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ABSTRACT 
In medical studies the categorical endpoints are quite often. Even though nowdays some models for  
handling this multicategorical variables have been developed their use is not common. This work shows 
an application of the Multivariate Generalized Linear Models to the analysis of Clinical Trials data. After  
a theoretical introduction models for ordinal and nominal responses are applied and the main results are 
discussed. 
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RESUMEN 
Las variables de respuesta categóricas son muy utilizadas en el marco de las investigaciones 
Biomédicas. A pesar de que varios modelos para el análisis de este tipo de variables han sido 
propuestos en la literatura su uso es aun muy infrecuente. El presente trabajo muestra una aplicación 
de los Modelos Lineales Generalizados Multivariados a los datos de un ensayo clínico internacional. 
Después de una introducción teórica, modelos multivariados para el análisis de variables categóricas 
nominales y ordinales son aplicados a los datos y los resultados son interpretados. 
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1. INTRODUCTION TO MULTIVARIATE GENERALIZED LINEAR MODELS 
 
 Multinomial response models can be considered as special cases of multivariate generalized linear models. 
In analogy to the univariate case, multivariate generalized linear models are based on both distributional and 
structural assumptions. However, the response variable yi is now a q-dimensional vector with expectation 

)x|y(E iii =µ . 
 
1. Distributional assumptions: 
 
 Given xi, the yi’s are (conditionally) independent and have a distribution that belongs to a simple 
exponential family, which has the form 
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2. Structural Assumptions:  
 
 The expectation iµ  is determined by a linear predictor  
                                        
                                           β=η ii Z                                                     (2) 
 
of the form  
                                  
             )Z(h)(h iii β=η=µ                                               (3) 
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 Let  the response variable Y have possible values 1,…, k; where the numbers are mere labels for the 
categories, for example, neither ordering nor differences between the category numbers is meaningful.  The 
categories refer to the several alternatives. Sometimes consideration of Y can take k different values, hiding 
the fact that we actually have a multivariate response variable. It becomes clearer by considering the 
response vector of the dummy variables ),y,...,y(y q1= 1kq −=  
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 Then we have )0,...,1,...,0(yrY =⇔=  
 
 The probabilities are simply connected by )1y(P)rY(P r ===  
 
 Given m independent repetitions y1,…,ym (or  equivalently Y1,...,Ym); it is useful to consider as a response 
variable the number of trials that yield outcome r.  For the repetitions (y1,…,ym), the following sum of the 
vectors can be obtained 
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 Then the vector y is multinomially distributed with parameters  
 

q,...,1i)rY(P ir ===π . 
 
 The multinomial distribution of y is abbreviated by  
 

),m(M~y π  where ),...,( q1 ππ=π  
 

 In the multinomial case; )x|y(E iiii =µ=π  is a  (q×1)-vector ),...,( iq1ii ππ=π  and the model defined in (3) 
has the form  
 

)Z(h ii β=π  
 
where h is a vector-valued response function, iZ  is a (q×p)-design matrix composed of xi, and β  is  
(p×1)-vector of unknown parameters.  
 
 We will consider the widely used canonical link for multicategorical response, the logit model that is given by  
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which can be written equivalently as 
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where zi is the vector of covariables determining the log odds for category r with respect to the reference 
category k. 
 
 Response variables that have more than two categories often are ordinal. This implicates that the events, 
described by the category numbers 1,…,k can be considered ordered. In this section the following two models 
for ordinal responses will be discussed; the cumulative model and the cumulative logistic models or 
proportional odds model.  
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 The cumulative model assumes that the observable variable Y is merely a categorized version of a latent 
continuous variable U. The latter is primarily used for the construction of the cumulative model. Although 
interpretation is simpler when the latent variable takes the model into account, interpretation is also possible 
without  referring to the underlying continuous variable. 
 
 For a given vector x, consisting of explanatory variables; the model postulates that the observable variable 

}k,..1{Y ∈  and that the unobservable latent variable U is connected by 

k,...,1rUrY r1r =θ≤<θ⇔= −  

where +∞=θ<θ<θ=−∞ k10 ... . This means that Y is a categorized version of U 1k1,..., −θθ .  
 
 Furthermore, the model assumes that the latent variable U is determined by the explanatory variables in the 
linear form  

ε+γ−= 'xU  

where   ),...,( p1 γγ=γ  is a vector of coefficients and ε is a random variable with distribution function F. 
 
 From these assumptions it follows immediately that the observed variable Y is determined by the model 
 

)'x(F)x|rY(P r γ+θ=≤  
 
 Specific choices of the distribution function lead to specific cumulative models. A common choice of the 

distribution function is the logistic distribution function 
xe1

1
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= .  Consequently, the cumulative logistic 

model has the form  
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which can be written equivalently as 

γ+θ=
>
≤
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)x|rY(P

log r  

 
 The common parameter γ, describes the effect of x on the log odds of the response in the category r or 
below. In this formula γ does not have a r subscript, therefore the model assumes an identical effect of x for 
all q-1 collapsing of the response into binary outcomes. 
 
2. APPLICATION OF MULTIVARIATE EXTENSIONS OF GENERALIZED LINEAR MODELS 
  TO THE DATA FROM AN INTERNATIONAL CLINICAL TRIAL 
 
 A multi-center randomized study was performed in four different health centers to evaluate four treatments.  
This clinical trial was made in four different hospitals of Santiago de Chile and Valparaiso (Chile). 
 
 The treatments Placebo, drug A, drug B, and a combination of drug A and drug B were used to treat 
gastric-ulcers. Patients were classified at the beginning of the study as having some pain or lot of pain (initial 
status). Treatments were randomly assigned and administered during four weeks. The patients were 
classified at the end of the study in terms of their improvements in three different categories: high response 
(H), medium response (M) and  nonresponse (NONE).  
 
 The patients included in this clinical trial were considered as a representative random sample from some 
corresponding large target population defined for all the possible combinations of the explanatory variables 
(center × initial status × treatment group). Each of the patient’s response can also be assumed to be 
independent of other patient responses. An exploratory analysis of the data was done using graphical 
techniques and descriptive tables.  From Figure 1 it can be seen that the treatments were presented in the 
four centers and within each hospital the treatments were almost balanced. 
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 Figure 2 illustrates the distribution of patients taking into account the initial status and the treatment.  It can be 
seen that the treatments were homogeneous with respect to the initial status. Moreover, the number of patients 
with some pain at the beginning of the study was similar for each treatment group, and the same for the other 
status. 

 Table 1 illustrates that within each center, the best treatment was AB and the worst was A (without 
considering the placebo). It is remarkable that the treatment differences change among the hospitals. This 
fact gives us some evidence of interaction between center and treatment. 
 

Table 1. Distribution of the response by treatment and center. 
 

Treatment 

A B AB Placebo 

 
 
Cent. 

H M N H M N H M N H M N 
1 7(15.2) 22(47.8) 17(36.9) 12(25.5) 26(55.3) 9(19.1) 18(40.0) 26(57.7) 1(2.2) 9(20.4) 20(45.4) 15(34.1) 

2 16(35.5) 24(53.3) 5(11.1) 23(50.0) 19(41.3) 4 (8.7) 26(56.5) 18(39.3) 2(4.3) 13(28.2) 14(30.4) 19(41.3) 

3 14(31.8) 16(36.3) 14(31.8) 31(59.6) 6(11.5) 15(28.8) 30(58.8) 14(27.4)   7(13.7) 12(26.6) 17(27.7) 16(35.5) 

4 23(56.1) 12(29.2) 6(14.6) 27(64.2) 14(33.3) 1(2.3) 28(65.1) 10(23.2)   5(11.6) 14(40.0) 10(28.5) 11(31.4) 

Total 60 74 42 93 65 29 102 68 15 48 51 41 
 

The numbers between brackets are the percentage calculated by treatment and center (Cent.) 

 As a first approach, it was decided to fit a model for nominal responses without considering the natural 
order of the responses.  Five different models were fitted of which the result is summarized in the following 
table (Table 2). 
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                into account the initial status  
                and the treatment. 
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Table 2.  Results of the model fitting without considering the natural order of the responses. 

 MODEL LIKELIHOOD RATIO DF P 

1 Main Effects 61.66 48 0.0891 

2  Main Effects + Treat*Initial 57.33 42 0.0576 

3  Main Effects + Center*Initial 55.36 42 0.0811 

4  Main Effects + Center*Initial + Treat*Initial 50.88 36 0.0512 

5  Main Effects + Center*Initial + Treat*Initial + Center*Treat 16.43 18 0.5624 
 

Main Effects = Center + Initial + Treat 
 

 The interactions in Models 2,3 and 4 were not significant. Only the interaction between center and 
treatment was significant in Model 5.  It is also important to point out that Model 5 was the only one which had 
a good fit.  Hence, it was decided to use the following model 
 

Treat*CenterTreatInitialCenter
)responseNone(P
)responseHigh(P

log CT1T1I1C110 ⋅β+⋅β+⋅β+⋅β+β=  

   Treat*CenterTreatInitialCenter
)responseNone(P

)responseMedium(P
log CT2T2I2C220 ⋅β+⋅β+⋅β+⋅β+β=  

 
 A summary of the results of the model fitting can be found in Table 3 and 4. 
 

Table 3.  Maximum-Likelihood Analysis-of-Variance Table. 

SOURCE DF CHI-SQUARE PROB 

INTERCEPT 
CENTER 
TREAT 
INITIAL 
CENTER*TREAT 

2 
6 
6 
2 

18 

54.43 
51.26 
56.83 
47.29 
30.19 

0.0000 
0.0000 
0.0000 
0.0000 
0.0356 

LIKELIHOOD RATIO 30 25.94 0.6782 

 
Table 4.  Estimated coefficients and standard errors for the Multivariate Model. 

  LOGIT (High/None) LOGIT (Medium/None) 

Variable Coefficient Standard Error Coefficient Standard Error 

Intercept 
Center 
 
 
Treatment 
 
 
Initial 
Treatment*Center 

10.854 
-0.4935 
0.3654 
0.3658 

-0.5648 
-0.2019 
0.5994 

-0.7781 
-0.8093 
-0.7749 
-0.7403 
-0.3927 
12.490 
11.926 
0.4622 
0.5202 

-0.0866 

0.1492 
0.2704 
0.2542 
0.2457 
0.2185 
0.2084 
0.2700 
0.1184 
0.3924 
0.3384 
0.4205 
0.3972 
0.6354 
0.6251 
0.3951 
0.3781 
0.4343 

0.9922 
0.4168 

-0.5654 
-0.9043 
0.2450 

12.678 
0.8808 

-0.3753 
0.0756 
0.0885 
0.0906 
0.0407 
0.3193 

-0.3000 
-11.315 
-0.1867 
-0.1343 

0.1504 
0.2426 
0.1999 
0.2068 
0.2748 
0.2916 
0.2942 
0.1170 
0.4361 
0.5115 
0.5141 
0.3257 
0.3163 
0.3458 
0.3959 
0.3881 
0.4035 
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 It can be observed that the 
model fitted the data quite 
well and that the main 
effects were significant.  An 
unexpected result was that 
the interaction between 
center and treatment was 
found to be significant.  
Therefore it was decided to 
explorer graphically the 
magnitude of this interaction.  
In Figure 3 the percentage of 
high and medium responses 
were plotted for each 
treatment in the different 
centers and the points were 
jointed with lines. 

                          Figure 3. Interaction graph between center and treatment. 
 
 The graph illustrates a general pattern that was also observed in Figure 3; namely that treatment AB was 
the best in almost all the centers, followed by treatment B, treatment A and finally the placebo. Moreover 
there is evidence of the interaction between center and treatment. For instance, the difference between 
treatment B and A was much larger in Center 1 and 4 than in the other two centers. Also the difference 
observed between treatment A and placebo in Center 2 was large, whereas in Center 1 no difference could 
be found between the two treatments. 
 
 To analyze the performance of the different treatment in each of the four Centers the following graphs were 
made (see Figure 4): 
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Figure 4. Performance of the treatment by center. 
 
 The 4 graphs would be very similar if there would not be an interaction between center and treatment.  
However, is clear from the pictures that the performance of the treatment was different in each hospital. For 
instance, in Center 4 the high response was more frequent than the other responses and on the other hand in 
Center 1 the medium response was more frequent. 
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 At this point it can be remarked that the presence of interaction between center and treatment unables a 
clear interpretation of the coefficients of the model and the evaluation of the efficacy of each treatment.  
 
 We can not explain the nature of this interaction because in a clinical trial every hospital involved in the 
study should have similar characteristics and should work following the same protocol. 
 
 A cumulative model was also fitted, using the same factors. The result of this fit is shown below in Table 5. 
 

Table 5 .  Score Test for the Proportional Odds Assumption. 

Chi-Square = 66.8102 with 16 DF (p = 0. 0001) 

Model Fitting Information and Testing Global Null Hypothesis BETA = 0 

Criterion Interception Only 

Interception  
and  

Covariantes Chi-Square for Covariantes 

AIC 1521.332 1411.669 . 

SC 1530.485 1494.045 . 

- 2 LOG L 1517.332 1375.669 141.663 with 16 DF (p = 0.0001) 

Score   130.844 with 16 DF (p = 0.0001) 

  
 From the previous results it can be seen that the hypothesis of proportional odds ratio was rejected.  Hence 
we cannot assume an identical effect of the explanatory variable for all 2 collapsings of the response into 
binary outcomes. This can be due to the fact that the treatments have different effects in the different centers, 
which was already observed in the previous model.  
 
3. CONCLUSIONS AND SUGGESTIONS FOR FURTHER ANALYSIS 
 
• The multicategorical variables can be analyzed, using different kind of models that consider the nature of 

the variables. 
 
  ° Models for nominal response variables. 

  ° Models for ordinal response variables. 
 
• The Model applied to the analysis of the data gave evidence of interaction between center and treatment.  

As a consequence, neither the efficacy of the treatments could be evaluated, nor could a clear 
interpretation of the coefficients involved in the model be made. 

 
• The second model fitted, which used the ordinal nature of the response variable, could not establish an 

identical effect of the explanatory variables for all 2 collapsings of the response into binary outcomes. 
 
• The nature of the interaction should be investigated.  
 
  ° The four hospitals should be visited in order to know more about the implementation of the protocol. 

  ° The primary information given by the hospitals should be checked. 
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