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RESUMEN 
En este trabajo se presenta un procedimiento de obtención de cotas inferiores para una función lineal a 
partir de ciertas familias de empaquetamientos, cubrimientos y conjuntos ordenados especiales. 
Asimismo, se presentan nuevos métodos de detección de infactibilidad y fijación de variables en 
problemas de programación lineal 0-1 basados en dichas cotas que permiten considerar conjuntamente 
varias restricciones. Además, se muestran algunas situaciones que son detectadas por estos métodos, 
pero no por los métodos tradicionales, los cuales consideran las restricciones individualmente. 
 
Palabras clave: Infactibilidad, empaquetamientos, cubrimientos, conjuntos ordenados especiales,  
                              familias admisibles. 
 
ABSTRACT 
 
In this paper we present a procedure for obtaining lower bounds on a linear function by means of certain 
families of packings, coverings and special ordered sets. We also present new methods for detecting 
infeasibility and fixing variables in 0-1 linear programming problems based on these bounds that allow 
consideration of several constraints jointly. Furthermore, we show some situations which are detected 
by these new methods, but not by the traditional methods, which consider the constraints individually. 
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1. INTRODUCTION 
 
 Consider the 0-1 linear programming problem 
 
           max {∑

∈Jj
jjxc | ∑

∈Jj
jijxa ∼ bi  ∀i ∈ I, xj ∈{0,1}  ∀j ∈ J},      (P) 

 
where J = {1,...,n}, I = {1,...,m}, {cj}j∈J

, {aij}i∈I,j∈J
, {bi}i∈I

 are rational numbers and ∼ is the sense of each 
constraint (≤,  ≥,  =). 
 
 In integer programming there are many ways of representing the same problem, and the choice of the 
formulation is of crucial importance to solving it [see e.g. Hoffmann-Padberg (1991), Johnson et al. (2000), 
Nemhauser-Wolsey (1988) and Savelsberg (1944)]. 
 
 Preprocessing attempts to improve the initial formulation by using several automatic techniques such as 
unfeasibility and redundancy detection, variable fixing and constraint reformulation [see Crowder et al. 
(1983), Escudero-Muñoz (1998), Hoffmann-Padberg (1991), Johnson et al. (1985), Muñoz (1999), (2000) and 
Savelsberg (1994) among others]. 
 
 It is well known that preprocessing techniques can considerably reduce the time required to solve large-
scale integer programming problems. 
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 The detection of the infeasibility of problem (P) is based on computing bounds on a linear function z whose 
variables (xj)j∈J

 are restricted to take values in a certain subset of {0,1}n. Obviously, the best bound is the one 
given by the optimal value of z in the associated optimization problem. However, in general, this problem is 
not easy to solve, since it is similar to (P), see Section 4. Hence, there is a need to develop simple 
procedures for obtaining bounds on z. 
 
 In easy terms, a packing, a covering and a special ordered set can be considered as subsets of indices of 
0’1 variables where at most, at least and exactly one such variable, respectively, can take the value 1. These 
structures may appear explicitly in the problem but can also be derived from the constraint system by using 
probing techniques [see Atantür et al.(2000), Guignard-Spielberg (1981), Savalsberg (1994)]. Other methods 
for packing identification can be found in Dietrich et al. (1996), Muñoz (1999). See also Muñoz (1995). 
 
 The earliest papers dealing with obtaining bounds on linear functions consider only the coefficients of those 
functions [see Crowder et al. (1983), and Savelsberg (1994) among others]. In 1985 Johnson, Kostreva and 
Suhl introduced a more advanced procedure that makes use of information from families of pointwise disjoint 
packings [see Hoffmann-Padberg (1991), Johnson et al. (1985)] and, in 1996 Escudero, Garín and Pérez 
improved this procedure allowing overlapping among certain pairs of packings [see Escudero et al. (1996), 
Muñoz (1999)]. 
 
 This theoretical paper whose contribution is twofold. First, we extend the procedure given in Escudero et al. 
(1996) to obtain lower bounds on linear functions, using certain families of packings, covering and special 
ordered sets, so called admissible families. Secondly, we present new methods for detecting unfeasibility and 
fixing variables in 0-1 linear programming problems that allow consideration of several constraints jointly. 
 
 These methods can easily be generalized to mixed programming problems with bounded variables [see 
e.g. Savelsberg (1994)]. 
 
 The paper is organized as follows: Section 2 reviews the concepts of packings, coverings and special 
ordered sets. Section 3 introduces the concept of admissible families, describes a procedure for obtaining 
lower bounds on a linear function based on this type of families, and provides an example in which the 
procedures using only families of packings obtain worse lower bounds. Sections 4 and 5 present our methods 
for detecting infeasibility and fixing variables in problem (P), respectively. They also show some situations 
detected by these methods, but not by the methods available in current literature, which consider single 
constraints. Finally, Section 6 draws some conclusions from this work. 
 
2.  PACKINGS, COVERINGS AND SPECIAL ORDERED SETS 
 
 Given a set of variables {x1,...,xn} and a set F ⊆ {1,...,n}, let X(F) denote the sum of the variables whose 
indices belong to F, that is, X(F) = ∑

∈Fj
jx . 

 
 Based on the notation used in [2], we define the following concepts: 
 

Definition 1. A packing C is a non-empty subset of indices of 0-1 variables that induces the constraint  
                       X(C+) – X(C-) ≤ 1 –⏐C-⏐, where C+ ∪ C- = C and C+ ∩ C- = ∅. 

 
Definition 2. A covering C is a non-empty subset of indices of 0 - 1 variables that induces the constraint  
                      X(C+) – X(C-) ≥ 1 –⏐C-⏐, where C+ ∪ C- = C and C+ ∩ C- = ∅. 
 
Definition 3. A special ordered set C is a non-empty subset of indices of 0-1 variables that induces the  
                      constraint X(C+) – X(C-) = 1 –⏐C-⏐, where C+ ∪ C- = C and C+ ∩ C- = ∅.  
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 Lemma 1 proves that any proper subset of a packing or of a special ordered set is a packing. 
 
Lemma 1. Let C be a packing or a special ordered set, let C’ be a proper subset of C and let (xj)j∈C

 ∈{0,1}|c| 

be a feasible solution for the constraint induced by C. Then j

c'cj

j

c'cj

xx ∑∑
−+ ∩∈∩∈

−  ≤ 1 –⏐C’ ∩ C-⏐. 

 
Proof. Since C’∩C+ = C+\ (C+\C’), C’∩C- = C-\ (C-\C’), j

cj

j

cj

xx ∑∑
−+ ∈∈

−  ≤ 1 –⏐C-⏐ and xj ∈ {0,1} ∀j ∈ C, we 

obtain that j

'c\cj

j

'c\cj

j

cj

j

cj

j

c'cj

j

c'cj

xxxxxx ∑∑∑∑∑∑
−+−+−+ ∈∈∈∈∩∈∩∈

+−−=−   ≤ 1 –⏐C-⏐+⏐C-\ C’⏐ = 1 –⏐C’∩C-⏐.       

 

3. OBTAINING LOWER BOUNDS ON A LINEAR FUNCTION 

 
Definition 4. A constraint with variables x1,...,xn is said to be valid for a set R ⊆ IRn if it is satisfied by any 

vector (x1,...,xn) ∈ R. 
 
Definition 5. Let {Ck}k∈K1

, {Ck}k∈K2
 and {Ck}k∈K3

 be a family of packings, coverings and special ordered sets 

respectively. The family {Ck}k∈K, where K = K1 ∪ K2 ∪ K3, is said to be admissible for a set  

R ⊆ {0,1}n if the constraints induced by {Ck}k∈K are valid for R and each set K l with l ∈ {1,2,3} 

can be expressed as the union of three pairwise disjoint sets, say Dl, Sl and S l, that satisfy the 
following conditions, where D = D1 ∪ D2 ∪ D3, S = S1 ∪ S2 ∪ S3 and S  = 1S ∪ 2S ∪ 3S : 

 
(1) If k ∈ D and k’∈ K \ {k}, then Ck ∩ Ck’ = ∅. 

 
(2)    For each k ∈ S there exists a unique )k(s ∈S  such that  

                       Ck ∩ )k(sC  = ∅≠−−++ )CC()CC( )k(sk)k(sk IUI , and Ck ∩ Ck’ = ∅    

                       ∀k’ ∈ (S \ {k}) ∪ ( S \ { s (k)}). 
 

(3)    For each k ∈S  there exists a unique s(k) ∈ S such that s (s(k)) = k, and  
    Ck ∩ Ck’ = ∅ ∀k’ ∈ S \ {k}. 

 

NOTE. By conditions (2) and (3) above, we have that ⏐S⏐ = ⏐S ⏐. 

 
 All of the results stated from now on can be generalized to admissible families such that the constraints 
induced by {Ck}k∈K  are of the form X( +

kC ) – X( −
kC ) ≤ nk –⏐ −

kC ⏐,  X( +
kC ) – X ( −

kC ) ≥ nk – ⏐ −
kC ⏐ and  

X )C( k
+  – X )C( k

−  = nk – |C| k
− , where nk is an integer with 1 ≤ nk ≤ ⏐Ck⏐. 

 
 Given a non-empty set R ⊆ {0,1}n, we are interested in obtaining lower bounds on a function z =∑

∈Jj
jj xa , 

where {aj}j∈J are rationals and (xj)j∈J
 ∈ R. For that, we consider an admissible family for R, say C = {Ck)k∈K

, 

where K = K1 ∪ K2 ∪ K3 and {Ck}k∈K1
, {Ck}k∈K2

 and {Ck}k∈K3
 are a family of packings, coverings and special 

ordered sets respectively. Without loss of generality let us assume that −
kC = ∅ for each k ∈ K (otherwise,  

it suffices to substitute xj by 1 – x’j  )Cj
Kk

kU
∈

−∈∀ . 
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 Let lz,C = min
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∑
∈

∈

Jj
cjjj R)x(|xa

Jj
, where Rc = {(xj)j∈J  ∈ {0,1}n ⏐ X (Ck) ≤ 1  ∀k ∈ K1, X (Ck) ≥ 1   

∀k ∈ K2, X (Ck) = 1  ∀k ∈ K3} (if K = ∅, we define Rc = {0,1}n). Then R ⊆ Rc, since the constraints induced  
 
by {Ck}k∈K

 are valid for R. Thus, lz,C is a lower bound on the function z. 
 
 Below we give some cases where eliminating one of the elements of C leaves the set Rc unchanged and, 
so, the bound lz,C also remains unchanged. 
 
 Let k, k’ ∈ S ∪S  be such that Ck ⊂ Ck’ . 
 
 • If k ∈ S1 ∪ 1S and k’ ∈ S1 ∪ 1S  ∪ S3 ∪ 3S , we can eliminate k from S1 ∪ 1S  and move k’ to D1 ∪ D3.  
 
 • If k ∈ S1 ∪ 1S ,⏐Ck⏐= 1 and k’∈ S2 ∪ 2S , we can eliminate k from S1 ∪ 1S  and move k’ to D2.  
 
 • If k ∈ S2 ∪ 2S ∪ S3 ∪ 3S  and k’ ∈ S2 ∪ 2S  , we can eliminate k’ from S2 ∪ 2S  and move k to D2 ∪ D3.  
 
 • If k ∈ S2 ∪ 2S  ∪ S3 ∪ 3S  and k’ ∈ S1 ∪ 1S  ∪ S3 ∪ 3S  , we can fix xj = 0    ∀j ∈ Ck’ \ Ck, eliminate k’ from  
    S1 ∪ 1S  ∪ S3 ∪ 3S  and move k to D3. 
 
 Now, let k ∈ D be such that Ck = {j}.  
 
 • If k ∈ D1, we can eliminate k from D1. 
 
 • If k ∈ D2 ∪ D3, we can fix  xj = 1 and eliminate k from D2 ∪ D3. 
 
 Therefore, we can assume that, for each k ∈ K, ⏐Ck⏐ > 1 and, if ∃  k’ ∈ K \ {k} such that Ck ⊂ Ck’, then  
k ∈ S1 ∪ 1S  and k’ ∈ S2 ∪ 2S . 
 
 Any non-empty subset of RC containing R verifies that, if (xj)j∈J is restricted to belong to that subset, then lz,c 
is still a lower bound on z. Consequently, whenever lz,C is mentioned, it will be assumed that (xj)j∈J

 can take 
any value in RC and the initial set R will be allowed to be empty. (Note that RC ≠ ∅). 
 

Lemma 2.  Let Rz,b,C = ,bxa|R)x(
Jj

jjCj Jj
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤∈ ∑
∈

∈
 where b is a rational constant. 

 
 Then Rz,b,C = ∅ if and only if lz,C > b. 
 
 
Proof. It follows from the definition of lz,C.      
 
 
 Given a set C ⊆ J, we define )C(ϕ  = min {aj⏐ j ∈ C} and )C(0ϕ  = min { )C(ϕ , 0}. 
 
 Let J+ = {j ∈ J ⏐ aj > 0}, J- = {j ∈ J ⏐ aj < 0}, J0 = {j ∈ J ⏐ aj = 0}, Τ  = U

Kk
kC

∈

and 
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⎪
⎪
⎪
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⊄⊄∈∈∀

⊄⊄∈∈∀ϕ+

⊆⊆∈∈∀+ϕ

⊆∪∈∈∀ϕ+ϕ∩ϕ
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33k)k(s)k(sk)k(sk

k)k(s23
J)C\C(j

jk

k)k(s23k)k(s)k(sk)k(sk

13k)k(s
0

)k(sk)k(sk

)k(sk32
J)C\C(j

)k(sj

)k(sk32
k)k(s)k(sk)k(sk

)k(sk22
J)CC(j

j

)k(sk22
J)C\C(j

)k(sj

k)k(sk,22
J)C\C(j

jk

)k(sk22
k)k(s)k(sk)k(sk

)k(sk12
J)C\C(j

)k(s
0

j

)k(sk12k)k(s
0

)k(sk)k(sk

31k)k(s)k(sk
0

)k(sk

k)k(s21J)C\C(j
jk

k)k(s21k)k(s)k(sk
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)k(sk

11k)k(s
0

)k(sk
0

)k(sk

3k

k2
JCj

j

k2k

1k
0

k

S)k(sthatsuchSk)}C\C()C\C(),CC({min

JC\CandS)k(sthatsuchSka)C(

JC\CandS)k(sthatsuchSk)}C\C()C\C(),CC({min

S)k(sthatsuchSk)}C\C()C\C(),CC({min

JC\CandS)k(sthatsuchSk)C(a

JC\CandS)k(sthatsuchSk)}C\C()C\C(),CC({min

JCandJC,S)k(sthatsuchSka

JCandJC,S)k(sthatsuchSk)C(a

JC\CandJCS)k(sthatsuchSka)C(

JCCandS)k(sthatsuchSk)}C\C()C\C(),CC({min

JC\CandS)k(sthatsuchSk)C(a

JC\CandS)k(sthatsuchSk)}C\C()C\C(),CC({min

S)k(sthatsuchSk)}C\C()C\C(),CC({min

JC\CandS)k(sthatsuchSk
a)C(

JC\CandS)k(sthatsuchSk)}C\C()C\C(),CC({min

S)k(sthatsuchSk)}C\C()C\C(),CC({min

Dk)C(

JCthatsuchDka

JCthatsuchDk)C(

Dk)C(

l

k)k(s

)k(sk

)k(sk

)k(sk

k)k(s

)k(sk

k)k(s

k
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Theorem 1. lz,C = .al j
\Jj

k
SDk

∑∑
Τ∈∪∈ −

+  

 
PROOF. Since the sets { } { } Sk)k(skDkk CC,C ∈∈ U are pairwise disjoint, it can easily be verified that 

j

\Jj

k
SDk

jj
Jj

alxa ∑∑∑
Τ∈∪∈∈ −

+≥      .R)x( cJjj ∈∀ ∈  On the other hand, it is clear that cJj
*
j R)x( ∈∃ ∈  such that 

k
*
jj

Cj

lxa
k

=∑
∈

   ,Dk ∈∀    k
*
jj

CCj

lxa
)k(sk

=∑
∪∈

  Sk ∈∀  and .axa j

\Jj

*
jj

\Jj
∑∑

Τ∈Τ∈ −

=  Hence, we have that  

,alxa j

\Jj

k
SDk

*
jj

Jj
∑∑∑

Τ∈∪∈∈ −

+=  which proves the assertion.       

 
Corollary 1. Let z’ = λz, where λ is a non-negative rational constant. Then lz’,C. 
 
Corollary 2. lz,C ≤ 0 if K2 = K3 = ∅. 
 

Corollary 3. lz,C = [ ] .Kk1)C(X,Kk1)C(X,Kk1)C(X,1,0)x(xanmi 3k2k1k
n

Jjjjj
Jj ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∀=∈∀≥∈∀≤∈∈
∈
∑   

 
 In general, there will exist several admissible families for the set R. Example 1 illustrates the great 
variations in the value that lz,C takes depending on the family C that has been selected; this demonstrates the 
importance of making a good choice.  
 
Example 1. Let z = –x 1 + 4x2 – 2x3 – 6x4 + x5 + 3x6 + 5x7 – 4x8 and let R be the set of solutions (x1,...,x8) ∈ 
{0,1}8 that satisfy the following constraints: 
 
         x1 + x2 + x3                         + x7           ≤ 1                         (1) 
 
                         x3 + x4                 + x7           ≤ 1                         (2) 
 
           x2 +                      + x6 + x7           ≥ 1                        (3) 
 
                             x4 + x5                 + x8  = 1                         (4)  
 
 Consider the packings C1 = {1,2,3,7} and C2 = {3,4,7}, the covering C3 = {2,6,7} and the special ordered 
set C4 = {4,5,8}. (Note that constraints (1)-(4) are induced by C1,...,C4 respectively).  
 
 The family {C1,C2,C3,C4} is not admissible for R, since C1 ∩ C2 ∩ C3 ≠ ∅. Nevertheless, by Lemma 1 any 
non-empty set C ⊂ Ck, where k ∈ {1,2,4}, is a packing whose induced constraint X(C) ≤ 1 is valid for R. 
 
 Let C’ = { },C,C,C 321 ′′′  where 1C′ = {1,2,3,7}, 2C′ = {3,4,7} and 3C′ = {5,8}. Taking D1 = {3}, S1 = {1},  

1S = {2} and D2 = S2 = 2S = D3 = S3 = 3S = ∅  we have that C’ is an admissible family for R and, by  
Theorem 1, lz,C’ = l1 + l3 = min {-2, -1 -6}-4 = -11. 
 
 Let C’’ = { },C,C,C 321 ′′′′′′  where 1C ′′ = {3,4,7}, 2C ′′ = {2,6,7} and 3C ′′ = {5,8}. Taking D1 = {3}, S1 = {1},  

2S = {2} and 1S = D2 = S2 = D3 = S3 = 3S = ∅ we have that C’’ is an admissible family for R and, by  
Theorem 1, lz,C’’ = l1 + l3 + a1 = min {5, – 6c + 3}–4 –1= – 8.  
 
 
 Let { }4321 C,C,C,CC ′′′′′′′′′′′′=′′′ , where 1C ′′′  = {1,2,7}, 2C ′′′  = {3,4}, 3C ′′′  = {2,6,7} and 4C ′′′  = {4,5,8}. Taking S1 = 

{1,2}, 2S = {3}, 3S  = {4} and D1 = 1S  = D2 = S2 = D3 = S3 = ∅ we have that C’’’ is an admissible family for 
R and, by Theorem 1, lz,c’’’ = l1 + l2 = min {4, –1+ 3} + min {–6, –2 –4} = – 4.  
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 The best lower bound on the function z is given by C’’’, since lz,C’ < lz,C’’ < lz,C’’’. Furthermore, choosing  
x1 = x4 = x6 = 1 and x2 = x3 = x5 = x7 = x8 = 0, we obtain that (x1,...,x8) ∈ R and –x1 + 4x2 – 2x3 – 6x4 + x5 + 3x6 +  
5x7 – 4x8 = – 4. Consequently, there is no lower bound on z stronger than lz,C’’’. (Note that if one restricts  
the admissible families for R to families of packings, as the traditional procedures do, then the associated 
lower bounds on z will be less than –4, since min{–x1 + 4x2 – 2x3 – 6x4 + x5 + 3x6 + 5x7 – 4x8 ⏐ 1x

kCj
j ≤∑

∈

   

∀k ∈ {1,2,4}, xj ∈{0,1}   ∀j ∈ {1,...,8}} = – 7).    
 

4. DETECTING INFEASIBILITY 
 
 Let R = {(xj)j∈J

 ∈ {0,1}n ⏐∑
∈Jj

jijxa ~ bi ∀i ∈ I}. We are interested in determining whether (P) is an infeasible 

problem, that is, whether R = ∅. 
 
 Let C = {Ck}k∈K

 be an admissible family for R, where K = K1 ∪ K2 ∪ K3 and {Ck}k∈K1
, {Ck}k∈K2

 and {Ck}k∈K3
 are 

a family of packings, coverings and special ordered sets respectively. The family C will be obtained as follows: 
 
 We start by identifying a family C0 of packings, coverings and special ordered sets whose induced 
constraints are valid for R and that contains the family Cp of packings, coverings and special ordered sets that 
induce contraints of problem (P), see Section 1. 
 
 If C0 is an admissible family for R, we take C = C0; otherwise, by Lemma 1 it is easy to determine an 
admissible family for R from C0, see Example 1. For simplicity, we assume that, for each k ∈ K, −

kC  = ∅, 
⏐Ck⏐> 1 and, if ∃  k’ ∈ K \ {k} such that Ck ⊂ Ck’, then k ∈ S1 ∪ 1S and k’ ∈ S2 ∪ 2S . 
 
 Let IC be the set of indices of the constraints in (P) that are induced by Ck}k∈K

. 
 
 Without loss of generality, from now on we assume that every constraint in (P) is an inequality of type ≤. 
(Note that any inequality of type ≥ can be converted into another one of type ≤ by multiplying it by –1, and any 
equality can be decomposed into two inequalities).  
 
Proposition 1.  Let bxa

Jj
jj ≤∑

∈

 be a valid inequality for R and let z =∑
∈Jj

jj xa . If lz,C > b, then (P) is an 

infeasible problem. 
 
PROOF. If lz,C > b, by Lemma 2 it follows that Rz,b,C = ∅ and, since R ⊆ Rz,b,C, we have that (P) is an infeasible 
problem.       
 
Proposition 2.  Let i1,...,ip ∈ I \ IC be such that il ≠ il’ ∀l, l’ ∈ {1,...,p} with l ≠ l’, and let   
z = ∑

∈

++λ
Jj

ji1 ...a(
1

 jjip x)a
p

λ where p ≥ 1 and λ1,...,λp are positive integers relatively prime.  

If lz,C > λ1 bi1 + ... + λp bip, then (P) is an infeasible problem. 
 
PROOF. It follows from Proposition 1.  

 In Proposition 2 it is not necessary to impose the condition that λ1,...,λp be integers relatively prime. Assuming 
they are integers, λ1bi1 + ...+ λp bip and the coefficients of the function z are rationals. On the other hand, if 
λ1,...,λp are positive integers, it follows from Corollary 1 that the result of applying Proposition 2 by considering 

λ1,...,λp is the same as by considering
M

,,
M

p1 λλ
K  where M is the greatest common divisor of λ1,..., λp. 

Therefore, in order to make the calculation of λ1 bi1 +  ... + λp bip and lz,C easier, it is advisable that λ1,..., λp be 
relatively prime (if p = 1, we will take λ1 = 1). 



 98

 It is clear that Proposition 2 also holds for any indices i1,..., ip ∈ I.  Now, if i1,..., ip ∈ IC, taking b = λ1 bi1 +...+ 
λp bip in Lemma 2 we have that Rz,b,C = RC ≠ ∅, hence lz,C ≤ λ1 bi1 +...+ λp bip and Proposition 2 does not detect 
the infeasibility of problem (P). If not all indices i1,...,ip belong to IC, Lemma 3 proves that if Proposition 2 
detects the infeasibility of (P) by considering i1,...,ip, then it will also detect it by considering only those indices 
in I \ IC. 
 
Lemma 3. Let i1,...,ip’ ∈ I \ IC be such that il  ≠ il’  ∀l,l’ ∈ {1,...p’} with l ≠ l’, let ip’+1,...,ip ∈ IC be such that il ≠ il’    
∀l,l’ ∈ {p’ + 1,...,p} with l ≠ l’, let  z = ∑

∈

λ++λ
Jj

jjipji1 x)a...a( p1 and z´ = ∑
∈

λ++λ
Jj

jji'pji1 x)a...a( 'p1 , where  

1 ≤ p’ < p and λ1,...,λp are positive integers relatively prime. If lz,C > λ1 1ib +...+ λp pib ,  

then lz’,C  > 
1i1bλ +...+λp’ 'pib . 

 
PROOF.  Let b = λ1 1ib +...+ λp pib and b’ = λ1 1ib +...+ λp’ 'pib  If lz,C > b, by Lemma 2 we have that Rz,b,C = ∅ and, 

since ip’+1,...,ip ∈ IC and λp’+1,..., λp > 0, it follows that Rz’,b’,C ⊆ Rz,b,C, hence Rz’,b’,C = ∅ and lz’,c > b’.         
 
Given i1,..., ip ∈ I \ IC, if K2 = K3 = ∅ and λ1 1ib +...+ λp pib ≥ 0 ∀λ1,..., λp > 0, it is not necessary to apply 

Proposition 2, since lz,C ≤ 0 by Corollary 2 and, so, lz,C ≤ λ1 1ib +...+ λp pib . 
 
Example 2.  Let (5)-(7) be the constraint system that defines the feasible region of (P).  
 
       – 2x1                – x3  ≤ – 2                                          (5) 
 
                             – 2x2  – x3  ≤ – 2                                          (6) 
 
                 x1 +  x2          ≤   1                                           (7)     
 
 By constraints (5) and (6), we have that x1 = x2 = 1 in every feasible solution to (P). 
 
 Consequently, by constraint (7) it follows that (P) is an infeasible problem. 
 

 Let C = {{1, 2}}. (Note that constraint (7) is induced by the packing {1,2}). Taking x1 = x2 = 
2
1  and x3 = 1 

we obtain a solution in [0,1]3 that satisfies constraints (5) - (7). 
 
 Thus, by Corollary 3 we can conclude that the infeasibility of problem (P) will not be detected by applying 
Proposition 2. Nevertheless, it can be detected by using some of the results stated in Section 5, see  
Example 4.        
 
 Example 3 shows an infeasibility situation which is detected by considering two constraints jointly, but not 
by considering them individually. 
 
Example 3. Let (8)-(11) be the constraint system that defines the feasible region of (P). 
 
      – 2x1                – x3            ≤  – 2                                      (8) 
 
               – 2x2          – x4   ≤  – 1                                      (9) 
 
              x1 +    x2 + x3           ≤     1                                              (10) 
 
               x1                   + x4    ≤    1                                                      (11)  
 
 Let C = {{1, 2, 3}, {1,4}}. (Note that constraints (10) and (11) are induced by the packings {1, 2, 3}  
and {1, 4} respectively). By applying Proposition 2 to constraints (8) and (9) we have that  
z = – 2λ1x1 – 2λ2x2 – λ1x3 – λ2x4, lz,C = min {– 2λ1, min {– 2λ2, – λ1}– λ2} and λ1 1ib + λ2 2ib  = – 2λ1 – λ2. 
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   • If λ1 ≤ λ2, then lz,C = – 3λ2 = – 2λ1 – λ2 + 2λ1 – 2λ2 ≤ λ1 1ib + λ2 2ib .   
 

   • If λ2 < λ1 ≤ 
2
3  λ2, then lz,C = – 3λ2 = – 2λ1 – λ2 + 2λ1 – 2λ2 > λ1 1ib + λ2 2ib . 

 

   • If λ1 > 
2
3  λ2, then lz,C = – 2λ1 > λ1 1ib + λ2 2ib . 

 
 So, to detect the infeasibility of problem (P) it suffices to choose λ1 and λ2 such that λ1 > λ2. However,  
if Proposition 2 is applied separately to constraints (8) and (9), the infeasibility is not detected, since taking  
λ1 = 1 we obtain that lz,C = – 2 = 

1ib  and lz,C = – 3 < 
1ib respectively. 

 
5. FIXING VARIABLES 
 
 In this section we describe a methodology for fixing variables using feasibility testing, see Section 4. Other 
methodologies for variable fixing can be found in [3, 8, 9, 12]. 
 
 Let R = {(xj)}j∈J ∈ {0,1}n ⏐ ∑

∈

≤
Jj

ijij bxa  ∀i ∈ I} and let C = {Ck}k∈K
 be an admissible family for R, where, 

for simplicity, we assume that {Ck}k∈K
 is a family of packings. (All of the results stated in this section  

can be generalized to any admissible family for R). We also assume that, for each k ∈ K, −
kC  = ∅, ⏐Ck⏐ > 1 and         

∈ K \ {k} such that Ck ⊂ Ck’. 
 
 Let IC be the set of indices of the constraints in (P) that are induced by {Ck}k∈K

. 
 
Proposition 3.  Let i1,...,ip ∈ I \ Ic be such that il ≠ il’ ∀l, l’ ∈ {1,...,p} with l ≠ l’, and let  
z = ∑

∈

λ++λ
Jj

jjipji1 x)a...a(
p1

, where p ≥ 1 and λ1,...,λp are positive integers relatively prime. Then  

 
(1) Let k ∈ D and j* ∈ Ck. If λ1 *

1jia +...+  λp *
p jia > λ1 1ib +...+  λp pib – lz,C + lk, then xj* = 0 in every feasible  

     solution to (P).   
  
(2) Let k ∈ S and j* ∈ Ck ∩ )k(sC . If λ1 *

1jia +...+ λp *
p jia > λ1 1ib +...+ λp pib – lz,C + l k,  then  xj* = 0 in   

every feasible solution to (P).  
 
(3) Let k ∈ S and j*∈ Ck \ )k(sC . If λ1 *

1jia +...+ λp *
p jia > λ1 1ib +...+ λp pib – lz,C + l k – 0ϕ ( )k(sC \ Ck), then  

xj* = 0 in every feasible solution to (P). 
 
(4) Let k ∈ S and j*∈ )k(sC \ Ck. If λ1 *

1jia + ...+ λp *
p jia > λ1 1ib +...+ λp pib – lz,C + lk – 0ϕ (Ck \ )k(sC ), then  

xj* = 0 in every feasible solution to (P). 
 
(5) Let j*∈ J+ \ Τ. If λ1 *

1jia +...+ λp *
p jia > λ1 1ib +...+ λp pib – lz,C, then xj* = 0 in every feasible solution  

to (P). 
 
PROOF. It suffices to fix xj* = 1 in (P) and apply Proposition 2 to check that the resulting problem is 
infeasible.           
 
Proposition 4. Let i1,..., ip ∈ I\IC be such that il ≠ il’ ∀l,l’∈ {1,..., p} with l ≠ l’, and let  
z = ∑

∈

λ++λ
Jj

jjipji1 x)a...a(
p1

, where p ≥ 1 and λ1,..., λp are positive integers relatively prime. Then  

 

∃ k' 
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(1)  Let k ∈ D and j*∈ Ck. If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = 0ϕ (Ck \ {j*}), then xj* = 1 

and  xj = 0  ∀j ∈ Ck \ {j*} in every feasible solution to (P). 

(2)  Let k ∈ S and j*∈ Ck ∩ )k(sC . 
 If lk,j*  > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min {ϕ (( Ck ∩ )k(sC ) \ {j*}),  

0ϕ (Ck \ )k(sC ) + 0ϕ ( )k(sC \ Ck)}, then xj* = 1 and xj = 0 ∀j ∈ (Ck U )k(sC ) \ {j*}  in every feasible 
solution to (P). 

(3)  Let k ∈ S and j*∈ Ck \ )k(sC .  

 If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min{ϕ ( Ck ∩ )k(sC ),  
0ϕ ((Ck\ )k(sC ) \ {j*}) + 0ϕ ( )k(sC \ Ck)}, then xj* = 1 and xj = 0  ∀j ∈ Ck\{j*} in every feasible solution 

to (P). 

(4)  Let k ∈ S and j*∈ )k(sC \ Ck.  

If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min {ϕ ( Ck ∩ )k(sC ),  
0ϕ (Ck \ )k(sC ) + 0ϕ (( )k(sC \ Ck) \ {j*})}, then xj* = 1 and xj = 0   ∀j ∈ )k(sC  \ {j*} in every feasible 

solution to (P). 
 
(5) Let j*∈ J- \T. If λ1 *

1jia +...+ λp *
p jia < lz,C – λ1 1ib – ... – λp pib , then xj* = 1 in every feasible solution  

to (P). 
 

PROOF. It suffices to fix xj* = 0 in (P) and apply Proposition 2 to check that the resulting problem is infeasible.      
 
 Since Proposition 2 holds for any indices i1,...,ip ∈ I, Propositions 3 and 4 also hold. If i1,...,ip ∈ IC, no 
variable can be fixed by applying Propositions 3 and 4, since Proposition 2 does not detect the infeasibility of 
the problems considered in the proofs of Propositions 3 and 4. If not all indices i1,..., ip belong to Ic, by Lemma 
3 it follows that if Propositions 3 or 4 can fix a variable by considering i1,...,ip, then they will also fix it by 
considering only those indices in I \ IC.  
 
 Lemmas 4 and 5 state some necessary conditions for the hypotheses required in the four first claims of 
Propositions 3 and 4, respectively. 
 
Lemma 4.  Let i1,..., ip ∈ I\IC be such that il ≠ il’ ∀l, l’ ∈{1,..., p} with l ≠ l’, and let z = ∑

∈

λ++λ
Jj

jjipji1 x)a...a(
p1

, 

where p ≥ 1 and λ1,..., λp are positive integers relatively prime. If lz,C ≤ λ1 1ib +...+ λp pib , then  

 
(1)  Let k ∈ D and j*∈ Ck. If λ1 *

1jia +...+ λp *
p jia  > λ1 1ib +...+ λp pib – lz,C + lk, then λ1 *

1jia +...+ λp *
p jia  > lk. 

(2)  Let k ∈ S and j*∈ Ck I )k(sC .  
If λ1 *

1jia +...+ λp *
p jia  > λ1 1ib +...+ λp pib – lz,C + lk, then λ1 *

1jia +...+ λp *
p jia  > lk. 

(3) Let k ∈ S and j*∈ Ck \ )k(sC . If λ1 *
1jia +...+ λp *

p jia  > λ1 1ib +...+ λp pib - lz,C + lk – )C\C( k)k(s
0ϕ , then 

λ1 *
1jia +...+ λp *

p jia  > lk – )C\C( k)k(s
0ϕ . 

(4) Let k ∈ S and j*∈ k)k(s C\C . If λ1 *
1jia +...+ λp *

p jia  > λ1 1ib +...+ λp pib – lz,C + lk – )C\C( )k(sk
0ϕ , then 

λ1 *
1jia +...+ λp *

p jia  > lk – )C\C( )k(sk
0ϕ . 

 
PROOF. Trivial.         
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Lemma 5. Let i1,..., ip ∈ I \ IC be such that il ≠ il’ ∀l, l’ ∈ {1,..., p} with l ≠ l’, and let  
z = ∑

∈

λ++λ
Jj

jjipji1 x)a...a(
p1

, where p ≥ 1 and λ1,..., λp are positive integers relatively prime. If lz,c ≤ λ1 1ib +...+ 

λp pib , then  

(1) Let k ∈ D and j*∈ Ck. If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where  

lk,j* = \C( k
0ϕ {j*}), then lk < lz,C – λ1 1ib – ... – λp pib , and j* is the unique index in Ck such that 

λ1 *
1jia +...+ λp *

p jia = lk. 

(2) Let k ∈ S and j*∈ Ck I )k(sC . 

If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min {ϕ ((Ck ∩ )k(sC )\ {j*}), 0ϕ ( Ck \ )k(sC ) + 0ϕ ( )k(sC \ Ck)},  

then lk < min {lz,C – λ1 1ib – ... – λp pib , 0ϕ (Ck \ )k(sC ) + 0ϕ ( )k(sC \ Ck)}, and j* is the unique index in 

Ck ∩ )k(sC  such that λ1 *
1jia +...+ λp *

p jia  = lk. 

(3) Let k ∈ S and j*∈ Ck \ )k(sC .  

If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min {ϕ (Ck ∩ )k(sC ), 
0ϕ ((Ck\ )k(sC ) \ {j*}) + 0ϕ ( )k(sC \ Ck)}, then lk < min {lz,C – λ1 1ib – ... – λp pib , ϕ (Ck ∩ )k(sC )}, 

ϕ (Ck \ )k(sC ) < 0 and j* is the unique index in Ck \ )k(sC   

such that λ1 *
1jia +...+ λp *

p jia = ϕ (Ck\ )k(sC ). 

(4) Let k ∈ S and j*∈ )k(sC \ Ck. 

If lk,j* > λ1 1ib +...+ λp pib – lz,C + lk, where lk,j* = min{ϕ (Ck ∩ )k(sC ), 
0ϕ (Ck\ )k(sC ) + 0ϕ (( )k(sC \Ck) \ {j*})}, then lk < min {lz,C – λ1 1ib – ... – λp pib ,ϕ ( })CC )k(sk ∩ , 

ϕ ( )k(sC \ Ck) < 0 and j* is the unique index in )k(sC \ CK such that λ1 *
1jia +...+ λp *

p jia =ϕ ( )k(sC \ Ck). 

PROOF. It suffices to note that, if lk,j*  > λ1 1ib +...+ λp pib – lz,C + lk, then lk < lz,C – λ1 1ib – ... – λp pib and lk,j*  > lk, 
since lk,j* ≤ 0 and λ1 1ib +...+ λp pib – lz,C ≥ 0.       
 
 Example 2 showed an infeasibility situation which was not detected by applying Proposition 2. Example 4 
shows that this situation will be detected if Proposition 4 is applied previously. 
 
Example 4.  Let (12)-(14) be the constraint system that defines the feasible region of (P). 

      – 2x1              – x3  ≤  – 2                                        (12) 

                                – 2x2 – x3   ≤  – 2                                       (13) 

              x1 +   x2          ≤     1                                        (14)    
 
 Let C = {C1}, where C1 = {1, 2}. By applying claim (1) of Proposition 4 to constraint (12) it follows that  
x1 = 1 and x2 = 0 in every feasible solution to (P), since taking λ1 = 1 we obtain that z = – 2x1 – x3,  l1 = – 2,  
lz,C = – 3 and l1,1 = 0. Accordingly, fixing the variables x1 and x2, the constraint system (12) - (14) reduces to 
the constraint system (15)-(16). 
 
             – x3   ≤      0                               (15) 

             – x3    ≤  – 2                               (16) 

 Let C = ∅ . By applying Proposition 2 to constraint (16) it follows that (P) is an infeasible problem. 

 Example 5 shows a situation where all of the variables of a problem can be fixed by considering two 
constraints jointly, but none of them can be fixed by considering the constraints individually. 
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Example 5.  Let (17)-(21) be the constraint system that defines the feasible region of (P). 
 
     – 4x1 + 2x2  –  2x3 + 3x4  – 2x5  +  x6    ≤   – 2                                 (17) 
 
        4x1  – 6x2 + 3x3  – 4x4 + 3x5  – 3x6     ≤     0                                 (18) 
 
             x1                              +   x5               ≤     1                                (19) 
 
                   x2              +  x4                        ≤     1                                 (20) 
 
                                      x3                  +    x5 +    x6      ≤    1                                 (21)   
 
 Let C = {C1, C2, C3}, where C1 = {1, 5}, C2 = {2, 4} and C3 = {3, 5, 6}. It can be shown that no variable 
can be fixed by applying Propositions 3 and 4 to constraints (17) and (18) taking p = 1. However, by applying 
claim (1) of Proposition 3 and claim (3) of Proposition 4 to constraints (17) and (18) taking λ1 = 2 and λ2 = 1  
it follows that x1 = 1 and x4 = x5 = 0 in every feasible solution to (P), since z = – 4x1 – 2x2 – x3 + 2x4 – x5 –x6,  
l1 = – 5, l2 = – 2,  lz,C = – 7 and l1,1 = – 1. Therefore, fixing the variables x1, x4 and x5, the constraint system 
(17)-(21) reduces to the constraint system (22)-(24). 
 
       2x2 – 2x3 +   x6   ≤      2                                    (22) 
 
                – 6x2 + 3x3 – 3x6   ≤   – 4                                    (23) 
 
                   x3 +   x6   ≤      1                                    (24)  
 
 Let C = {C4}, where C4 = {3, 6}. By applying claim (1) of Proposition 3 and claim (5) of Proposition 4  
to constraint (23) taking λ1 = 1 it follows that x2 = 1 and x3 = 0 in every feasible solution to (P), since  
z = – 6x2 + 3x3 – 3x6, l4 = – 3 and lz,C = – 9. So, fixing the variables x2 and x3, the constraint system (22) - (24) 
reduces to the constraint system (25)-(26).  
 
                                      x6   ≤    0                                      (25) 
 
                           – 3x6    ≤   2                                      (26)  
 
 Let C = ∅. By applying claim (5) of Proposition 3 to constraint (25) it follows that x6 = 0 in every feasible 
solution to (P). 
 
6.  CONCLUSIONS  
 
 In this paper we have presented a new procedure for obtaining lower bounds on linear functions that makes 
use of the information provided by certain families of packings, coverings and special ordered sets. It can 
determine better lower bounds than the traditional procedures, which do not consider either coverings or 
special ordered sets, and it can be particularly useful in problems without packings. We have also presented 
new methods for detecting infeasibility and fixing variables in 0-1 linear programming problems based on 
these lower bounds. They can detect some situations that the methods available in current literature cannot, 
since they allow consideration of several constraints jointly, whereas the existing methods consider only 
single constraints. Consequently, these new methods can improve the current preprocessing techniques. 
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