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ABSTRACT 
Parallel automatic OpenMp codes for solving simultaneous linear  equations with integral coefficients is 
presented. The solution is obtained by applying the  “Chinese Remainder Theorem” avoiding floating 
point operations. The algorithm used can be extended to sets of equations with the same algebraic 
structure with real coefficients. 

Key words: exact solution of simultaneous linear equations, multimodular arithmetic, Chinese Remainder  
                   Theorem, linear system equations over finite fields. 

RESUMEN 
Aquí se presenta un código paralelo para resolver sistemas de ecuaciones lineales simultáneas con 
coeficientes enteros. La solución se obtiene aplicando el “Teorema Chino del Residuo” evitando así 
operaciones de punto flotante. Este algoritmo puede extenderse a conjuntos de ecuaciones con la 
misma estructura algebraica y coeficientes reales. 

Palabras clave: solución exacta de ecuaciones lineales simultáneas, aritmética multimodular, Teorema 
                          Chino del Residuo, ecuaciones del sistema lineal sobre los campos finitos.  
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1.  INTRODUCTION 
 
 We have solved sets of linear equations with dense matrices of integral coefficients using the direct Gauss 
– Jordan method and modular arithmetic of ancient origin to solve in a supercomputer the equations exactly 
(with no roundoff error) avoiding floating point operations. 
 
 The way in which the application of a modern computing tool was conceived for solving an old problem is 
sketched in the following graph 
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2.  ALGEBRAIC STRUCTURE 
 
 Modular Arithmetic [Conway-Guy (1996)] is a very versatile tool discovered by K.F.Gauss (1777-1855) in 
1801. Two numbers a and b are said to be equal or congruent modulo N written  N|(a-b),  if their difference is 
exactly divisible by N. Usually (and in this paper) a,b, are nonnegative integers and N is a positive integer. 
We write a  b (mod N). ≡
  
 The set of numbers congruent modulo N is denoted [a]N. If b∈ [a]N then, by definition, N|(a-b) or, in other 
words, a and b have the same remainder on division by N. Since there are exactly N possible remainders 
upon division by N, there are exactly N different sets [a]N.  
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 Quite often these N sets are simply identified with the corresponding remainders: [0]N = 0, [1]N = 1,...,[N-1]N 
= N-1. Remainders are often called residues; accordingly, the [a]'s are also known as the residue classes. 
 
 It is easy to see that if a  b (mod N) and c ≡ ≡  d (mod N) then (a+c) ≡  (b+d) (mod N). The same is true 
for multiplication. This allows us to introduce an algebraic structure [2] into the set {[a]N: a=0,1,...,N-1}. 
 
 By definition: 
 
1. [a]N + [b]N = [a + b]N  
 
2. [a]N x [b]N = [a x b]N  

 
 Subtraction is defined  similarily: 
 

[a]N - [b]N = [a - b]N
 
and it can be verified that the set {[a]N: a=0,1,...,N-1} becomes a ring with commutative addition and 
multiplication. 
 
 Division can not be always defined. To give an obvious example: 
 

[5]10 * [1]10 = [5]10 * [3]10 = [5]10 * [5]10 = [5]10 * [7]10 = [5]10 * [9]10 = [5]10. 
 
 So [5]10/[5]10 can not be defined uniquely. 
 
 We also see that: 
 

[5]10 * [2]10 = [5]10 * [4]10 = [5]10 * [6]10 = [5]10 * [8]10 = [5]10 * [0]10 = [0]10. 
 

something we never had either for integer or real numbers. 
 
 The situation improves for prime N's in which case division can be defined uniquely. 
 
 Observe the multiplication tables below for prime N. For the multiplication and division table we have 
removed the 0 column and row. 
 
 Every row (and column) contains all non-zero remainders mostly messed up. So every row is a permutation 
of the first row in the table. This provides an easy way to construct division tables too. For prime N, the set 
{[a]N: a=0,1,...,N-1} can be upgraded to a field. 
 

Table N = 5. 
 For non prime N, most rows contain zeros and repeated entries. 

 0 
0 0 
1 1 
2 2 
3 3 
4 4 

 
 1

1 1
2 2
3 3
4 4

 0 
0 0 
1 4 
2 3 
3 2 
4 1 

 

Addition 

1 2 3 4 
1 2 3 4 
2 3 4 0 
3 4 0 1 
4 0 1 2 
0 1 2 3 
 
1 
2 
3 
4 
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Multiplication 

 2 3 4 
 2 3 4 
 4 1 3 
 1 4 2 
 3 2 1 
1 
1 
3 
2 
4 
Subtraction 

1 2 3 4 
1 2 3 4 
0 1 2 3 
4 0 1 2 
3 4 0 1 
2 3 4 0 
Division 

2 3 4 
2 3 4 
1 4 2 
4 1 3 
3 2 1 



 
 The tables exhibit a variety of patterns. To mention a few [Kevin (1997), Davis-Hersh 81981)]: 
 
a) For addition, consecutive rows result from the first one by circular rotation of entries.  
 
b) Addition and multiplication tables are symmetric with respect to the main diagonal (the line that goes from  

the top left to the bottom right corner.)  
  
c) Subtraction tables are not symmetric but the rows are still obtained from the first one by rotation of 

entries. (We subtract numbers in the leftmost column from the numbers in the topmost row.)  
 
d) In multiplication tables, the last row is always a reverse of the first row.  
 
e)  In multiplication tables modulo N, rows corresponding to numbers coprime with N contain permutations 

of the first row.  
 
f)  For prime (N+1), multiplication tables offer multiple and simultaneous solutions to the rook problem: On 

an NxN board position N rooks so that they command the whole board and none may capture another. To 
solve, select a digit, replace all its occurrences with a rook, remove all other digits.  

 
g) Under the same conditions, 1 always appears in the upper left and lower right corners and nowhere else 

on the main diagonal.  
 
h) 6/5 = 4 (mod 7) or, which is the same, [6]7/[5]7 = [4]7  
 
i) One can use addition and subtraction tables to play the same game as with the Calendar Tables. 
  
j) For multiplication tables, this is also true provided selected entries are multiplied instead of being added 

up. 
  
k) For multiplication tables, both diagonals are palindromic, i.e.  each is the same in both directions.  
 
l) If an addition table has an odd number of rows, then every remainder occurs on the main diagonal.  
 
m) In subtraction tables with an odd number of rows, the second diagonal is a permutation of the first row.  
 
n) In addition tables with an even number of rows, the main diagonal contains only a half of all the 

remainders. The remainders on the diagonal appear twice each.  
 
o) In multiplication tables with a number of rows N where (N+1) is prime, the same is also true: the main 

diagonal contains only a half of all the remainders. The remainders on the diagonal appear twice each.  
 
p) In the table of multiplication by N, rows corresponding to the numbers coprime with N consist of 

permutations of the first row. The reverse does not hold.  
 
3. CHINESE REMAINDER THEOREM 
 
 According to D.Wells, the following problem was posed by Sun Tsu Suan-Ching (4th century AD): 
 
 There are certain things whose number is unknown. Repeatedly divided by 3, the remainder is 2; by 5 the 
remainder is 3; and by 7 the remainder is 2. What is the number? 
 
 Oystein Ore mentions another puzzle with a dramatic element from Brahma-Sphuta-Siddhanta (Brahma's 
Correct System) by Brahmagupta (born 598 AD): 
 

 177



 An old woman goes to market and a horse steps on her basket and crashes the eggs. The rider offers to 
pay for the damages and asks her how many eggs she had brought. She does not remember the exact 
number, but when she had taken them out two at a time, there was one egg left. The same happened when 
she picked them out three, four, five, and six at a time, but when she took them seven at a time they came 
out even. What is the smallest number of eggs she could have had? 
 
 Problems of this kind are all examples of what universally became known as the Chinese Remainder 
Theorem. In mathematical parlance the problems can be stated as finding n, given its remainders of division 
by several numbers m1, m2,...,mk: 
 

n = n1 (mod m1) 
 

n = n2 (mod m2) 

... 

n = nk (mod mk)  
 
 The modern day theorem is best stated with a couple of useful notations. For non-negative integers 
m1,m2,...,mk, their greatest common divisor is defined as: 
 

gcd(m1,m2,...,mk) = max{s: s|mi, for i=1,...,k}, 
 
where, as usual, "s|m" means that s divides m exactly. The least common multiple of k numbers is defined 
as 
 

lcm(m1,m2,...,mk) = min{s: s>0 and mi|s, for i=1,...,k},  
 

 Both gcd() and lcm() are symmetric functions of their arguments. They are complementary in the sense 
that, for k = 2, gcd(m1,m2)lcm(m1,m2) = m1m2.  
 
 However, for k>2 a similar identity does not in general hold. For an example, consider two triplets: 
{2,4,16} and {2,8,16}. Both have exactly the same gcd and lcm but obviously different products. On the other 
hand, both gcd and lcm are associative: 
 

gcd(m1, (gcd(m2, m3)) = gcd(gcd(m1, m2), m3)  
 

and, both equal gcd(m1, m2, m3). 
 
 Similarly, 

 
lcm(m1, (lcm(m2, m3)) = lcm(lcm(m1, m2), m3)  

 
 Associativity allows one to proceed a step at a time with an inductive argument without putting all eggs 
into a basket at once. Jumping at the opportunity we will prove the most basic case of k = 2. 
 
Theorem 
 
 Two simultaneous congruences n  n≡ 1 (mod m1) and n ≡  n2 (mod m2) are only solvable when n1 ≡  n2 
(mod gcd(m1,m2)). The solution is unique modulo lcm(m1,m2).  
 
 When m1 and m2 are coprime their gcd is 1. By convention, a ≡  b (mod 1) is simply understood as the 
usual equality a = b. 
 
Proof 
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 The first congruence is equivalent to n = tm1 + n1, the second to n = sm2 + n2, for some integers t and s.  
 
 Equating we obtain 
 
       tm1 - sm2 = n2 - n1.                           (1) 
 
 The left-hand side is divisible by gcd(m1,m2). So, unless the right-hand side is also divisible by 
gcd(m1,m2), there could not possibly exist t and s that satisfy the identity. 
 
 Now let's assume that gcd(m1,m2)|(n2 - n1) and denote n0 = (n2 - n1)/gcd(m1,m2). Then, (1) can be written as 
 
      t(m1/gcd(m1,m2)) = n0 (mod (m2/gcd(m1,m2)))              (2) 
 
 By definition, m1/gcd(m1,m2) and m2/gcd(m1,m2) are coprime; since we are dividing m1 and m2 by their 
largest common factor. Therefore, by a generalization of  Euclid’s Proposition, (2) has a solution. Given t, 
we can determine n = tm1 + n1. This proves the existence part. 
 
 To prove the uniqueness part, assume n and N satisfy the two congruences. Taking the differences we 
see that 
 
             N-n = 0 (mod m1) and N-n = 0 (mod m2)               (3) 
 
which implies N-n = 0 (mod lcm(m1,m1)). 
 
4. A RESIDUE SYSTEM OF EQUATIONS 
 
 Consider the linear algebraic system of equations bAx = . Even if A and b are required to be integral 
there is no guarantee that x, the solution vector, will be integral. On the other hand, when we write the 

residue system of equations MM
bxA =  with A and b integral, we seek an integral vector 

M
x  which 

satisfies it. In general, then, x and 
M

x  are different and it would appear that 
M

x  would not aid us in finding 

x ; however, it turns out that this is not the case. We can use residue arithmetic in solving it and this will lead 
us to a solution of , where A and b are integral. bAx =

Gauss-Jordan Elimination 

 We seek a nonsingular nxn matrix J for which JbJAx =  with IJA =  thus,  and  is the 
solution. The reduction of A to the identity matrix consists of n major steps which correspond to n matrix row 
operations. These are similar to the n steps in ordinary Gauss elimination which reduce A to an upper 
triangular matrix. However, Jordan’s variation eliminates the elements above the diagonal as it eliminates 
the elements below the diagonal and also scales the diagonal elements to unity. Thus, there is no need for 
back substitution. If the pivotal candidate does vanish, we must do row interchanges before we can carry 
out that step of the elimination [Golub-Van Loan (1983)]. 

1AJ −= Jbx =

The analog of Gauss-Jordan elimination for residue arithmetic using more than one modulus 

 It is more practical in a general situation [Young-Todd (1972)] to select a set of moduli   , with 
 because, this enables us to obtain results modulo M by doing most of the arithmetic modulo 

, for . To be more specific, we select a set of moduli , with 

s21 m,...,m,m

s21 m...mmM =

im s,...,2,1i = s21 m,...,m,m ( ) 1m,m ji =  for ji ≠ . 

Let  and . We shall assume there are sufficient moduli (large enough) so that M satisfies 

 and 

Adetd = bAy adj=

( ) 1M,d = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

i
iymax,dmax2M . 
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 We solve the residue systems 
ii

mm
bxA =  for s,...,2,1i = , (for each of the  moduli) and obtain the 

residue representations  { }
s21 mmm d,...,d,d~d  and  { }

s21 mmm y,...,y,y~y . From these two s-tuples 

we can determine MM yd =  and  if M is large enough, we can determine d and y and, ultimately, . bAx 1−=

 
The Chinese Remainder Theorem 
 
 There are various algorithms for obtaining Md  and My . Perhaps the best known procedure makes use 
of a classic theorem from the theory of numbers called the Chinese Remainder Theorem. 
 
Theorem. Let  be the base for a residue number system with s21 m,...,m,m ( ) 1m,m ji =  for , and let 

. Also, let 

ji ≠

s21 m...mmM =
j

^

j m
M

m = . Now, if q has the residue representation  where { s21 r,...,r,r~q }

imi qr =   then s,...,2,1i = ( )

M

s

1j
m

j

1

j
^

jj
^

M

j

mmrmq ∑
=

−

= . 

 
Obtaining x from 

M
x . 

 
 Fortunately, we can obtain x if we are willing to do the additional work. Obviously, we need to compute 

Md  and My  since x is obtained from y by dividing the components of y by d. It should be pointed out that 

only at this point do we leave residue arithmetic, and so only at this point do we introduce rounding errors. 
Actually, if the division is merely indicated, but never carried out, then there will be no errors introduced. 
 
Theorem. If the modulus M is chosen so that 
 
i) Md2M >  
 
and if d’ is formed from Md  so as to satisfy 
 
ii) MM d'd =  
 
iii) 2/M'd M <   
 
 Then d’ = d. 
 
 In addition, the modulus M is chosen so that 
 
iv) Mi

i
ymax2M >  

 
and if y’ is formed from My  so as to satisfy 
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v) MM y'y =  

vi) 2/M'ymax Mi
<   

 
 Then y’ = y. 
 

 Briefly, these conditions are satisfied for ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

i
iymax,dmax2M  

 
Selection of the  as primes. im
 
 In practice, the moduli are chosen as large prime numbers. This choice increases the probability that 

 and that ( ) 1m,d i = 0d
im ≠ . We recall that if these two conditions are satisfied, then A is nonsingular 

modulo , and the residue system im
i

i
mm

bxA =  can be solved for 
imd  and  

imy . If the two conditions 

are not satisfied, then we simply select another prime for a modulus. Futhermore, by choosing prime 
numbers for the moduli,  we guarantee that ( ) 1m,m ji =  for ji ≠ , and hence, there is a unique integer in the 
interval (0, m-1) with the given residue representation. 
 
 Alternatively, we propose the following scheme to solve a linear system of equations using residue arithmetic 

bdbAA
2
M

2
M

adj =  where  is the composite module, s21 m...mmM = adjA  is the adjoint matrix, d is the 

determinant of A and M/2 is the symmetrical module. This scheme  enables us to find the minimal lower 
bound of the prime module which solves the equations. 
 
5. RESULTS 
 
 As an illustration we use the matrix 

( )

;

xny
.
.
.

xny

b;ji0

;ji1;xyA

ij

ijij
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 The value of the determinant and the adjoint matrix are known 
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 We choose   1y,100x ==
  The program we used was written in the style of  FORTRAN 77 using some intrinsic subroutines of the 
new standard FORTRAN 90.  The code was tested on an Origin 2000 at  UNAM’s Supercomputing Center. 
 
 We conducted experiments for three numbers N of equations, namely  N = 1000,2000 and 5000 and we 
used from one to six processors (PE’s). 
 
 The following tables shown the wall clock times and speed-ups [Silicon Graphics Computer System 
(1998)] for the solutions using the Chinese Remainder Theorem. 
 

Table 2 
Speed-up(s) of the solution 

 of the system Ax = b 
Size of the System 

N = 1000 

No. PE’s Speed-up(s) 
1 1 
2 2.000 
4 3.691 
6 4.998 

Table 4. 
Speed-up(s) of the solution  

of the system Ax = b 
Size of the System 

N = 2000 

No. PE’s Speed-up(s) 
1 1 
2 2.186 
4 4.258 
6 6.100 

Table 3. 
Times (in seconds) for the solution  

of the system Ax = b 
Size of the System 

N = 2000 
No. PE’s Wall Clock(s) 

1 667.17 

2 305.31 
4 156.65 
6 109.37 

Table 6. 
Speed-up(s) of the solution  

of the system Ax = b 
Size of the System 

N = 5000 
No. PE’s Speed-up(s) 

1 1 
2 1.965 
4 3.937 
6 5.859 

Table 1. 
Times required (in seconds) for the solution 

of the system Ax = b 
Size of the System 

N = 1000 
No. PE’s Wall Clock(s) 

1 149.14 
2 74.55 
4 39.94 
6 29.49 

 

Table 5. 
Times (in seconds) for the solution  

of the system Ax = b 
Size of the System 

N = 5000 
No. PE’s Wall Clock(s) 

1 10167.72 
2 5174.41 
4 2580.64 
6 1735.40 

 
 The Scalability of the algorithm is measured when we calculate the theoretic Speed-up using some 
mixture of Amdhal`s Law and two experimental data points to obtain the curve for the particular size of the 
problem. The following  three graphs show some of the results of using the Chinese Remainder Theorem. 
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5. CONCLUSIONS 
 
 The traditional user of scientific computing prefers to use well proven routines that are recognized by the 
international scientific community. Among the well known collections are IMSL, NAG, and LINPACK.  
However, a direct solution method should be used in the case of dense non structured matrices. If, in addition 
the coefficients and the right hand side are integers and an exact solution is desired, the only alternative is to 
use residual arithmetic.  
 
 For this type of problems we observe a  behavior very close to ideal speedup, and in the case of N = 2000 
we observe a superlinear speedup.  
 
 In any problem with a dense matrix there is an easy decomposition in  terms of parallel tasks with the 
corresponding savings for the appropriate computer architecture. 
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