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RESUMEN

En este trabajo se presenta un procedimiento de obtencion de cotas inferiores para una funcion lineal a
partir de ciertas familias de empaguetamientos, cubrimientos y conjuntos ordenados especiales.
Asimismo, se presentan nuevos métodos de deteccion de infactibilidad y fijacion de variables en
problemas de programacion lineal 0-1 basados en dichas cotas que permiten considerar conjuntamente
varias restricciones. Ademas, se muestran algunas situaciones que son detectadas por estos métodos,
pero no por los métodos tradicionales, los cuales consideran las restricciones individualmente.

Palabras clave: Infactibilidad, empaquetamientos, cubrimientos, conjuntos ordenados especiales,
familias admisibles.

ABSTRACT

In this paper we present a procedure for obtaining lower bounds on a linear function by means of certain
families of packings, coverings and special ordered sets. We also present new methods for detecting
infeasibility and fixing variables in 0-1 linear programming problems based on these bounds that allow
consideration of several constraints jointly. Furthermore, we show some situations which are detected
by these new methods, but not by the traditional methods, which consider the constraints individually.
Key words: Infeasibility, packings, coverings, special ordered sets, admissible families.
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1. INTRODUCTION

Consider the 0-1 linear programming problem

max { D cixj| Y aixj~bi Vi€l xe{01} vjel}, (P)
jed jed
where J = {1,...,n}, | = {1,...,.m}, {c,-}jej, {aij}ieljej, {bi} _, are rational numbers and ~ is the sense of each

constraint (<, >, =).

In integer programming there are many ways of representing the same problem, and the choice of the
formulation is of crucial importance to solving it [see e.g. Hoffmann-Padberg (1991), Johnson et al. (2000),
Nemhauser-Wolsey (1988) and Savelsberg (1944)].

Preprocessing attempts to improve the initial formulation by using several automatic techniques such as
unfeasibility and redundancy detection, variable fixing and constraint reformulation [see Crowder et al.
(1983), Escudero-Muiioz (1998), Hoffmann-Padberg (1991), Johnson et al. (1985), Mufioz (1999), (2000) and
Savelsberg (1994) among others].

It is well known that preprocessing techniques can considerably reduce the time required to solve large-
scale integer programming problems.
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The detection of the infeasibility of problem (P) is based on computing bounds on a linear function z whose
variables (x)),_, are restricted to take values in a certain subset of {0,1}". Obviously, the best bound is the one
given by the optimal value of z in the associated optimization problem. However, in general, this problem is
not easy to solve, since it is similar to (P), see Section 4. Hence, there is a need to develop simple
procedures for obtaining bounds on z.

In easy terms, a packing, a covering and a special ordered set can be considered as subsets of indices of
0'1 variables where at most, at least and exactly one such variable, respectively, can take the value 1. These
structures may appear explicitly in the problem but can also be derived from the constraint system by using
probing techniques [see Atantur et al.(2000), Guignard-Spielberg (1981), Savalsberg (1994)]. Other methods
for packing identification can be found in Dietrich et al. (1996), Mufioz (1999). See also Mufioz (1995).

The earliest papers dealing with obtaining bounds on linear functions consider only the coefficients of those
functions [see Crowder et al. (1983), and Savelsberg (1994) among others]. In 1985 Johnson, Kostreva and
Suhl introduced a more advanced procedure that makes use of information from families of pointwise disjoint
packings [see Hoffmann-Padberg (1991), Johnson et al. (1985)] and, in 1996 Escudero, Garin and Pérez
improved this procedure allowing overlapping among certain pairs of packings [see Escudero et al. (1996),
Mufioz (1999)].

This theoretical paper whose contribution is twofold. First, we extend the procedure given in Escudero et al.
(1996) to obtain lower bounds on linear functions, using certain families of packings, covering and special
ordered sets, so called admissible families. Secondly, we present new methods for detecting unfeasibility and
fixing variables in 0-1 linear programming problems that allow consideration of several constraints jointly.

These methods can easily be generalized to mixed programming problems with bounded variables [see
e.g. Savelsberg (1994)].

The paper is organized as follows: Section 2 reviews the concepts of packings, coverings and special
ordered sets. Section 3 introduces the concept of admissible families, describes a procedure for obtaining
lower bounds on a linear function based on this type of families, and provides an example in which the
procedures using only families of packings obtain worse lower bounds. Sections 4 and 5 present our methods
for detecting infeasibility and fixing variables in problem (P), respectively. They also show some situations
detected by these methods, but not by the methods available in current literature, which consider single
constraints. Finally, Section 6 draws some conclusions from this work.

2. PACKINGS, COVERINGS AND SPECIAL ORDERED SETS
Given a set of variables {xy,....x,} and a set F ¢ {1,...,n}, let X(F) denote the sum of the variables whose
indices belong to F, that is, X(F) = ZXJ- .
jeF

Based on the notation used in [2], we define the following concepts:

Definition 1. A packing C is a non-empty subset of indices of 0-1 variables that induces the constraint
X(CH-X(C)<1-|C|,whereC'*uC =CandC'nC =@.

Definition 2. A covering C is a non-empty subset of indices of O - 1 variables that induces the constraint
X(CH=X(C)>1-|C|,whereC*uC =CandC*~C =@.

Definition 3. A special ordered set C is a non-empty subset of indices of 0-1 variables that induces the
constraint X(C*) = X(C)=1-|C|,whereC* uUC =CandC*~nC = 2.
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Lemma 1 proves that any proper subset of a packing or of a special ordered set is a packing.

Lemma 1. Let C be a packing or a special ordered set, let C’ be a proper subset of C and let (x,-)jEC €{0,1}
be a feasible solution for the constraint induced by C. Then z Xj — z Xj<1l- lc~cC.
jec'nc* jec'nc”
Proof. Since C'~C* = C*\ (C"\C'), C'nC = C\ (C\C)), z X — z xj <1-|C| andx € {0,1} Vj € C, we
jec* jec”

obtain that z Xj — Z X :Z x,——z Xj — z Xj + Z X <1-lcl+lcvel =1-lcnc].

jec'nc*t jec'nc” jec* jec™ ject\c' jec™\c'
3. OBTAINING LOWER BOUNDS ON A LINEAR FUNCTION

Definition 4. A constraint with variables x,,...,x, is said to be valid for a set R < IR" if it is satisfied by any
vector (Xy,...,.Xn) € R.

Definition 5. Let {Ck}keKl, {Ck}keKz and {Ck}kng be a family of packings, coverings and special ordered sets
respectively. The family {Ck}keK’ where K = K; U K, U Kg, is said to be admissible for a set
R < {0,1}" if the constraints induced by {Cy},_, are valid for R and each set K, with | € {1,2,3}
can be expressed as the union of three pairwise disjoint sets, say D,, S, and §|, that satisfy the
following conditions, where D =D;u D, U D3, S=S; U S, U Sz and § = glu SyuU Sa:

(1) Ifk e Dand ke K\ {k}, then Cyn Cy = @.

(2) Foreachk e S there exists a unique S(k) € S such that
Ck a) C§(k) = (C; ﬂ Cisr(k))U (CE ﬂ Cé(k)) +J , and Ck M Ck' =

vk € (S\{k}) U (S\{5(K)}).

(3) Foreachk e S there exists a unique s(k) € S such that's (s(k)) = k, and
CinCy = VK e S\ {k}

NOTE. By conditions (2) and (3) above, we have that |s| = | S |

All of the results stated from now on can be generalized to admissible families such that the constraints
induced by {Cwex are of the form X(C) — X(C¢) < nc = Cr |, X(Cf) = X (Cx) = ne— | C¢ | and
X(Cg) = X(Cy) =ng—|Cy |, where ny is an integer with 1 < n, < |Cil.

Given a non-empty set R c {0,1}", we are interested in obtaining lower bounds on a function z =Zanj ,

jed
where {aj}jEJ are rationals and (xj)jeJ € R. For that, we consider an admissible family for R, say C = {Ck)keK’
where K = K; U K; U K3 and {Ck}keKl’ {Ck}keK2 and {Ck}keK3 are a family of packings, coverings and special
ordered sets respectively. Without loss of generality let us assume that C, = ¢ for each k € K (otherwise,

it suffices to substitute x; by 1 — X’} Vj e UCE) .
keK
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Let I,¢ = min{Zajxj ()., eRC}, where R, = {(X)es € {0,1}" | X (C) <1 Vk € Ky, X (C) = 1
jed
vk € K, X (C) =1 Vk € K3} (if K = @, we define R, = {0,1}"). Then R c R,, since the constraints induced

by {Ck}keK are valid for R. Thus, |,cis a lower bound on the function z.

Below we give some cases where eliminating one of the elements of C leaves the set R, unchanged and,
so, the bound I, ¢ also remains unchanged.

Letk, k € SUS be such that C, = Cy .
elfk € S;US;and k' € S; US; U S; U Sz, we can eliminate k from S; U'S; and move k' to D; U Ds.
elfk e S;US:,|Cl=1andke S, US,, we can eliminate k from S; U'S; and move K’ to D,.
elfk € S,U S,US;U Sz andk € S, U S» , we can eliminate k' from S, US, and move k to D, U Ds.

elfk € S,U S, US;U Sz andk’ € S;U S1US;U Sz ,wecanfixx =0 Vje C\C, eliminate k' from
S, U S1 US; U Sz and move K to Da.

Now, let k € D be such that Cy = {j}.
e If k € D4, we can eliminate k from D;.
e If k € D, U D3, we can fix x;=1 and eliminate k from D, U Ds.

Therefore, we can assume that, for each k € K, |Ck| >1and, if 3 k € K\ {k} such that C, c Cy, then
ke S u S;andk € S, Ss.

Any non-empty subset of Rc containing R verifies that, if (x)je; is restricted to belong to that subset, then |,
is still a lower bound on z. Consequently, whenever |, ¢ is mentioned, it will be assumed that (xj)jEJ can take

any value in R¢ and the initial set R will be allowed to be empty. (Note that R¢ # ).
Lemma?2. LetR,pc = {(Xi)jed eRc | Z:ajxj < b} where b is a rational constant.
jed
Then R,pc =@ if and only if I,c > b.
Proof. It follows from the definition of I, c.
Given a set C c J, we define ¢(C) = min {aj\ je C}and QO(C) =min { ¢(C), 0}.

letJ'={jed|a>0},T={jedla<0},3={jedlq=0},T-= UCkand
keK

94



¢°(Cy)

f(ck)

2.8

jeCynd™
f(ck)

min{g(ck e Cé(k))’go(ck \ C;(k)) +80(C§(k) \C}
)+ (Cy

. 0
min{e(C, N C;, ). 9°(C\ C; 20 \ G

S(k)
2.2

(G5, \CiNT”

E(Ck) +
mln{g(Ck M Cg(k))’go(ck \ Cg(k)) +8(Cg(k) \ Ck)}

. 0
Min{e(Cy N G5 (G G )+ 07(Cg VGl

2

je(C\C )N

0

mln{g(Ck N C;(k)

2.8

(G5, \CiINT”

).0(Ci \C;

s00) T 9

AL

E(Ck) +

2

je(Ci\C5 )nd

2.8

je(Cy uC;(k))mJ’

a.j + E(Cg(k))

min{p(Cy N C;, ). 0(Ci \ C5,. )+ 9(C5, VG

2

(G,

nJ-

min{e(C N Cg, ) 9(Ci \ Cq )+ go(c- \C)}

s(k) s(k)
min{e(C, N C; 1), o(Ci \ C, ) +0(C5 N C}
- s’ 2 = 7s()

S(k)
Z g

je(Cy,, \CN ™

E(Ck) +

min{e(C, N C;, ). 9(C \ C; \C}

st0) T 9C

S(k)

vk € D;
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Theorem 1. I,c = Z I + Z a;.

keDUS je.]7 \T

PROOF. Since the sets {Ck}keD,{Ck UCg(k)}kesare pairwise disjoint, it can easily be verified that

Z ajXj = Z I + Z aj V(Xj)jes € Rc. On the other hand, it is clear that 3 (x])js € Rc such that
jed keDUS jed"\T

Z ajxj =lk  VkeD, Z ajxj =lk VvkeS and Z ajxj = z aj. Hence, we have that
jeCx j€Ck UCs(k) je\T j€\T

Z ajxj = Z Ik + Z aj, which proves the assertion.

jed keDUS jed™\T

Corollary 1. Let 2’ = Az, where A is a non-negative rational constant. Then |, c.

Corollary 2. ,c <0if K, =Kz = .

Corollary 3. l,c = mi n{z a,-x,-|(xj)j€J e [0l X(Cy) <1k e Ky, X(Cy) 2 1Vk € Ky, X(Cy) =1Vk € K3}.
jed

In general, there will exist several admissible families for the set R. Example 1 illustrates the great
variations in the value that |, ¢ takes depending on the family C that has been selected; this demonstrates the
importance of making a good choice.

Example 1. Let z = —x ; + 4x, — 2X3 — 6X4 + X5 + 3Xs + 5X7 — 4Xg and let R be the set of solutions (Xy,...,Xg) €
{0,1}® that satisfy the following constraints:

X1+ Xo + X3 + X7 <1 Q)
X3 + X4 + X7 <1 (2

Xo + + Xg + X7 >1 3)

X4 + Xs +xg =1 (4)

Consider the packings C; = {1,2,3,7} and C, = {3,4,7}, the covering C3 = {2,6,7} and the special ordered
set C, = {4,5,8}. (Note that constraints (1)-(4) are induced by Cj,...,C, respectively).

The family {C,,C,,C3,C,} is not admissible for R, since C; N C, n C3 # &. Nevertheless, by Lemma 1 any
non-empty set C c Cy, where k € {1,2,4}, is a packing whose induced constraint X(C) < 1 is valid for R.

Let C' = {C},C,,C5}, where Ci= {1,2,3,7},C>= {3,4,7} and C3= {5,8}. Taking D, = {3}, S; = {1},
Si= {2} and D, = S, = S;= D; = S; = S3= & we have that C' is an admissible family for R and, by
Theorem 1, l,c =1y + I3 =min {-2, -1 -6 }-4 = -11.

Let C” = {C!,C,C4), where Cj= {3,4,7}, C5= {2,6,7} and C5= {5,8}. Taking D, = {3}, S; = {1},
S;= {2} and S1= D, =S, = D3 = S; =S3= & we have that C" is an admissible family for R and, by
Theorem 1, |, c-= 1y + I3+ a; = min {5, — 6¢c + 3}—-4 —1=—8.

Let C"= {C}.C5,C5,Cy}, where Cf = {1,2,7}, C% = {3,4}, C4 = {2,6,7} and C% = {4,5,8}. Taking S, =
{1,2}, S2={3}, Sz = {4} and D; = S; =D, =S, = D3 = S; = @ we have that C" is an admissible family for
R and, by Theorem 1, I, ¢ = l; + I, = min {4, =1+ 3} + min {-6, -2 -4} =— 4.
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The best lower bound on the function z is given by C", since l,¢ < l,¢» < |, ¢~ Furthermore, choosing
X1 = X4 = Xg =1 and X, = X3 = Xs = X7 = Xg = 0, we obtain that (Xy,...,Xg) € R and —x; + 4x, — 2X3 — 6X4 + X5 + 3Xg +
5X; — 4xg = — 4. Consequently, there is no lower bound on z stronger than I,c~. (Note that if one restricts
the admissible families for R to families of packings, as the traditional procedures do, then the associated

lower bounds on z will be less than —4, since min{—x1 + 4X, — 2X3 — 6X4 + X5 + 3Xg + 5X7 — 4Xg | ZXJ- <1
jeCy
vk € {1,2,4}, X; e{0,1} Vvje {1,...8}}=-17).

4. DETECTING INFEASIBILITY

LetR = {(xj)jeJ e {01}" | Z:aijxj ~b; Vi € I}. We are interested in determining whether (P) is an infeasible
jed
problem, that is, whether R = &.

Let C = {Cy}, _, be an admissible family for R, where K = K, U K, U K3 and {Ck}keKl' {Ck}k€K2 and {Ck}keKs are
a family of packings, coverings and special ordered sets respectively. The family C will be obtained as follows:

We start by identifying a family C, of packings, coverings and special ordered sets whose induced
constraints are valid for R and that contains the family C, of packings, coverings and special ordered sets that
induce contraints of problem (P), see Section 1.

If Co is an admissible family for R, we take C = C,; otherwise, by Lemma 1 it is easy to determine an
admissible family for R from C,, see Example 1. For simplicity, we assume that, for each k € K,Ci = @,
|Cl>1and,if 3 K e K\ {k} such that Cy c Cy, thenk € S; U Siandk' € S, US>.

Let Ic be the set of indices of the constraints in (P) that are induced by Ck}keK'

Without loss of generality, from now on we assume that every constraint in (P) is an inequality of type <.
(Note that any inequality of type > can be converted into another one of type < by multiplying it by —1, and any
equality can be decomposed into two inequalities).

Proposition 1. Let zanj <b be a valid inequality for R and let z :Zanj . If I,c > b, then (P) is an
jed jed
infeasible problem.

PROOF. If I,c > b, by Lemma 2 it follows that R, c = & and, since R < R, c, we have that (P) is an infeasible
problem.

Proposition 2. Let iy...,iy € | \ Ic be such that i = iy VI, ' € {1,..p} with | = I’ and let

z = Z(xlailj +.o.t kpaipj)xj where p > 1 and A4..,A, are positive integers relatively prime.
jed
If l,c > Xy by + ... + &y by, then (P) is an infeasible problem.

PROOF. It follows from Proposition 1.

In Proposition 2 it is not necessary to impose the condition that A4,...,A, be integers relatively prime. Assuming
they are integers, Mbil L P bip and the coefficients of the function z are rationals. On the other hand, if

A,...,Ap @re positive integers, it follows from Corollary 1 that the result of applying Proposition 2 by considering
. A A . o
A1,....hp IS the same as by consMenngﬁ,...,Vp where M is the greatest common divisor of Aj,..., Ap.

Therefore, in order to make the calculation of &, by, + ... + A, by, and |, ¢ easier, it is advisable that 1,,..., A, be
relatively prime (if p = 1, we will take A, = 1).
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It is clear that Proposition 2 also holds for any indices iy,..., i € I. Now, if iy,..., iy € Ic, taking b =4, by +...+
Ap b in Lemma 2 we have that R,,c = Rc # &, hence |,c <A, by +...+ A, bj, and Proposition 2 does not detect
the infeasibility of problem (P). If not all indices is,...,i, belong to I, Lemma 3 proves that if Proposition 2

detects the infeasibility of (P) by considering i,...,ip, then it will also detect it by considering only those indices
inl\ lc.

Lemma 3. Letiy,...,iy € I\ Ic be such thatiy =iy VII' € {1,..p’} with | = I', let iy.1,...,ip € Ic be such that i # iy

v e {p+1,.,p} with =TI, let z = Z(Maiﬂ +...+ Apajj)Xjand z° = Z(Maiﬂ + ...+ Apai,j)Xj, where
jed jed

1 < p < p and Ak are positive integers relatively prime. If l,c > A1 b +.+ Ay b,

then l,c > Ab; +...+Ap b, .

PROOF. Letb =X, bi1+...+ Apbi, and b’ =2 bi1+...+ Ap bip, If I,c > b, by Lemma 2 we have that R, c = & and,

SiNCe ig41,...,ip € lc and Apuq,..., Ay > 0, it follows that R, . c < Rzpc, hence Ry pyc =@ and I, > b'.

Given iy,..., ip € I\ g, if Ko = K3 = & and A +...+ Ap bi; 2 0 VA4,..., &, > O, it is not necessary to apply
Proposition 2, since |, < 0 by Corollary 2 and, so, l,c <A, bi1 +.+ A b,

Example 2. Let (5)-(7) be the constraint system that defines the feasible region of (P).

—2X3 —X3 <=2 (5)
—2Xy — X3 <=2 (6)
X1+ X <1 (7

By constraints (5) and (6), we have that x; = X, = 1 in every feasible solution to (P).

Consequently, by constraint (7) it follows that (P) is an infeasible problem.

Let C = {{1, 2} }. (Note that constraint (7) is induced by the packing {1,2}). Taking x; = X, = % and x3 =1

we obtain a solution in [0,1]° that satisfies constraints (5) - (7).

Thus, by Corollary 3 we can conclude that the infeasibility of problem (P) will not be detected by applying
Proposition 2. Nevertheless, it can be detected by using some of the results stated in Section 5, see
Example 4.

Example 3 shows an infeasibility situation which is detected by considering two constraints jointly, but not
by considering them individually.

Example 3. Let (8)-(11) be the constraint system that defines the feasible region of (P).

—2X3 — X3 <=2 (8)
— 2%y —-Xs < -1 (9)

X1+  Xo+ X3 < 1 (20)

X1 +x, < 1 (12)

Let C = {{1, 2, 3}, {1,4}}. (Note that constraints (10) and (11) are induced by the packings {1, 2, 3}
and {1, 4} respectively). By applying Proposition 2 to constraints (8) and (9) we have that
Z = — 2M1X1 — 2XoXo — AqXz — AoXy, lZ,C =min {— 2M\, min {— 2N\,, — 7\/1}— 7&2} and M bil + }\‘zbiz =—27 — Ao
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o |f M < Ao, then |Z,C =—3h=—=2 1 — A+ 201 — 2 < klbi1+ 7\.2bi2 .

.lf}\.2<}\.1£ g A2, then IZ,C:_37\42:_2}"1_}"2+27\'1_2}"2>}"1bi1+ Ao biz.

o lf Xy > g Ao, then IZ,C =—2M > M bil + Ao biz .

So, to detect the infeasibility of problem (P) it suffices to choose A; and A, such that A; > A,. However,
if Proposition 2 is applied separately to constraints (8) and (9), the infeasibility is not detected, since taking
A1 =1 we obtainthatl,c =—2 = bil andl,c =-3< bil respectively.

5. FIXING VARIABLES

In this section we describe a methodology for fixing variables using feasibility testing, see Section 4. Other
methodologies for variable fixing can be found in [3, 8, 9, 12].

Let R = {(x)}jeg € {0,1}" | Zaijxj <b; Vi €1} and let C = {C4}, , be an admissible family for R, where,
jed
for simplicity, we assume that {C}, , is a family of packings. (All of the results stated in this section

can be generalized to any admissible family for R). We also assume that, for each k € K, Cix = &, !Ck! >1 and
Ak'e K\ {k} such that C, = Cy.

Let Ic be the set of indices of the constraints in (P) that are induced by {Ck}keK'

Proposition 3. Let iy,...i, € | \ Ic be such that i = i VI, I' € {1,..p} with | = I' and let

z= Z(xlaiﬂ- +...+ xpaipj)xj , where p > 1 and A4,...,A, are positive integers relatively prime. Then
jed

(1) Letk e Dandj € Cy. If &, a;

solution to (P).

g Tt kpaipjx > b+t A bip —l,c + I, then x = 0 in every feasible

(2) Letk e Sandj € C N Cswy. If Ay @
every feasible solution to (P).

S S IV ap i > A b+ A, bip —l,c + 1k, then xx=0Iin

i1]

(3) Letk € Sandje Cy\ Csi). If A1 &

X = 0 in every feasible solution to (P).

ok Ay @5 > ha by +t A by = e + 1= 07 (Csgo \ Cu), then

1’

(4) Letk € S and j*e Csuy\ Cr IfAga i + ..o+ Apa, » > Aabiy +..4 Apb, — o + | — (pO(Ck\ Cswk) ), then
(k) i P Lipj pHi, ¢ (k)

X = 0 in every feasible solution to (P).

(5) Letje J'\T. If 114,
to (P).

<+t xpaipj* > A bj, ..+ prip — l,¢, then x = 0 in every feasible solution

1]

PROOF. It suffices to fix xx = 1 in (P) and apply Proposition 2 to check that the resulting problem is
infeasible.

Proposition 4. Let ij,.., ip € Nc¢ be such that i = iy VlI'e {1,.., p} with | = I’ and let

zZ= Z(klaiﬂ- +..+ kpaipj)xj , where p > 1 and A4,..., A, are positive integers relatively prime. Then
jed
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(1) Letk € Dandj € Cy. If lgj > Ay bi, +...+ hoby = lc + l, where I = 9% (C\ i), then x: = 1
and x;=0 Vj e C.\{j'} in every feasible solution to (P).

(2) Letk € Sandj e Cyn Cs).
If I > Rabig ..+ Apby =l c + I, where I = min { ((Ck N Csg) \ D),

¢°(Ci\ Cso) + 9°(Cso\ C} then x = Land x= 0 Vj € (Cy U Cs) \ i’} in every feasible
solution to (P).

(3) Letk € Sand e Cy\ Cs.
If Ik,j* > 7»1 bi1 +...+ 7\,’) bip — IZ,C + |k, where Ik,j* = mln{ 9 ( Ck M Cg(k) ),

¢°((CACs)\ D) + 9°(Cs\ CY}. thenx: = Land x;= 0 Vj € CA{j’} in every feasible solution
to (P).

(4) Letk € Sandj e Csx)\Cy.
If Ik,j* > M bi1 +...+ }"p bip - |Z’c + I, where Ik,j* =min {9 ( Cin Cg(k) ),
9°(Ci\ Cs9) + 0°((Csro\CY\ ([ 1)}, then x =1and x =0 Vj € Csy \{j'} in every feasible

solution to (P).

(5) Let j*e JN\T. If rMa ; ot hpd < l,c — A bi,— ... — Apbi, , then x+ = 1 in every feasible solution
1. p
to (P).

PROOF. It suffices to fix x = 0 in (P) and apply Proposition 2 to check that the resulting problem is infeasible.

Since Proposition 2 holds for any indices iy,...,i, € |, Propositions 3 and 4 also hold. If iy,....i, € Ic, no
variable can be fixed by applying Propositions 3 and 4, since Proposition 2 does not detect the infeasibility of
the problems considered in the proofs of Propositions 3 and 4. If not all indices ij,..., i, belong to I;, by Lemma
3 it follows that if Propositions 3 or 4 can fix a variable by considering iy,...,i,, then they will also fix it by
considering only those indices in I'\ Ic.

Lemmas 4 and 5 state some necessary conditions for the hypotheses required in the four first claims of
Propositions 3 and 4, respectively.

Lemma 4. Letiy,..., ip € N be such that iy = iy VI, I e{l,..., p} with =1, andletz = Z(klailj +..+ xpaipj)xj ,
jed
where p > 1 and A4,..., A, are positive integers relatively prime. If [,c <A, bj, +...+ A, bip , then

(1) Letk € Dandj € C fAayy +..+ Ay @5 > habiy +ot Apby —lc + g then hyayp +..+ Apay >k

(2) Letk € Sandj e C,NCs)-

If 7\.1 ailj* +...+ 7\.p aipj* > 7\.1 bi1 +...+ kpbip - IZ,C + |k, thel’] 7\.1 ailj* +..+ 7\.pa > Ik.

ip]°
(3) Letk € Sandje C\ Csuy. If Ay apj ot Ay > by ot kpbip -l + I — 90 (Cswy \Ck), then

May .+ hpay > k= °(Cse \ Ck).

(4) Letk € Sand € Csp \Ck. If Arayy +.+ Apayp > Mbi +.t Apby —lc + k= 0°(Ck \ Cs(9)) , then

M ailj* +...+ )\.p aipj* > Ik - 90 (Ck \Cg(k)),

PROOF. Trivial.
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Lemma 5. Let iy.., ip € | \ Ic be such that i = iy VI, I' € {1,., p} with | = I' and let
z= Z:(klailj +..+ kpaipj)xj , where p > 1 and A4,..., A, are positive integers relatively prime. If I, < A, bj, +...+
jed
Ap by, then
(1) Letk € Dandj € Cy. If > Ag by, +..+ Jopby = lc + l, where
Lo = 0°(Ck \{j'}), then I < l.c — Ay biy — ... - Jpby . and i is the unique index in Cy such that

}\.l al +..+ }Lp aipj’ = Ik.

1"
(2) Letk € Sandj e CcN Cs) -
Il > M biy .. Apby — L + I, where le =min { ¢ (Ccn Csgo )\ 1), 0° (Ci\ Cs) + 0° (Cs0 \ G,
then l < min {l,c—A1bi— ... = b, ,9° (Ci\ Cs)) + ©°(Cs\ C)}, and j'is the unique index in

Ck mcg(k) SUCh that }\41 ailj* +...+ 7\.p aipj* = Ik.

(3) Letk € Sandj e C\ Cgy -
If Ik,j* > 7\.1 bi1 +...+ }\.p bip - IZ,C + Ik, where Ik,j* = min { (0] (Ck M Cg(k) ),
90 ((caCsp)\ {J*}) +90 (Cse\ Ci)}, then I, < min {l,c— A bi,— ... — Ap bip P (Ckn Cs)) }s
¢ (C\ Csvy) <0 andj is the unique index in Cy \ Csk)
such that }\.1 ailj* +...+ }\.p aipj* = 9 (Ck\ Cg(k) )
(4) Letk € Sandj e Csx)\ Cy.
If Ik,j* > A bi1 +...+ 7\,’) bip - IZ,C + |k, where Ik,j* = mln{ () (Ck M Cg(k) ),
0°(CACs) + 0°((Csw \CI\ i)}, then he<min {l,c— 21 biy— ... = hpb; @ (Cc M Cg)}
¢ (Csw\ Ci) <0 and | is the unique index in Cs() \ Cx such that A; a;- +...+ A,a; » =@ (Cs() \ Ci).

PROOF. It suffices to note that, if Iy > Ay bi +...+ Apbi, — ¢ + I, then Iy < I,c — A bi, — ... = Aybj, and I > |y,
since I < 0 and A, bj, +...+ Apbi, = [, = 0.

Example 2 showed an infeasibility situation which was not detected by applying Proposition 2. Example 4
shows that this situation will be detected if Proposition 4 is applied previously.

Example 4. Let (12)-(14) be the constraint system that defines the feasible region of (P).

—2X1 —X3 < =2 (12)
—2X—X3 £ =2 (13)
Xi+ Xo < 1 (14)

Let C = {C;}, where C; = {1, 2}. By applying claim (1) of Proposition 4 to constraint (12) it follows that
x1 = 1 and x, = 0 in every feasible solution to (P), since taking A; = 1 we obtain that z = — 2x; — X3, |, = -2,
l,c =—3and I ; = 0. Accordingly, fixing the variables x; and x,, the constraint system (12) - (14) reduces to
the constraint system (15)-(16).

-x3 < 0 (15)
—X3 <=2 (16)
Let C = & . By applying Proposition 2 to constraint (16) it follows that (P) is an infeasible problem.
Example 5 shows a situation where all of the variables of a problem can be fixed by considering two

constraints jointly, but none of them can be fixed by considering the constraints individually.
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Example 5. Let (17)-(21) be the constraint system that defines the feasible region of (P).

—4X1+ 2%y — 2X3+ 33Xy —2X5 + Xg < —2 @7
4X; —B6Xy+3X3 —4X4+3%5 — 3% < O (18)
X1 + Xs < 1 (19)

Xo + X4 < 1 (20)

X3 + x5+ X < 1 (22)

Let C = {C,, C;, C3}, where C; = {1, 5}, C, = {2, 4} and C3 = {3, 5, 6}. It can be shown that no variable
can be fixed by applying Propositions 3 and 4 to constraints (17) and (18) taking p = 1. However, by applying
claim (1) of Proposition 3 and claim (3) of Proposition 4 to constraints (17) and (18) taking A; =2 and A, =1
it follows that x; = 1 and X4 = X5 = 0 in every feasible solution to (P), since z = — 4x; — 2X, — X3 + 2X4 — X5 —XG,
L =-5L=-2, l,c=-=7andl; =— 1. Therefore, fixing the variables x;, X, and xs, the constraint system
(17)-(21) reduces to the constraint system (22)-(24).

2X; —2X3+ Xg < 2 (22)
—6X, +3X3—3%Xg < —4 (23)
Xs+ Xg < 1 (24)

Let C = {C,}, where C, = {3, 6}. By applying claim (1) of Proposition 3 and claim (5) of Proposition 4
to constraint (23) taking A; = 1 it follows that x, = 1 and x3 = 0 in every feasible solution to (P), since

= —6X; + 3X3 — 3%, I =— 3 and I,c = — 9. So, fixing the variables x, and xs, the constraint system (22) - (24)
reduces to the constraint system (25)-(26).

Xe < 0 (25)
—3%xg < 2 (26)

Let C = . By applying claim (5) of Proposition 3 to constraint (25) it follows that xs = 0 in every feasible
solution to (P).

6. CONCLUSIONS

In this paper we have presented a new procedure for obtaining lower bounds on linear functions that makes
use of the information provided by certain families of packings, coverings and special ordered sets. It can
determine better lower bounds than the traditional procedures, which do not consider either coverings or
special ordered sets, and it can be particularly useful in problems without packings. We have also presented
new methods for detecting infeasibility and fixing variables in 0-1 linear programming problems based on
these lower bounds. They can detect some situations that the methods available in current literature cannot,
since they allow consideration of several constraints jointly, whereas the existing methods consider only
single constraints. Consequently, these new methods can improve the current preprocessing techniques.
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