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ABSTRACT 
A single server vacation queue with Poisson arrivals, deterministic service of constant duration b(> 0) 
and two stages of heterogeneous server  vacations having different general (arbitrary) distributions is 
studied. This model is designated as (M/D/G1,G2/1).  After completion of each service, the server may 
take a vacation with probability p or may continue working in the system with probability 1-p.  Closed 
explicit forms for the steady state system size probability generation functions of various states of the 
server as well as the average number and the average waiting time in the system  and the queue are 
obtained.  Some new useful special cases including the known results of the M/D/1 queue are derived.  
Finally a numerical illustration is discussed. 
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RESUMEN  
Una cola con un servidor simple vacacional con arribos Poisson, con constante de duración de servicio 
determinística b(> 0) y servidor vacacional heterogéneo bietápico con distribuciones diferentes 
(arbitrarias) es estudiado. Este modelo es designado como M/D/G1/G2/1. Después de completar cada 
servicio el servidor puede tomar una vacación con probabilidad p o puede continuar trabajando en el 
sistema con probabilidad 1-p. Expresiones cerradas y explícitas para la función de probabilidad que 
genera el tamaño del sistema de estado estable para varios estados del servidor, así como el número 
promedio y el promedio del tiempo de espera en el sistema y la cola son obtenidos. Algunos casos 
nuevos especiales, incluyendo los resultados conocidos de colas M/D/1, son derivados. Finalmente una 
ilustración numérica es discutida. 
 
Palabras clave:  arribos de Poisson, estado firme, probabilidad de la función generadora, servicios  
                             determinísticos, vacaciones de dos-fase, tamaño del sistema de estado, promedio de  
                             tiempo de espera.  

  
1.  INTRODUCTION 
 
 Queueing systems such as M/D/1, D/M/1 and D/D/1 are widely found in queueing literature. (see Bunday 
[1986], Kashyap and Chaudhry [1988], Bhat [1972], etc). These systems assume a single server, 
Poisson/deterministic arrivals and exponential/deterministic service or deterministic arrivals and deterministic 
service. In all these models, the server is assumed to be always available in the system. However, in many 
real life situations the server may not always be available in the system. If the server is a human, he may 
leave the system from time to time and if the server is mechanical or electronic, it may breakdown from time 
to time.  In the present paper, we have studied the steady state behaviour of a single server queue with 
deterministic service and two stages of heterogeneous server  vacations having different general (arbitrary) 
distributions. For convenience we designate such a system as M/D/G1,G2/1. 

   Bernoulli schedule server vacations is used. This means that after each service the server may take a 
vacation with probability  p or may continue staying in the system with probability 1-p. Such kind of policy 
including many other policies have been studied by many authors.  To mention a few, we refer to Keilson and 
Servi [1986], Cramer [1989], Shanthikumar [1988] and Madan [1991, 1999]. For a complete overview of 
queues with vacation the reader is referred to Doshi [1980]. 

 There are many situations in real life where the service times are constant. For example, a cycle of a 
washing machine takes a fixed length of time to complete one service and so does an air flight from a 
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destination A to destination B. Another example is an automatic car-wash station where washing time for 
each car is constant. Such a system may be stopped (vacation) from time to time for its checking or 
overhauling etc after each service. Further, if the server is electronic or mechanical like the washing machine 
or the automatic car wash station, its first stage of vacation corresponds to waiting time till the expert 
repairmen arrive and the second stage may correspond to the actual repair time. Similarly if the server is a 
human, then his first stage vacation may be his actual vacation period and the second  stage may be his 
travel time or the extra time he takes  before he actually resumes   work. 

 
2. THE MATHEMATICAL MODEL 

 
 The mathematical model is described briefly by the following assumptions: 
 
- Poisson arrivals with mean arrival rate λ (>0) 
 
- Deterministic server vacations with a constant service time b (>0) 
 
- Bernoulli schedule server vacations which means that after each service the server may go on a vacation 

with probability p and may stay on in the system with probability 1-p. 
 
- When the server takes a vacation, it consists of two stages of  vacations with heterogeneous vacation 

times, with the jth stage  having  probability density function bj(v) and the distribution function )v(B j. Let 

βj(x)dx be the conditional probability that the jth stage vacation will complete during the time interval (x,x+dx] 
given that the same was not complete till time x. Therefore,  
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3. DEFINITIONS AND NOTATIONS 

  
 We define 

 
)t(Hn=  probability that at time t there are n(0≥) customers in the system  and the server is providing 

service when n>0 and is idle but present in the system when n = 0. 
 
)t,x(V )j(

n= probability that at time t there are n(0≥) customers in the system  and the server is on j th stage 

of vacation (j = 1,2) with elapsed vacation time x. Correspondingly, ∫
∞

=
0
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n dx)t,x(V)t(Vis the 

probability that the server is on the jth stage of vacation (j = 1,2) without regard to the elapsed 
vacation time x. 
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 stand for the corresponding steady state probabilities. 

 
 Furthermore, define the following steady state probability generating functions: 
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∞
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4. STEADY STATE SYSTEM EQUATIONS 
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 Equations (4) to (8) are to be solved subject to the following boundary conditions: 
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5. STEADY STATE PROBABILITY GENERATING FUNCTIONS  
 

 Multiplying both sides of equation (4) by zn+1, sum over n from 0 to ∞ and use equation (3), we get 
 

    zH(z) = (1 - p)K(z)H(z) + (1 - p)(z - 1)K(z)H0 + ∫
∞

β
0

2
)2( .dx)x()z,x(Vz             (11) 

Replacing K(z) by e-λ(1-z) and simplify, then  
 

    [z - (1 - p)e-λb(1 - z)]H(z) = (1 - p)(z - 1)e-λb(1 - z)H0 +∫
∞

β
0
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 Next, by multiplying both sides of equation (5) by zn, sum over n from 1 to  ∞ and add the result to equation 
(6), use equation (3) and simplify, we get 
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                (12) 

 
 A similar operation on equations (7) and (8) yields 
 

     .0)z,x(V))x(z()z,x(V
x

)2(
2

)2( =β+λ−λ+
∂
∂

                (13) 

 
 Also, by multiplying both sides of equation (9) and (10) by zn+1 and zn respectively and summing over n from 

0 to ∞, using equation (3) and simplifying we obtain 
 

     zV(1)(0,z) = pH(z)K(z) + p(z - 1)K(z)H0,                 (14) 
 

     V(2)(0,z) = ∫
∞

β
0

1
)1( .dx)x()z,x(V                           (14a) 

 
 Substituting for K(z) = e-λb(1 - z)  from (3d), into equation (14) then 
 

     zV(1)(0,z) = pH(z)e-λb(1 - z) + p(z - 1)e-λb(1 - z)H0.               (15) 
 

 Integrating equations (12) and (13) between 0 and  x  then 
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 Again by integrating equations (16) and (17) by parts with respect to x we get 
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 In order to determine the integrals ∫
∞

β
0

1
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∞
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21
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and (11a) respectively, multiply equation (16) by  β1(x) and (17) by β2(x) and integrate both between 0 and x, 
thus  
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 Using equation (24) in (11a) we obtain 
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 Next, substitute for V(1)(0,z) from equation (14) into equation (26) then 
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 Now, from (14a)  
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 Also, substituting for V(2)(0,z) from  equation (28) into equation  (25) then 
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 Substituting for H(z) from equation (31) into equation (20) and (27) and simplifying  we obtain  
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 It remains to determine the only unknown constant H0 which appears in the numerators of the right hand 

sides of equations (31), (32) and (33). In order to achieve this objective, use the normalizing condition  
H(1) + V(1)(1) + V(2)(1) = 1.  However, since each of the equations (31), (32) and (33) are indeterminate of the 

zero/zero form, we employ L’Hopital’s rule and simplify to obtain 
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 Using equations (34), (35) and (36) and simplifying, the normalizing condition yields 
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 Equation (37) yields  the condition  
 

      λ(b + pE(V1) + pE(V2)) < 1                (38) 
 

under which the steady state shall exist. 
 

 Note that if there are no server vacations then letting p = 0, equations (37) and (38) yield H0 = 1 - λb, λb < 1 
 which are  known results of the M/D/1 queue. 

 
 Now let H, V(1) and V(2) denote the steady state probabilities that the server is present in the system, the 

server is on first stage of vacation and the server is on second stage of vacation respectively. Then using (37) 
in equations(34), (35) and (36), we obtain 
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 Next, to find the utilization factor ρ, note that since H, the probability that the server is present in the system 

also includes H0, the probability that the server is idle, then by using (37) and (39), the system’s utilization 
factor ρ is given by 
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      ρ = H - H0  =.
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 Substituting the value of H0 from (37) into (31), (32) and (33) we have now completely determined all the 

probability generating functions. 
 
6. THE AVERAGE SYSTEM SIZE AND THE AVERAGE WAITING TIME IN THE SYSTEM AND THE QUEUE 
 

 We define P(z) = H(z)+V(1)(z) + V(2)(z) to be the probability generating function of the system size 
regardless of the state of the server. Then on adding (31), (32), (33)  we have 
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where H0 has been found in equation (37). 
 

 Then the average system size is given by  L = )z(P
dz
d

at z = 1 . However, since P(z) is indeterminate of the 

zero/zero  form at z = 1, we employ L’Hopital’s rule twice and obtain 
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where dashes denote derivatives with respect to z at z = 1.  

 
 Carrying out the desired derivatives and after a lot of algebra and simplification we obtain 
 

  N'(1) = [1 + E(V1) + pE(V2)]H0                    (46) 
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where E(V1),E(V2) and )V(E),V(E 2
2

2
1 are respectively the mean vacation times and the second moments of 

the stage 1 and stage 2 vacation times. We further note that in carrying out the  above derivatives,  we have 

used the facts that at z = 1, )V(E)z(b,1)z(b j
'
j1 λ=λ−λ=λ−λ and  ),V(E)z(b 2

j
2''
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 Using (46), (47), (48) (49) into equation (45) the average system size L is explicitly determined. 
 

 Furthermore, by using Little’s formulas, we can obtain the average waiting time in the system as  
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       W = 
λ
L

                                          (50) 

 
where L has been found in (45). 

 
 In addition, we obtain the average queue size Lq and the average waiting time in the queue Wq as Lq= L - ρ,  
 

        Wq  = 
λ

Lq
                 (51) 

 
where L and ρ have been found in equations (45) and (42) respectively. 

 
7. SPECIAL CASES  
 

Case 1:  No Server Vacations  
 

 In this case, we let p = 0 in the main results obtained in equations (31), (32), (33) and equations (45) to 
(51). We thus  obtain 
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 We note that results in (52), (53), (54) agree with known results of the M/D/1 queue. (see Kashyap and 

Chaudhry [5], page 60 ) 
 
 

Case 2:  No Second Stage of Vacation  
 

 In this case we let =,0)V(E,0)V(E,0)z(b 2
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so that in this case we have 
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 Further we can also find W, Lq and Wq as before. 
 

Case 3:  First Stage Vacation is Exponential and No Second Stage Vacation 
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Case 4:  Both Vacation Stages are Heterogeneous Exponential   
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 Using  ρ  found in equation (67) and L in equation (76) we can further find  
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Case 5:  2-Erlangian Vacations  

   (Both  Vacation Stages are Identically  Exponential) 
 

 In this case, we let β1 = β2 = β  in the results of case 4 and obtain 
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8. A NUMERICAL ILLUSTRATION 
 

 In order to see the effect of 
various parameters on server’s idle 
time H0,  system’s utilization factor 
ρ, the proportion of time the server 
is present in the system, the 
proportion of server’s vacation time 
in stage 1 and stage 2  and various 
other queue characteristics such  
as L, W, Lq and Wq, we base our 
numerical example on the results 
given in case 4. For this purpose, 
arbitrary values of λ, p, b, β1 and β2  

are chosen, as indicated in the 
following tables, such that the 

steady state condition 
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β
+

β
+λ

21

ppb< 1 

 
given in (66) is always satisfied. 

Table 1. Computed values of the probabilities of various states  

        of the server for fixed b = ,
20
1

  β1 = 20, β2 = 30. 

 
Probability 

(p) H V(1) V(2) 

0.00 1.000 0.00000 0.00000 

0.10 0.992 0.00331 0.00496 

0.20 0.984 0.00656 0.00984 

0.30 0.976 0.00976 0.01463 

0.40 0.968 0.01290 0.01936 

0.50 0.960 0.01600 0.02400 

0.60 0.952 0.01905 0.02857 

0.70 0.945 0.02205 0.03307 

0.80 0.938 0.02500 0.03750 

0.90 0.930 0.02791 0.04186 

1.00 0.923 0.03080 0.04615 
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Table 2.  Computed values of the various queue characteristics for fixed, b = ,
20
1

β1 = 20, β2 = 30. 

 

p Ho ρ L W Lq Wq 

0.00 0.900 0.100 0.10556 0.05280 0.00556 0.00278 

0.10 0.876 0.116 0.12752 0.06375 0.01182 0.00591 

0.20 0.853 0.131 0.14935 0.07468 0.01815 0.00908 

0.30 0.829 0.146 0.17108 0.08554 0.02478 0.01239 

0.40 0.807 0.161 0.19274 0.09637 0.03144 0.01572 

0.50 0.784 0.176 0.21430 0.10716 0.03830 0.01915 

0.60 0.762 0.191 0.23585 0.11793 0.04537 0.02268 

0.70 0.740 0.205 0.25740 0.12868 0.05270 0.02635 

0.80 0.719 0.219 0.27890 0.13943 0.06015 0.03007 

0.90 0.698 0.233 0.30037 0.15018 0.06781 0.03391 

 

 

λ = 2 
      

 

 

1.00 0.677 0.246 0.32192 0.16096 0.07572 0.03786 

0.00 0.800 0.200 0.22500 0.05600 0.02500 0.00600 

0.10 0.760 0.231 0.28095 0.07000 0.05000 0.01200 

0.20 0.721 0.262 0.33821 0.08500 0.07600 0.01900 

0.30 0.683 0.293 0.39707 0.09900 0.10400 0.02600 

0.40 0.645 0.323 0.45790 0.11400 0.13500 0.03400 

0.50 0.608 0.352 0.52101 0.13000 0.16900 0.04200 

0.60 0.571 0.381 0.58700 0.14700 0.20600 0.05100 

0.70 0.535 0.410 0.65640 0.16400 0.24700 0.06200 

0.80 0.500 0.438 0.73000 0.18300 0.29300 0.07300 

0.90 0.465 0.465 0.80870 0.20200 0.34400 0.08600 

λ = 4 

1.00 0.431 0.492 0.89385 0.22300 0.40200 0.10000 

0.00 0.700 0.300 0.36400 0.06100 0.06400 0.01100 

0.10 0.645 0.347 0.47400 0.07900 0.12700 0.02100 

0.20 0.590 0.393 0.59300 0.09900 0.20000 0.03300 

0.30 0.537 0.439 0.72300 0.12000 0.28400 0.04700 

0.40 0.484 0.484 0.86800 0.14500 0.38400 0.06400 

0.50 0.432 0.528 1.03300 0.17200 0.50500 0.08400 

0.60 0.381 0.571 1.22600 0.20400 0.65500 0.10900 

0.70 0.331 0.614 1.46000 0.24300 0.84600 0.14100 

0.80 0.281 0.656 1.75500 0.29300 1.09900 0.18300 

0.90 0.233 .698 2.14900 0.35800 1.45100 0.24200 

λ = 6 

 

1.00 0.185 0.739 2.71600 0.45300 1.97800 0.33000 
 
 It is clear from Table 1 that, as expected, when p increases the proportion of time that the server is present 
in the system (H) decreases but both V(1) and V(2) increase. Also, from Table 2 all given system 
characteristics are varying with p and λ. In particular for fixed p when λ increases the server’s idle time (Ho) 
decreases but  all other quantities ρ, L, Lq, W and Wq increase as it should be. Similar conclusion can be 
drawn when λ is held fixed and p increases. 
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Table 3(a). Computed values of various states of the server for fixed  b = ,
20
1

 p = 0.5 and λ = 6. 

 
β1 β2 H V(1) V(2) 

32 0.963 0.01505 0.02189 
36 0.965 0.01340 0.02193 

 
22 

40 0.966 0.01208 0.02195 
32 0.966 0.01510 0.01858 
36 0.968 0.01344 0.01861 

 
26 

40 0.969 0.01212 0.01864 
32 0.969 0.01514 0.01615 
36 0.970 0.01348 0.01617 

 
30 

40 0.972 0.01215 0.01619 

 
Table 3(b). Computed values of various queue characteristics for fixed b = ,

20
1

  p = 0.5 and λ = 6. 

  
β1 β2 Ho ρ L W Lq Wq 

32 0.453 0.511 0.94816 0.15803 0.43763 0.07294 
36 0.463 0.501 0.90838 0.15139 0.40704 0.06784 22 
40 0.472 0.494 0.87812 0.14635 0.38415 0.06403 
32 0.474 0.492 0.86632 0.14439 0.37433 0.06239 
36 0.485 0.483 0.82987 0.13831 0.34714 0.05786 26 
40 0.494 0.475 0.80211 0.13369 0.32681 0.05447 
32 0.490 0.478 0.81175 0.13529 0.33345 0.05575 
36 0.501 0.469 0.77747 0.12958 0.30847 0.05141 30 
40 0.510 0.462 0.75134 0.12522 0.28980 0.04830 

 
 Table 3(a) and 3(b) show that for fixed, when β1, when β2  increases (which means that 1/β2, the mean 

vacation time in stage 2 decreases), H increases, V(1), V(2), L, W, Lq and Wq all decrease as it should be. 
A similar conclusion can be drawn when β1 varies and β2 is held fixed. 
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