4 + x5 + x6  ≤  3         (28) 
 
             x2 + x3 + x4 + x5 + x6  ≤  3         (29) 
 
      x1 + x2 + x3 + x4 + x5 + x6  ≤  4           (30) 
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 Moreover, it can be shown that each of the inequalities (20)-(30) can be tightened by using coefficient 
increasing procedures, see [Escudero et al. (1998), Escudero-Muñoz (1998), Muñoz (1999)] among others. 
As a result, a complete inequality description of the polytope related to constraint (14) is obtained, see 
inequalities (1)-(16) from [Weismantel (1997)]. 
 
 A procedure for identifying non-dominated inequalities induced by the extensions of certain minimal covers 
with respect to constraint (3) is presented in [Dietrich et al. (1993)], see also [Muñoz (1995)]. The two 
examples below taken from [Dietrich et al. (1993)] show that these extensions can be a very small fraction of 
the whole set of maximal covers from the set of covers implied by (3). This fact, together with the 
computational results that have been obtained in the literature by applying the algorithms given in [Dietrich 
et.al.(1993)] and by using the resulting covers to tighten a 0-1 model (see [Dietrich-Escudero(1993), 
Escudero et al. (1998)] among others), indicates that an approach for identifying maximal covers based on 
Proposition 10 and Theorem 6 could become very useful in 0-1 model tightening.  
 
Example 5. Consider the 0-1 knapsack constraint 
 
     x1 + 2x2 + 3x3 + 4x4 + 5x5 + 8x6 + 9x7 +  
 
     16x8 + 17x9 + 32x10 + 33x11 + 64x12 + 65x13  ≤ 128.      (31) 
 
 It can be shown from Proposition 10 and Theorem 6 that there are 83 maximal covers from the set  
of covers implied by constraint (31), but only 3 of them are identified by the procedure proposed in  
Dietrich et al. (1993). 
 
Example 6. Consider the 0-1 knapsack constraint  
 
    5x1 + 6x2 + 6x3 + 7x4 + 9x5 + 10x6 + 10x7 + 
 
    11x8 + 12x9 + 14x10 + 14x11 + 15x12 + 15x13 + 16x14 + 
 
    17x15 + 18x16 + 20x17 + 21x18 + 22x19 + 22x20 + 23x21  ≤ 119.       (32) 
 
 It can be shown from Proposition 10 and Theorem 6 that there are 23514 maximal covers from the  
set of covers implied by constraint (32), but only 41 of them are identified by the procedure proposed in  
Dietrich  et al. (1993). 
 
5. CONCLUSIONS 
 
 In this paper we have introduced the concept of maximal covers from a set of covers and we have 
given some characterizations of several types of covers. It has been shown that the maximal covers 
from the set of covers implied by a 0-1 knapsack constraint are the extensions of the so-called strong 
covers. Some situations that illustrate the benefits of maximal cover identification in 0-1 model 
tightening have also been shown. 
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