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ABSTRACT 
In this paper a new algorithm to compute the Euclidean distance from a point to a conic is presented. 
This algorithm provides good approximations for the Euclidean distance, even when the point is not very 
close to the given conic. Furthermore, the approximations may be improved iteratively to attain a 
prescribed accuracy. Unlike the most commonly known methods to approximate the Euclidean distance, 
in the proposed method the coordinates of the footpoint for the orthogonal projection of the point on the 
conic are computed. This particular feature permits to obtain a noteworthy accuracy without increasing 
too much the computational cost.  
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RESUMEN 
En este trabajo se presenta un nuevo algoritmo para calcular la distancia Euclideana de un punto a una 
cónica. Este algoritmo proporciona una buena aproximación incluso cuando el punto no se encuentra 
muy próximo a la cónica. Adicionalmente, la aproximación se puede mejorar de forma iterativa hasta 
alcanzar la precisión deseada. A diferencia de los métodos más conocidos, el método propuesto 
calcula las coordenadas de la proyección ortogonal del punto externo sobre la cónica. Esto nos permite 
obtener una notable precisión sin incrementar sustancialmente el costo computacional del algoritmo. 
 
Palabras clave: cónicas, distancia Euclidea desde un punto hasta una cónica.  
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1. INTRODUCTION. PREVIOUS WORK 
 
 In this paper we study the problem of computing the Euclidean distance from a point on the plane to an 
arbitrary conic. This subject have been intensively treated in the literature (see [Bookstein (1979), Paulidis 
(1983), Sampson (1982) and Taubin (1994)]). However, most of the existing methods avoid the computation 
of the coordinates of the footpoint of the orthogonal projection on the conic, so that there is no control on the 
accuracy of the obtained approximate distance. Moreover, instead of the exact Euclidean distance a 
“suitable” approximation is computed, which usually happens to be a good approximation to the Euclidean 
distance only if the point is very close to the conic. Nevertheless, in some practical problems of computer 
graphics and vision, 2D robot path planning, pattern recognition and computational mechanics, it is necessary 
to compute the footpoint coordinates and we may not assume that the point is very close to the conic.  
 
 A new algorithm to compute the Euclidean distance from a point to a conic is presented here. This 
algorithm provides a good approximation for the Euclidean distance, even when the point is far from the given 
conic. Furthermore, the approximation may be improved iteratively to attain a prescribed accuracy without 
increasing too much the computational cost. 
 
 Let be C a conic with implicit equation 
 
     f(x,y) = a20x2 + a11xy + a02y2 + a10x + a01y + a00 = 0         (1) 
 
and q = (x0, y0) a point on the plane not on C. 
 
 By definition, the Euclidean distance from q to C, d(q,C), is given by  
 
      d(q, C) = min {||q - p||:f(p) = 0}               (2) 
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 Thus, to compute the Euclidean distance we have to solve a constrained nonlinear minimization problem. 
More geometrically, the Euclidean distance from q to C is attained at a point p on C such that the normal of C 
at p passes through q. Two different approaches to the solution of the problem have been considered, 
depending on which representation of the conic is used. 
 
1.1 Implicit approach 
 
 If the conic is represented by its implicit equation (1) then the coordinates (x,y) of the footpoint p and the 
Euclidean distance d may be computed as the solution of the following nonlinear system of polynomial 
equations, 
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 To be more precise, p and d are solutions of (3), but this system may have four solutions (depending on the 
position of q up to four normals to the conic may pass through q) and we are interested in that solution which 
gives us the global minimum (2). Thus, to compute the actual coordinates of footpoint p and the Euclidean 
distance d, we need a good initial approximation of them. Up to the moment, general methods for estimating 
such good initial approximations for x,y and d are not reported in the literature. Alternatively, some other 
approaches have been studied.  
 
 Using elimination theory Kriegman and Ponce [1990] and Ponce et al. [1992] eliminate the variables x and 
y (whose initial approximations are more difficult to estimate) and obtain a single polynomial equation on d, 
Φ(d) = 0, whose minimal positive root d*, is the Euclidean distance from q to C. Unfortunately, the coefficients 
of Φ(d) are complicated polynomial expressions in the coefficients of f and in the coordinates of the external 
point q, even when the conic have been reduced to the canonical form. In the Annex we show the expression 
of Φ(d) in this particular case. 
 
 Hence, the computation of the coefficients of Φ(d) may be expensive and the problem of finding its roots, 
using floating point arithmetic, may be numerically unstable. 
 
 To overcome these difficulties, other approximations of the Euclidean distance have been considered. The 
simplest is the algebraic distance, da(q,C) given by 
 
       da (q,C) =⏐f (x0, y0)⏐          (4) 
 
 To compute the algebraic distance is very cheap, but it is a poor approximation of the Euclidean distance. 
More recently, G.Taubin introduced in [Tau2] several approximations of the Euclidean distance from a point 
to an implicit curve f(x,y) = 0, if the function f(x,y) has continuous partial derivatives in a neighborhood of q. 
 
 Taubin’s approximate distance of first order, δ1 is given by,  
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while Taubin’s approximate distance of second order, δ2, is the unique positive root of the quadratic 
polynomial, 
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 All previous mentioned approximations of the Euclidean distance are given by closed expressions. 
Moreover, their computation is cheap. Nevertheless, they have the following disadvantages: 
 
1. They give us a good approximation of the Euclidean distance, only when the external point is very  close to 

the conic. 
 
2. They do not provide us the coordinates of the normal footpoint. Hence, we may not improve the accuracy of 

the computed distance solving (3), because we don’t have an initial approximation of the footpoint. 
 
 In our previous paper [Hernández et.al.(1997)] we have proposed a method to compute the Euclidean 
distance from a point to a conic given in implicit form, which is inspired in the method developed by Sampson 
in [1982]. This method is computationally cheap and provides the coordinates of the footpoint. Hence, we 
may improve the accuracy of the approximation of the Euclidean distance solving the nonlinear system (8). 
However, if the point is not close to the conic, we can not assure that our method converges to the orthogonal 
projection which realizes the Euclidean distance.   
 
1.2   Parametric approach 
 
 An alternative solution to the problem of computing the Euclidean distance from a point to a conic, is to use 
a parametric representation of the conic. 
 
 We may represent the conic by two rational polynomials  
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where p,q, and r are polynomials of degree two. Then, the implicit equation of the normal to the conic at the 
point (x(tp), y(tp)) is, 
 

x’(tp) (x-x(tp)) + y’(tp) (y-y(tp)) = 0 
 
 Thus,  according  to  the  definition  of  the  Euclidean distance,  we  have  to  compute  a  point p = (x(tp), 
y(tp)) such that the normal to C at p passes through the external point q = (x0,y0) i.e., 
 
        Γ(t) = x’ (tp) (x0 – x(tp)) + y’ (tp) (y0 – y(tp)) = 0          (7) 
 
 Since x(tp) and y(tp) are rational functions with the same denominator, (7) is a polynomial equation of 
degree four in tp. The coefficients of Γ (t) are complicated polynomial functions of the coefficients of x(t) and 
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y(t) and the coordinates of the external point (x0, y0). For instance, if we use the Bezier representation of a 
conic with control polygon b0 = (b0x, b0y), b1 = (b1x, b1y), b2 = (b2x, b2y) and w1 Є R [Far]  
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then the polynomial Γ(t) is shown in the Annex. 
 
 Again, the computation of the coefficients of this polynomial may be expensive, and the problem of 
computing its real roots numerically unstable. 
 
2.  THE NEW ALGORITHM 
 
2.1 Theoretical results 
 
 Let’s return to the system of nonlinear equations (3). If we were able to compute the coordinates (x,y) of the 
footpoint, then the Euclidean distance d may be obtained immediately from the first equation. Hence, we may 
restrict ourselves to the solution of the nonlinear system, 
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in the coordinates of the footpoint p =(x,y). 
 
 This system may be efficiently solved by the Newton’s method if: 
 
a)  The Jacobian matrix is nonsingular in a neighborhood of the solution. 
 
b)  A good initial approximation to the solution is known. 
 
 In connection with the first point we proved the following result. 
 
Theorem: Let be C a conic with implicit equation (1) and q = (x0, y0) a point not on C, then there exists a set 
of points on the plane Z(C) (with Lebesgue measure 0) such that: 
 

i) If q ∉ Z (C) then the Jacobian matrix of the system (8) is nonsingular in any of its solutions p. 
 

ii) If q ∈ Z (C) then the Jacobian matrix of the system (8) may be singular at some of its solutions p. 
 

Proof:  
 
 Lets denote by f1(x,y) = 0 and f2(x,y) = 0 the equations of the system (8). We may rewrite f2 as 
 
      f2(x,y) = f1y(x-x0) – f1x(y-y0) = 0             (9) 
 
 Then, the Jacobian matrix of (8) is given by, 
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 Assuming that (9) holds, the determinant of the Jacobian matrix, f3(x,y), reduces to, 
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     f3(x,y) = f1xf1yy(x-x0) + f1yf1xx(y-y0) - 2
y1

2
x1 ff −           (10) 

 
 Hence, the Jacobian of the system (8) is singular in a solution p = (x,y), if and only if the polynomial system 
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has a solution. Using elimination theory, we may eliminate the variable x from f1 and f2 as well as from f1 and 
f3 obtaining two polynomial expressions in the variable y. Finally, eliminating y from this two last equations, 
we obtain a polynomial expression Ψ(x0,y0) of degree twelve in x0 and y0, whose coefficients depend on the 
coefficients of the conic C and with the property that (11) has a solution if (x0,y0) is a root of Ψ. Thus, if the 
Jacobian of the system (8) is singular in a solution p = (x,y) then (x0,y0) belongs to the algebraic curve Z (C) : 
Ψ (x0,y0) = 0.  Since f1 = 0, f2 = 0, and f3 = 0 are quadratic equations in x and y, after Bezout’s theorem 
[Walker(1978)] any pair of them has at most four common solutions.  g 
 
 As a consequence of the previous result, only for a subset of points on the curve Z(C) the Jacobian matrix 
of the system (8) is singular and it is not possible to compute the Euclidean distance solving (8) by the classic 
Newton’s method. Nevertheless, this situation occurs with zero probability. 
 
 In any case, we need a good initial approximation to the footpoint, since we are interested in the global 
minimum of (2). Exploiting the geometry of conics, we may find a conic section containing the actual 
orthogonal projection p. 
 
2.2 Computing a good initial approximation 
 
• How to compute a good initial approximation of the footpoint? 
 
-  Instead of considering the family of normal lines to the points on the conic, we are going to select from the 

pencil of lines passing through the external point q the ones which are normal lines to some point on the 
conic (see Fig. 1). 

 
  This approach is simpler, since the parameter space for the pencil of lines is a circle, while in the direct 
approach it is a general conic. In order to simplify the analysis, let’s suppose that the conic has been reduced 
to the canonical form. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Direct Approach          Our Approach 
   
      
 
 
 
 
        
 
 

Figure 2. Definition of the angle θ(p) 
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 Let be r a line through the point q intersecting the conic at a point p and consider the angle θ(p) between 
→
pq  and the normal 

→
n to C at p (see Figure 2). Then, p is an orthogonal projection of q on C if and only if,  

 
       senθ(p) = 0          (12) 
 
 Thus, a good initial approximation to the footpoint p is an approximate solution of the equation (12), i.e. a 
point p Є C, such that ⏐senθ(p)⏐ < ε, ε > 0. On the other hand, to compute the solutions of (12), it is sufficient 
to find an interval [θ1,θ2], such that senθ1senθ2 < 0. More geometrically, we have to find an arc of conic limited 
by two points P1 and P2 such that the footpoint is contained in that arc, i.e. senθ(P1)senθ(P2) < 0 where 
θ(Pi) i = 1, 2 is the angle between the normal to the conic at Pi and the line passing through Pi and q. 
 
 The method to compute P1 and P2 depends on the position of the point q, i.e. if q is an “external” or 
“internal” point to the conic. 
 
Lemma: Let be C an irreducible conic, q a point on the plane and Rq the pencil of lines passing through q. 
Then, exactly one of the following statements hold, 
 

i) q is on C and there is only one line tangent to C passing through q. 
ii) q is not on C and there are two lines tangent to C passing through q. 
iii) q is not on C and there are not lines tangentt to C passing through q. 

 
Proof 
 
 The pencil Rq of lines passing through q = (x0, y0) consists of the lines, 
 
      rk : y = y0 + k(x-x0)          (13) 
 
 Inserting (13) in the implicit equation of the conic, we obtain a polynomial of degree 2 in the variable x,  
p2(x) : = a2kx2 `+ a1kx + a0k whose coefficients depend on the slope k of rk, 
 
         p2(x) = (a11k + a20 + a02k2)x2 
       
     + (2a02ky0 - 2a02k2x0 + a10 + a01k + a11y0 – a11kx0)x 
         
     + a00 + 2

002ya  - 2a02y0kx0 + 2
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2
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 Let be d(k) : = a1k

2 – a2ka0k the discriminant of p2(x) with respect to x, 
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 Surprisingly, d(k) happens to be a polynomial of degree two in k, instead of degree four! Since the line rk is 
tangent to the conic if (for its slope k), p2(x) has a double root, i.e. if d(k) = 0, we must consider the 
discriminant ∆ of d(k) with respect to k,  
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 There are only three possibilities, 
 

i) ∆ = 0, i.e. d(k) has a double real root. Since the conic is irreducible by hypothesis, the last factor of ∆ is 
different from zero. Hence, ∆ vanishes if and only if q Є C. 
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ii) ∆ > 0, i.e. d(k) has two different real roots k1 and k2. Then, q ∉ C and the lines rk1 and rk2 are tangent 
to C. 

iii) ∆ < 0, i.e. d(k) has two complex conjugate roots. Thus, q ∉ C and no line in Rq is tangent to C. 
 

  g  
Definition: Let be C a conic and q a point not on C. We call q an internal point to C if any member of Rq 
intersects transversely the conic. Otherwise, q is called an external point to C. 
 
 Let’s return to the problem of computing the points P1 and P2. After the previous definition and lemma, if q is 
an external point to C, then there are two lines tangent to C passing through q. Here, we must consider two 
cases: 
 
i) If the intersection points of these lines with C belong to the same connected component of C, we may take 

P1 and P2 equal to these points, (see Fig 3i). In this case holds senθ(P1)senθ(P2) = -1. 
 
ii) Otherwise (it may occur only when C is an hyperbola! see Fig. 3ii), we may take P1 equal to the intersection 

point of the tangents with C which is closest to q. Let be ra be the asymptote of C closest to q and denote 
by P1p and qp the orthogonal projections of P1 and q on ra respectively. Set Pc equal to the closest point to 
the origin between P1p and qp and set Pf equal to the other point.Then, P2 is the point on ra which is 
symmetric to Pc with respect to Pf. Strictly speaking, P2 is not on C, but since it is on one of its asymptotes 
and is not close to the origin, we may assume that approximately it is on C and also that the tangent line to 
C at P2 is ra. 

 
 If q is an internal point (see Fig 4) and C is an ellipse, then P1 and P2 may be selected as the vertices of the 
ellipse located in the same quadrant as q. If C is an hyperbola or parabola, then P1 is the vertex of the conic 
contained in the same quadrant as q and P2 is the intersection between C and the line orthogonal to the axis 
containing P1 and passing through q. 
 
Once the interval [θ1,θ2], θi = θ(Pi) i = 1, 2 has been determined, we may compute an approximation of the 
solutions of (12) using some bisection method. Instead of the classical bisection of the angle θ(p), which is 
computationally more expensive, we compute the intersections of the conic with the line passing through q 
and the middle point of the segment P1P2. Since any line intersects a conic at most in two points with real 
coordinates (see[Walker (1978)]), in each step of the bisection process we have to select the intersection 
point which is located in the interior of the triangle defined by q, P1 and P2. We only need to find an 
approximation to the footpoint laying in the conic arc which contains the global minimum, therefore we finish 
the bisection process after some few steps or when ⏐senθ(p)⏐ < ε, ε > 0. Then, the position (xp,yp) of the 
orthogonal projection or footpoint p may be improved using the Newton’s method to solve the system (8). 

  
 
 
 
 
 

 
 

Figure 3. Case external point: i) left ii) right 
   
 
 
 
 
 
 
 
 
 

 
Figure 4. Case internal point 
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2.3 The algorithm 
 
 In this section we resume our algorithm to compute the Euclidean distance from a point q = (x0, y0) to an 
irreducible conic C, both in the same plane. 
 
 Input: The vector of coefficients a = (a20, a11, a02,a10, a01, a00) of the conic C, a point q = (x0,y0) and the 
termination criteria N1, ε1, N2, ε2. 
 
 Output: The Euclidean distance d from q to C and the coordinates of the orthogonal projection p of q on C. 
 
 1. Compute the lineal change of coordinates T(x,y) that reduces C to the canonical form C’. 
 

(a) Obtain the list a’ of the coefficients of the C after T(x,y). 
 
(b) Find the image q’ of q after the change of coordinates, q’ = T(x0, y0). 

 
 2. Compute ∆ and decide if q’ is an internal or external point. 
 

(a) If q’ is an external point, compute k1 and k2 as the real roots of (14) and P1, P2 using the method 
described at the end of the previous section. 

(b) If q’ is an internal point, find P1 and P2 using the method described at the end of the previous section. 
 
  3.  Bisection process (solve (12)) 
 
 For  j = 1,... N1 do 
 
 (a) Find the slope knew of the line passing through to q’ and the middle point of the segment P1 P2. 
 
 (b) Obtain the intersections (two) between C’ and the line of Rq’ with slope knew. Select between them the  
         point p’ which is closed to the middle point of the segment P1 P2. 
 
 (c) Compute sin(θ(p’)) where θ(p’) is the angle between the normal to C’ at p’ and the line through p’ and q’. 
 
 (d) If ⏐sin(θ(p’))⏐< ε1 then go to 4 else 
 
 if sin(θ(p’))sin(θ(P1)) < 0 then set P2 = p’ 
     else set P1 = p’ 
 
 (e) Set j = j + 1 and return to 3(a). 
 
 4. Newton’s method (to solve (8) from the initial approximation p0 = p’) 
 
 For j = 0...N2 do  
 
 (a) Compute ∆pj as the solution of the linear system J(pj) ∆pj = -F(pj) where J is the Jacobian matrix of (8)  
         and F = (f1,f2)t is the vector of the left side of (8) 
 
 (b) Correct the position of pj, pj+1 = pj + ∆pj 
 

 (c) Obtain the relative error ej = 
1j

j

p

p

+

∆
 

 
 (d) If ej < ε2 then END else set j = j + 1 and return to 4(a). 
 
 5. Set p = T

-1
(p’) 

 
 6. Compute d(q,C) = pq −   
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3.  NUMERICAL RESULTS 
 
 In this section we compare the relative errors of the computed distance from a point to a conic associated 
with different approximations of the Euclidean distance. In the following table the second column Eud is the 
exact Euclidean distance from the points of the third column to the conics of the first column. 
 
 The fourth column eal, shows the relative errors associated to the algebraic distance, the two following, 
etau1 and etau2 correspond to the relative errors associated to Taubin’s first and second order 
approximations respectively. 
 
 
The final column, enew, shows the relative errors of our approximation. 
 
 The implicit equations of the conics selected for the numerical experiment are the following: 
 
     Parabola:       4x2 + 4xy + y2 – 4x = 0 

     Ellipse:       x2 + xy + y2 – 4x = 0 

     Hyperbola:    – x2 – xy + y2 – 4x = 0  
 
 The termination criteria considered in all cases were N1 = 1, ε1 = 0.01 for the bisection process and N2 = 4, 
ε2 = 10-5 in the Newton’s method. 
 

Conic Eud       Point eal etau1 etau2 enew 

Parab. 0.05 
0.5 
0.05 

(0.050099,0.01948)  
(0.25,1) 
(0.762337,0.155396) 
  

2.7215 
1.5 
3.5343      

0.0544 
0.3066 
0.0488 

0.0533 
0.5475 
0.0414 

*6.95x10-6 
*2.22x10-16 

*1.35x10-6 

Ellipse 0.5 
1.5 
0.7 

(4.556152,-1.61575) 
(3.879868,-2.60398) 
(1.501967,-1.806558) 

3.4341 
1.5257 
3.5739 

0.1859 
0.4346 
0.3035 

0.1150 
0.4119 
0.1301 

*0.0027 
*0.0077 
*0.0044 

Hyper. 1.5 
2.3 
0.6 

(-7.737018,0.95532) 
(4.188879,-6.87369) 
(3.539518,-2.962992) 

12.739      
17.147   
11.365 

0.0374     
0.0328     
0.0083 

0.2207 
0.2375 
0.1162 

*5.26x10-4 
*4.61x10-4 

*0.0027 
   
 Observe that our approximation, marked with (*), performs very well, even when the external point is far 
from the conic.Taubin’s approximate distances are better that the algebraic distance, but both are poor 
approximations when the external point is not very close to the conic. 
 
4. FINAL REMARKS 
 
 The new algorithm gives a good approximation of the Euclidean distance from a point to a conic, even 
when the external point is far from the conic. 
 
 In fact, using this method it is possible to compute the Euclidean distance with a prescribed precision, since 
we may correct the position of the footpoint (solving a nonlinear system). 
 
 Furthermore, the Euclidean distance is computed in an stable way, since the algorithm is based on the 
solution of some equations of second degree to obtain an approximation of the footpoint and solving systems 
of nonlinear equations of size 2x2 by Newton’s method, starting from a good initial approximation. However, 
compared to the approximations given by the algebraic distance or the ones given by Taubin, we don’t have a 
closed expression to compute the Euclidean distance and the new algorithm is computationally more 
expensive.        
 
 Finally, we wish to recall, that if the point q and the conic C are not in the same plane, it is also possible to 
compute the Euclidean distance from q to C using the method proposed in this paper (and also the 
coordinates of the footpoint). In fact, if q’ denotes the orthogonal projection of q on the plane Π containing C 
and d’ is the Euclidean distance from q’ to C, then after Pythagoras, the distance from q to the conic C may 
be computed in terms of d’ and the distance from q to Π.   
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5. ANNEX 

 Expression of Φ(d) when C is a parabola y2 – 2px = 0 

     Φ(d)   =  -4d6 + (4y 2
0 + 16py0 + 12x 2

0 - 8p2)d4 

                +(-8x 2
0 y 2

0 - 12x 4
0 + 4px 2

0 y0 – 4p4 – 8y0p2 – 20p2x 2
0 + 16p3y0 – 16py 3

0 )d2 

                +(4y 2
0 - 4py0 + p2 + 4x 2

0 )(-x 2
0 + 2py0) 

 Expression of Φ(d) when C is a central conic a20x2 + a02y2 + a00 = 0 

   Φ (d) = a 2
20 a 2

02 (a02 – a20)2d8 + 2a02(a02 – a20)a20(a 2
20 a02y 2

0 - a 2
20 a00 + 2a 2

20 a02x 2
0  -a20a 2

02 x 2
0          

  - 2a20a 2
02 y 2

0 + a 2
02 a00)d6 + (a 2

00 a 4
20 + 6a 4

20 a 2
02 x 4

0  - 6a 4
20 a00a02x 2

0 + 6a 4
20 a 2

02 x 2
0 y 2

0      

  + 2a 4
20 a00a02y 2

0 + a 4
20 a 2

02 y 4
0  - 10a 3

20 a 3
02 x 2

0 y 2
0 - 6a 3

20 a 3
02 y 4

0 - 6a 3
20 a 3

02 x 4
0  - 4a 3

20 a00a 2
02 y 2

0  

  + 8a 3
20 a 2

02 x 2
0 a00 + 2a 3

20 a02a 2
00 - 6a 2

20 a 2
00 a 2

02 + 6a 2
20 a 4

02 x 2
0 y 2

0 + a 2
20 a 4

02 x 4
0 + 6a 2

20 a 4
02 y 4

0  

  - 4a 2
20 a00a 3

02 x 2
0 + 8a 2

20 a00a 3
02 y 2

0 + 2a20a 2
00 a 3

02 - 6a20a00a 4
02 y 2

0 + 2a20a 4
02 x 2

0 a00 + a 2
00 a 4

02 )d4 

  + (-4a 4
20 a 2

02 x 6
0 + 2a 3

00 a 3
20 + 2a 3

00 a 3
02 - 2a 3

00 a 2
20 a02 – 2a 2

00 a 4
02 y 2

0 - 2a 3
00 a 2

02 a20-2a 4
20 a 2

02 x 2
0  y 4

0  

  - 2a 4
02 x 4

0  y 2
0 a 2

20 + 2 a 3
02 x 6

0 a 3
20 + 2 a 3

02 y 6
0 a 3

20 -4a 4
02 y 6

0 a 2
20 - 2a 2

00 a 4
20 x 2

0 +2a 3
02 x 4

0 a 3
20 y 2

0  

  + 2a 3
02 y 4

0 a 3
20 x 2

0 - 4a 4
20 a00a02y 2

0 x 2
0 - 6a 4

20 a 2
02 x 4

0 y 2
0 + 6a 4

20 a00a02x 4
0 + 6a 2

00 a 3
02 x 2

0 a20  

  - 4a00a 4
02 x 2

0 a20y 2
0 - 8a 2

00 a 2
02 x 2

0 a 2
20 + 6 a00a 3

02  x 2
0 a 2

20  y 2
0  + 6 a00a 3

02  x 4
0  a 2

20  

  - 6a 4
02 x 2

0  y 4
0   a 2

20 - 8a 2
00  a 2

20  a 2
02  y 2

0 + 4a 2
00 a 3

20  a02 x 2
0 + 6a 2

00  a 3
20  a02 y 2

0  

  + 4a 2
00  a 3

02  a20 y 2
0 + 6a 4

02  y 4
0  a20 a00 -10a00 a 3

02  y 4
0 a 2

20 + 6a00 a 2
02  y 2

0  a 3
20  x 2

0  

  + 6a00 a 2
02  y 4

0  a 3
20 - 10 a 2

02  x 4
0  a 3

20  a00)d2 + (-2 a00 a 2
02  y 2

0  a20 - 2a 2
00  a20 a02  

  + 2 a00 a 2
02  x 2

0  a20 + 2 a 2
02  x 2

0  y 2
0  a 2

20 + a 2
02  y 4

0  a 2
20 + 2 a00 a02 y 2

0  a 2
02 + a 2

00  a 2
20 + a 2

02  x 4
0  a20) 

 
 Expression of the polynomial Γ(t) when we use the Bezier representation of the conic,  
 
     Γ(t)  =  2w1(b1xb0x – b1yy0 + b0yy0 + b0xx0 – b 2

x0 - b1xx0 + b1yb0y - b 2
y0 )  

  + (-2b2yy0 + 8w1b1xx0 +2b2xb0x  –  8b0yw1y0 – 4w 2
1  b1xx0 + 4w 2

1 b 2
x1  

  + 8w1b1yy0 – 4b0xw 2
1 b1x + 8b 2

x0 w1 + 8b 2
y0 w1 + 2b0xx0 +2b0yy0  

  + 4b0xw 2
1 x0 + 4b0yw 2

1 y0 + 2b2yb0y – 8w1b1xb0x – 8b0xw1x0  

  + 4w 2
1 b 2

y1 - 2b2xx0 – 4b0yw 2
1 b1y – 4w 2

1 b1yy0 – 2b 2
x0 - 2b 2

y0 - 8w1b1yb0y)t  

  +(-12w 2
1 b 2

x1 + 6b2xw1b1x – 12w 2
1 b 2

y1 - 6b2xb0x + 12b0yw 2
1 b1y 

  + 12b0xw 2
1 b1x + 6b2yw1b1y – 6b2yb0y – 12w1b1xx0 + 18b0xw1x0  

  + 18b0yw1y0  – 12w1b1yy0 – 6b0yy0 + 6b2xx0 – 6b0xx0 + 6b2yy0  
  - 12b0yw 2

1 y0 – 6b2yy0w1 + 12w 2
1 b1yy0 – 6b2xx0w1 – 12b0xw 2

1 x0 + 12w 2
1 b1xx0  

  - 12b 2
x0 w1 + 6w1b1xb0x – 12b 2

y0 w1 + 6w1b1yb0y + 6b 2
x0 + 6b 2

y0 )t2  

  + (8w 2
1 b 2

x1 + 4b2xw 2
1 b1x – 12b2xw1b1x + 8w 2

1 b 2
y1 + 4b2xb0x - 12b0yw 2

1 b1y  

  + 4b2yw 2
1 b1y -12b0xw 2

1 b1x - 12b2yw1b1y + 4b2yb0y + 8w1b1xx0 -20b0xw1x0  

  - 20b0yw1y0 + 8w1b1yy0 + 8b0yy0 - 8b2xx0 +  8b0xx0 - 8b2yy0 +12b0yw 2
1 y0 

  - 4b2yw 2
1 y0 + 12b2yy0w1 - 8w 2

1 b1yy0 - 4b2xw 2
1 x0 +  12b2xx0w1 + 12b0xw 2

1 x0  

  - 8w 2
1 b1xx0 + 8b 2

x0 w1 + 4w1b1xb0x + 8b 2
y0 w1 + 4w1b1yb0y - 6b 2

x0 + 2b 2
y2  

  +2b 2
x2 - 6b 2

y0 )t3 +2(w1 – 1) (-2b2yw1b1y - 2b2xw1b1x + 2w1b1yb0y + 2b2yy0w1  

  + 2w1b1xb0x - 2b0xw1x0 -2b0yw1y0 + 2b2xx0w1 + 2
y2b + 2

x2b + 2b0yy0 - 2
y0b  - 2b2yy0 - 2b2xx0 - 2

x0b + 2b0xx0)t4 
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