
 124

REVISTA  INVESTIGACION OPERACIONAL                      Vol. 23, No. 3, 2002 
 
 
 
 
 

RANDOM DEMANDS: OPTIMUM LOT SIZE  
AND THE NEWSBOY PROBLEM 
Sira Allende and Carlos Bouza1, Facultad de Matemática y Computación, Universidad de La Habana 
 

ABSTRACT 
The determination of the optimum lot size is a stochastic problem because of the randomness of the 
demands. The usual approaches consider that the involved distributions are known. We consider the 
case in which they are unknown. The optimization problem is probabilistic constraint program. The 
demands are modeled by an autoregressive process and the needed quantiles are derived. The 
newsboy problem is revisited using the derived results. 
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RESUMEN 
La determinación del tamaño óptimo del lote es un problema estocástico dada la aleatoriedad de las 
demandas.  Usualmente se consideran conocidas las funciones de distribución que entran en la 
modelación.  Consideramos el caso en que ellas son desconocidas.  El. problema de optimización es 
un programa con restricciones probabilísticas.  Utilizando los resultados obtenidos el problema del 
newsboy es reanalizado. 
 
Palabras clave: análisis de escenarios, optimización con restricciones probabilísticas, expansión de  
                          Cornish-Fisher. 
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1.  INTRODUCTION 
 
 In many applications we need to determine the optimum lot size [ols]. Large inventories determine 
increases in the management costs. Therefore the problem to be solved is an ols one. When the demands 
are considered random the involved optimization problem is stochastic. Lasserre-Bes-Roubellat [1985] 
studied it considering that the distribution is known.  The problem is to determine the lot size during k periods. 
Assuming the standardization of the involved variables they denoted, for a fixed period t, the inventory level 
[lot size] by Xt and by ft  the corresponding cost function. Similarly st is the production level [control variable] 
and gt the corresponding cost function. The demand wt  is a random variable. They assumed that the 
demands are iid and that the system is an open loop. The program is 
 

      P1: min E 'M)s(g)X(f tt
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subject to: 
 
       Xt  = Xt-1  + st  - wt             [1.2] 
 
       st ∈ [0,s’t ]         [1.3] 
 
       Prob{Xt  ≤ '

tx } ≥ αt          [1.4] 
 
       Prob{Xt  ≥ ''

tx } ≥ βt              [1.5] 
 
t = 1,..,k. 
 
[1.2] is the evolution function of the Stochastic Dynamic Model P1. The constraints [1.4] and [1.5]  establish 
that it is a  probabilistic constrained problem.  A deterministic equivalent program is: 
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      P2: min E M)s(g)y(f tt
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subject to: 
 

yt  = yt-1  + st  - wt0 
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t = 1,...,k 
 
and 
 

wt0 = λtβt  if  t = 1 (λtβt  - λ[t-1]βt  if t > 1). 
 
λp is the quantile of order p of the known distribution function F.  Suppose that it is unknown and that the DM 
is able to fix F* = {F1,...,Fn,....} as the family of distribution functions where F belongs. Then we need to 
estimate M. If Mn is an estimate of M derived from a sample the approximation error [AE]  
 

en = ⎜Mn - M⎜= en[z’] 
 
is a non decreasing function. Using this assumptions Allende-Bouza [1998] derived the deterministic 
equivalent of P1 and the convergence of en was obtained using  results of Birgé [1991]. 
 
 In this paper we drop the hypothesis that the demands are i.i.d and assume that the sums of the demands 
Dt conform a linear autoregressive process.  An approximation by Edgeworth Series [ES] is used for deriving 
an approximation to the  involved quantiles. A discretization of the interval where they supposedly belong 
permit to compute a solution using scenario analysis.  The accuracy is related with the interval’s width. 
 
 The newsboy problem [NP] is studied as a particular case: a single item inventory problem with k-periods. 
 
2. MAIN RESULTS 
 
 Consider that the demand at moment j+1 is modeled by the linear autoregressive process 
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where {et, t+1,2... } is an idd sequence of random errors with null expectation. It reflects the responses and 
the model establishes that the demand at time t is related with at most I previous periods. The λi‘s are 
unknown parameters such that  
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belongs to the zero unit circle. 
 
 The counterpart of [1.4] is 

 
Prob {x0 +St -Dt ≤ '

tx } ≥ αt 
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x0 is the initial inventory level and       
                                    

              ∑
=

=
t

1j
tj Ss             [2.2] 

 
 Take the quantile 
 

qtt
1

t ]q[F λ=−  
 
 Then an equivalent constraint is 
 
                  x0 + St - '

tx  ≤ λ1-αt                       [2.3] 
 
 Similarly for [1.5] we obtain 
 
                    x0 + St - ''

tx ≥ λβt                   [2.4] 
 
 The following proposition establishes the conditions needed for using the normal distribution for obtaining 
adequate approximations for the unknown quantiles. 
 
Proposition 2.1.  Take U* as a class of Borel sets of  R such that for en → 0 and for some a > 0  
 

Sup {A∈U*} ∫[∂A]φσ[h]dh = 0[ea], 
 
holds. φσ is the density function of the normal distribution N[0,σ ]  and 
 

σ2 = σ00 + 2∑j≥1σ0j ≥ 0 
 
defining  
 

σ0j =E[X1 Xj+1] - E[Xj]E[Xj+1] 
 
and  
 

σ00 =E[Xj
2] - E[Xj]2 . 

 
 Take zp as the quantile of order p of the N[0,1], π(j[2])[λq] as a polynomial of degree not larger than 3j - 1 
depending on cumulants of Ft  and  
 

∆qt  =∑j≥1 π(j[2])[ λq ]t-j/2∈ ),( ''
q

'
q ∆∆ . 

 
 If 
 
1)  All zeros of (2.1) lie within the circle Z* = {z ∈ C |z|  < 1} 
 
2)  Yt = (Dt,...,Dt+I-1), t > 0 and E[|D|m+1] > 0 for some t > 2. 
 
3) lim sup  ⎜η⎜→ ∞  E[exp(iηe1)] < 1 
 
are satisfied then, the two constraints  

      x0 + St - ''
tx ≥ zβt - ''

tβ∆                                                                                                               [2.5] 

      x0+St - '
tx ≤ z1-αt - '

t1 α−∆                                                                                                           [2.6] 
 
determine a constraint set which is more restrictive than that associated to [2.3] - [2,4]. 
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Proof: 
 
 The sequence Yt = (Dt,...,Dt+I-1), t > 0 is Markovian, see  Friedst and Gray (1997), and only an initial 
distribution τ on RI is admitted by it because all the zeros of [2.1] belong to Z*. Hence Yn is a stationary 
ergodic [SE] Markov process resulting that Dn is a SE sequence. From the boundness conditions of the 
expected value of some absolute values of Dt and the Cramer’s condition fixed by 3) the hypothesis of the 
example (1.1) of Götze-Hipp (1983) hold. Therefore the Edgeworth expansion for Ft  is valid, see 
Bhattacharya (1987).   
 
 Then for t → ∞ 
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and the corresponding Cornish-Fisher expansion is easily derived. The expansion of the quantiles are 
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                 St ∈ )S,0( '
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 It is clear that this constraint set is more restrictive than its counterpart in the original problem. Because of 
the convergence of the Cornish-Fisher expansion we expect that the solution of this problem be close to the 
real one. 
 
 When ft[xt] = ctxt, ct > 0, we have that '

tf [xt] = ct[yt-1 + st + Dt0] - E[Dt].  If t is sufficiently large for accepting that 
[2.7] holds  
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 When t → ∞ it has zero expectation because of the standardization of Dt. 
 
 An adequate approximation for the original problem is 
 

P3[t]:min G[t] = ∑ctyt + st  - *
t t

z β  

subject to : [2.8] - [2.10] 
 
taking 
 

[ ]{ }t'''''
t

*
t I,|zz

tttttt
β=∆∆∈∆∆+∈ ββββββ  

  
 The DM fixes the intervals Iβt

. These intervals can be discretized and a smaller number of quantiles needs 
to be computed. The nature of this approach suggests that we can use scenario analysis, within the theoretical 
frame as proposed by Rockafellar-Wets (1991) for example. For the obtention of a ‘well hedged’ solution to 
the underlying problem. 
 
3. AN APPLICATION: THE RISK AVERSE NEWSBOY PROBLEM 
 
 The newsboy problem is a single-item inventory problem.  We can model this problem for k periods. The 
original problem deals with the determination of the number of newspapers to buy.  If he buys a small 
quantity a profit is missed out.  When the quantity is too large a penalty is charged. The newsboy may want to 
maximize the expected profit.  This model fit many economic problems. See Dohoi-Watanabe-Osaki (1994) 
and Eechoudt-Gollier-Schlesinger (1995) for a detailed discussion. 
 
 The risk averse newsboy problem is a single item is considered in each period.  Qt ≥ 0 is the amount and 
Wt the demand of the items at a fixed period. St ∈ [0, S’t] is the production. The sale is S*t = min{Qt + St , Wt}. 
Qt is ordered and delivered at a cost C per unit and the selling price is R. If Wt < Qt + St the seller sells at a 
price V at the final of the period.  We assume that R > C > V > 0 and V’ is the shortage penalty per unit 
 
 The profit is a random variable 
 
       Y(Qt ) = *

tRS + V Max {0, Qt - Wt} - V' Max{0, Wt - Qt} - CQt = (R - V + V')St - V'Wt(C-V)Qt               [3.1] 
 
 For a fixed Qt 

 

E[Wt | Qt] = tt

Q

0
t dw)w(fw

t

∫  

 
 The probem to be solved is 
 

P4: MaxQt ≥ 0  E[Y(Qt)] 
 
 Subject to [3.1] and R > C > V > 0. 
 
 An important feature is that E[Y(Qt)] is an unimodal function of Qt with only one solution if the newsboy is 
risk averse. See Dohoi-Watanabe-Osaki (1994) for examples.   
 
 Take 
 

- f(Xt ) = (R - V + V') *
tS - (C - V)Qt 

 
and the constraints 
 

Qt-1 + St-1  - Wt-1  = Xt-1 
 

Xt = Xt-1 + St -Wt 



 129

 
St ∈ ]S,0[ '

t  

P[Xt ≤ ]x'
t  ≥ αt 

 
P[Xt ≥ ]x ''

t  ≥ βt 

 
 Then the  approach proposed in Section 2 may be used by the seller for fixing an optimal strategy for k 
periods. 
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