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ABSTRACT 
Commonly audit risks are studied by using a sample of items from an account.  The estimate of the 
Total Auditing Error is the objective of the inquiry. An Eclectic Bayesian approach is used as an 
alternative to popular methods as Dollar Unit Sampling.  Jacknife is used for computing the standard 
deviation of one of the predictors.  The procedures are evaluated through Monte Carlo experiments. 
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RESUMEN 
Comúnmente los riesgos de auditoría son estudiados utilizando una muestra de items de una cuenta. 
Estimar el Error Total de Auditoría es el objetivo de la encuesta. Un enfoque Bayesiano Ecléctico es 
utilizado como alternativa respecto a métodos populares como el del Muestreo de la Unidad Dólar. 
Jacknife es utilizado para computar la desviación típica de uno de los predictores. El procedimiento es 
evaluado a través de experimentos de Monte Carlo. 
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1. INTRODUCTION 
 

An important problem in auditing is to estimate the total amount of error.  The error is measured in terms of 
the so-called `tainted dollar units’ 

 
ti  = 100 Error of item  i/Book Value 

 
It is commonly expected that the overestimation or underestimation must not exceed the 100 %. Hence, 

after rounding we have I = {T-100, T-99,....,T0,....,T100} as the set of possible values of the tainting.  Take 
⎜Tj | = Nj as the number of items in the account with tainting equal to `j’.  The parameter of interest for the 
auditor is 

θ = [RBV/100]∑i∈I  iPi  = λ∑ i∈I Pi 

It is the Total Auditing Error [TAE].  Pj=Nj/N is the unknown proportion of individiual tainting j = -100,....,100.   
N = N-100+....,N100,  hence P-100 +....+ P100  = 1.  RBV is the reported Book Value which is known.  If  ti ∈ ]j-1, j] 
we assign an observation to Tj.  The auditor estimates θ and usually he/she is interested in establishing a 
confidence region or in testing a certain hypothesis as  H0:θ ≥ θ0  . θ0   is  a critical value of the TAE that fixes 
a critical state of the account.  A normal approximation is used for inferential purposes. 

 
The auditor selects a sample of items and the use of the likelihood L = n!Πi∈I Pi ni /Π i∈I ni! seems to be a 

good approach for estimating the Pi’s.  It is adequate only is simple random sampling with replacement is 
used for selecting a sample s of size n from the population of items in the account.  A very popular methods  
is to use the so called `Dollar Unit Sampling’[DSU] .  It assigns a larger probability of inclusion to the items 
with a larger recorded value. These values are known and a certain value in dollars is attached to each of 
them.  A detailed description of these methods can be obtained in different books and papers. See for example 
Kraft [1986].  The corresponding theory is briefly presented in Section 2. DSU is analyzed within the frame of 
Unequal Probability Sampling.  Bayesian principles allow to estimate TAE, but the elicitation of an adequate 
prior poses an important difficulty, see Crosby [1980], [1981] and Solomon [1982].  A solution is to use Quasi-
Bayes audit principles, introduced by Mac Cray [1984]. It depends on one parameter only. Hernández-
Vázquez [1997] obtained a theoretical justification of the use of Maximum Likelihood principle. Section 3 
presents some necessary results. The objective of the auditor is supposed to be the determination of an 
upper and a lower bound of θ. The use of confidence intervals seem to be a solution. Using some additional 
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modeling the bounds can be derived from a likelihood, see Vázquez-Polo and Hernández-Bastida [1995],  
Hernández-Bastida and Vázquez-Polo [1997].  We investigate the use of the classic normal distribution of the 
approximations. The Eclectic Bayesian [EB] approach of modeling through a Superpopulation Approach is 
developed.  Two models are proposed and three predictors are analyzed.  Jacknife is used for computing the 
standard deviation of one of the predictors. 

 
Section 4 is devoted to the comparison of the classic standard deviation estimations and the 

Superpopulation predictors through Monte Carlo experiments.  The use of Jacknife has the best 
performance.  As a result we recommend to elicit a superpopulation model and to apply the Jacknife 
methodology for ensuring the normality and to use it in the inferences. 

 
2. SAMPLING DESIGNS 

 
A sample of n items is selected from the set U, of N items that conforms an account, for estimating θ.  The 

use of a frequentist model establishes that the 201 parameters Pi, i ∈I must be estimated by computing 
adequate estimates. 

 
A popular sampling design is to select the items proportionally to the number of dollar units assigned to 

each of them.  Taking 
 

Xj  = Record Value in dollar units of item j of the account  = RVD[j] 
 

the use of an unequal probability sampling design with inclusion probabilities set 
 

π* = {πj ⎜j ∈ U, πj  = nXj /∑i∈U Xi}, 
 

where  
 

Record Book Value =  RBV  = ∑i∈U Xi, 
 

implements DSU.  Different schemes may be used for deriving the particular selection procedures.  
Chaudhuri-Voos [1988] analyzed and discussed almost completely the behavior of the existing sampling 
designs.  Therefore DSU is implemented by selecting n units from {1,.2,...,RBV}.  Item j is observed whenever 
at least one of the n randomly selected numbers belongs to [∑i<i Xj, ∑i≤j Xi] taking ∑i<i Xj = 0 if j = 1.  

 
The evaluation of a selected item generates a vector Yj = [Y-100[j] ,..,Y100[j]] such that  

 
Yj[i]  = 1  if  j ∈ Ti  [ = 0 otherwise]. 

 
Hence 

Pi = ∑ j∈I Yj[i] /N = Number of counts of Ti/N = Ni/N 
 
Using the information provided by the sample s we can compute 

ni = ∑j∈s Yj[i] 
 
The assignment is made by evaluating if the error of the tainted dollar-unit has error i ≅ [100/RBV] 

[Xj - Audited value of item j] = [100/RBV][Xj - Zj]. 
 
The use of the likelihood function  

L[Pt  = (P-100 ,...,P100)⏐ nt = (n-100,...,n100 )] = n!Πi∈IPni/ni! 

is valid when the ni‘s are independent and simple random sampling with replacement is used for selecting the 
book. In general the use of a complex sampling design is incompatible with inferences based on this 
likelihood because of its flatness, see Chaudhuri-Voos [1988]. 

 
In any case, as θ is a linear function, an unbiased estimator is derived when unbiased estimators pi’s are 

obtained and  
 

θd = λ∑i∈Iipi 
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is computed for  sample selected by means of the sampling design d. 
 
When d is simple random sampling with replacement we have that  
 

pi = ni/n = ∑j∈sYj[i]/n 
 
is unbiased for Pi and  

 
θsrs = λ∑ i∈Ii∑j∈sYj[i]/n 

 
It is easily derived using that property that 
 

Var[θsrs ] = V[θsrs] = λ2∑i∈Ii2Pi[1 - Pi]/n 
 
is its sampling error. 
 

Note that if DSU is the design we can assume that 
 

• Prob[j,j’∈s] = πjj’ > 0 is compatible 
 
• πjj’ ≤ nπj πj’ 
 

Hence, if the auditor fixes the sample size DSU is a πPX sampling design.  The Horvitz Thompson 
estimator is highly recommended for such designs, see Ardilly [1992] for details.  Taking 
 

pi[HT]  = ∑j∈sYj[i]/Nπj  = Ni[HT]/N 
 
is unbiased.  As a result 

E[θHT] = E[λ∑i∈Iipi[HT]]  = θ 
 

and under the hypothesis of independence is easily derived that 
 

V[θHT] = [λ2/N2][∑ i∈Ii2[∑j∈IYj[i]
2(1 - πj)πj

-1 + ∑j≠j’∈UYj[i]Yj’[i](πjj’ - πjπj’ )(πjπj’)-1] 
 
is the sampling error of the estimator. 

 
These results permit to establish the estimators.  They do not incorpore the experience of the auditor 

except in the selection of the d.  We will  analyze Bayesian based alternatives which permit to use the 
information provided by the auditor on the prior distribution of the parameters and/or varibles involved. 

 
3. BAYESIAN BASED APPROACHES 

 
The auditories are repeated over time frequently.  Hence the auditor can provide a prior distribution and 

classic Bayesian procedures can be used for estimating the TAE.  In practice to solve the involved problem 
may be complicated because of: 

 
• The difficulty of dealing with statistically-minded well-informed auditors. 
 
• The techniques to be developed require of the use of sophisticated computing tools. 
 
Following Hernández-Bastida and Vázquez-Polo [1997] a solution is to look not for priors of the 201 

involved parameters but to work with a prior for θ. Supposing that θ Θ = {θ1,...., θH}  the auditor can elicit the 
mass function 

 
ξ(θt )= Prob{θt  = θ} 

 
Defining 
 

ϕ-1 (θ) = {P∈[0,1]201 ⎢∑j∈I Pj  = 1} 
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and 

 
L*[P] = ∑θo∈ΘSupϕ - 1(θ) L[P ]Iϕ - 1(θ) [P] 

 
with  

 
Iϕ-1(θ)[P]  = 1  if   P ∈ ϕ-1(θ)  [= 0 otherwise]. 

 
The Most Likely Posterior Curve is 
 

ξ(θ0 ⎢X) = L*[P]ξ(θ0)/∑θ∈Θ L*[P]ξ(θ) 
 

Its use see Hernández-Bastida, Martel-Escobar , and Vázquez-Polo [1998], has the following advantages: 
 
• The posterior distribution does not need of the existence of a previous model of the tainting which permits to 

fix the likelihood. 
 
• The auditor  works only with a model on θ.   

 
As quoted by Hernández-Bastida, Martel-Escobar, and Vázquez-Polo [1998] it is necessary to “elicit a 

complete prior distribution and it can be a very difficult task for auditors”. 
 
Each θt can be the result of obtaining a vector from the set Pt = {P* ∈ [0,1]201⎢λ∑i∈IiPi* = θt}. The 

corresponding Maximum Likelihood estimate of θ is the solution of the optimization problem 
 

α(θt ) = Max{P*∈P t }{L(P-100,...,P100 ⎢n-100,....,n100)} 
 

Therefore we have transformed the classic Likelihood looking for the compatibility of the prior distribution 
suggested by the auditor.  The Quasi-Bayesian likelihood requires again of the determination of Lt  and P*. 

 
The presented approaches are based on the knowledge of a convenient prior distribution or their properties 

hold only if the sampling design is simple random sampling with replacement. Assuming that we can relate 
the value of  each Yi with a known variable Xi, i ∈ I, we can denote it by  
 
Q[Y-100,....,Y100 ⎢X-100 ,....,X100 ) = Q(Y ⎢X).  For example  X  may be the vector of the taintings at the previous  
 
analysis of the account.   If µ is a Lebesgue measure and d[s] is a sampling design we can use the posterior 
derived by Scott [1977] 

 
Qd [Y-100,....,Y100 ⎢X-100 ,....,X100 )=d[s⎢ X] Q(Y ⎢X)/∫ d[s⎢ X] Q(Y ⎢X ) dµ(Y ⎢X ). 

 
which  is also design independent because Qd (Y ⎢X) is proportional to Q(Y ⎢X).  This fact is very attractive for 
the auditors because it means that the inferences should be based only on his/her knowledge obtained from  
the observed auxiliary variable X and expressed by Q(Y ⎢X).  This approach suggests that an auditor can use 
a known variable for describing a relationship with the unknown taintings.  Assuming that a process at the 
item level generates the tainting we can use a superpopulation approach as an Eclectic Bayesian procedure.   

 
As each item produces a tainting that is the result of sampling an infinite population  the  
 
Location-superpopulation model m 
 
                                                                           Yj[i]  = Piεj                                                                           [3.1] 

 
is a possible model.  We will analyze its meaning in the contex of audit risks studies.   

 
[3.1] describes the behavior of the item j with respect to the i-th tainting. The auditor assumes that εj is an 

unobservable random error with zero model-mean [Em(εj) = 0] and Vm[εj] = σi
2. Hence Em[Yj

i ⎢j ∈Ti] = Pi and 
Vm [Yj

i ⎢j∈Ti ] = σi
2.  The number of items in the i-th tainting  in a sample s is 
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ni  = ∑j∈sYj[i] 
It is a Binomial random variable with Em[ni] = nPi and Vm[ni] = nσi

2. Therefore pi = ni/n is also an  m-
unbiased predictor. Therefore 

 
θm = λ∑i∈Iipi,  λ = RBV/100 

 
is also m-unbiased for θ and its error  

 
Vm[θm] = λ2∑i∈Ii2σi

2/n 
 

is readibly derived. It is estimated unbiasedly by 
 

vm[θm] = λ2∑i∈Ii2pi[1 - pi]/n 
 
The traditional inferences, tests of hypothesis, interval estimation, etc , can be made using the corresponding 

well known Limit Theorems which relate the Binomial and the Normal distributions. 
 
Another modeling approach is to infer conditioning on the sample. Consider that we observe a set of 

taintings.  A tainting is observed if s ∩Ti  = si  ≠ φ.  Then we may compute the predictor 
 

*
mθ  = λ∑{i⏐ ⎜si ⎜>0} ipi = ∑{i⏐ ⎜si ⎜>0} ini /n 

 
For convenience we will define the weights   

 
Wi = i/∑{i⏐ ⎜ si  ⎜>0} i = i/W 

 
and rewrite 
  

θ*m = Wλ∑i∈IWipi = W .*'
mθ  

 
It predicts which is the sample value of the TAE under the conditions described by the superpopulation 

model. As they are quite general the value of *
mθ  permits to infer on the results of the auditories developed 

under the same conditions for the account. This is the objective in many cases: to determine what is 
expected to happen in the auditories if changes are not introduced.  

 
Following Pothoff et al. [1992] and Bouza [1995] we will reanalyze the inferential procedures.  Let us take 
 

n* = W2/∑i∈I
2
iW  

 
which is called “equivalent sample size”.  Using the transformed weights, qi =n*Wi /W we have that 
 

n* = ∑i∈IWi = ∑i∈I
2
iW . 

Then is easily derived that 
 

Vm ][ *
mθ  = λ2 ∑i∈I

2
i

2
iq σ /nn* 

 
because 

 
*
mθ  = λ∑i∈Iqipi/n*. 

 
An estimator of  Vm ][ *

mθ  is 
 

vm ][ *
mθ  = λ2∑i∈I

2
iq [yj[i] -pi]2/n[n* - 1] 

As  
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Em(vm ][ *
mθ ) = Vm ][ *

mθ  + λ2(∑i∈I[qi - 2
i

2
i ]q σ + ∑i∈Iqi(pi - θ] 2)/n[n*-1] 

 
Then  vm ][ *

mθ  overestimates the error even if the error of the taintings is constant [σi = σ] which implies that 
the second term at the right hand side is zero. It is almost incredible that  pi = θ for any i ∈ I.  Hence a positive 
bias is generally present. 

 
Note that the defined weights are random but they may be assumed to be directly proportional to the 

number of items in the tainting divided by the corresponding DSU’s.  Therefore this is an unimportant 
problem, see Pothoff et al. [1992]. 

 
Then the auditor may use  for inferences the statistic T = ][ 0

*
m θ−θ / vm .][ 2

1*
mθ It follows, approximately, a  

T-Student with 
 

f = 2[n* - 1]2 (V([n* - 1]vm ][ *
mθ /vm[ ][ *

mθ )] 
 
degrees of freedom. Note that generally in auditing, f is sufficiently large for accepting the normal approximation 
of the T-Student. 
 

Note that each Ti  can be considered as a stratum.  We  do not know which items belong to each of them.  
As Ni = ⎜Ti ⎜is unknown the selection of the sample s and the classification of the items can be modeled by 
using poststratification. This procedure is of common use for dealing with different problems as non-
responses and in small area estimation.  The corresponding results using the procedures discussed above. 

 
Another  superpopulation model is given by using m* where  Zj , the audited value of  item j, is described by 
 

Zi =  ∑0≤k≤K βkXki + εj 
 

This is a Regression-superpopulation model where the s'
kβ  are unknown parameters and the sX'

ki  are 
known values of a variable Xi related with Y.  For example it can be the reported book value in the i-th 
previous month. m* is similar to m , E[εj] = 0, V[εj] = ,2

jσ etc., but it permits to model the behavior of the 
unobserved items.  

  
Taking the population matrix X = [Xki]N×K

, the vector βK×1 and 1M a vector of M ones 
  

Zt =1M x β 
 
We will denote by Xs the X-matrix of the sample s and by ys the vector of the observed values of Y. Using 

Least Squares Estimation [LSE] we have that B = [ s
T
s

1
s

T
s yX]XX −

 estimates β.  Hence we can predict each Zj 
by using 

 
Zj = ∑0≤k≤K BkXki 

 
and to compute  

 
1Y*

]i[j =  if  [Xj-zj]/RBV = i [= 0 otherwise]. 
 
From the observed items we can compute 
 

ni = ∑j∈sYj[i] 
 
Denote by Mi =Ni -ni  the  number of unobserved items in the i-th tainting.  Its the prediction is 
 

mi = ∑j∉s
*

]i[jY  
 

can be obtained.  Our prediction of Pi under this model is 
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N/Np *

i
*
i = p*i = [ni +mi ]/N 

 
It is model unbiased because Em*[Zj ] = Yj[i].  As a result we recommend the predictor 
 

*
iIi

*
*m ip∈Σλ=θ  

 
The structure of it determines that its error depends on the model through the prediction of the Y’s for the 

unsampled items. To obtain an analytical expression of it is very difficult because the model and the use of 
LSE are sources of error  correlated in with respect to the sample and the model. A solution to estimate the 
variance of this predictor is to use an intensive computation method.  We decided to use Jacknife because it 
is less costly in our case than Bootstrap.   

 
Taking *

]j[*mθ  as the predictor computed deleting the sampled j-th item the pseudo value is given by 
 

]i*[
*mθ  = n *

*mnθ - [n - 1] *
]j[*mθ  

 
and the Jacknife predictor is 

 
J*
*mθ = ∑1≤j≤nθ*[j]

m*/n. 
 
    The robustness of the Jacknife method sustains that, because of the smoothness of our predictor, that 

 
=θ ][V *

*m
J

*m  ∑1≤j≤n
2

][ J*
*m

]j*[
*m θ−θ /n[n - 1] 

 

tends to the true variance and that [ ] 2
1

][V][ *
*m

J
*m

*
*m

−
θθ−θ follows approximately a T-Student distribution. 

 
4.  ANALYSIS OF THE BEHAVIOR OF THE DIFFERENT APPROACHES 

 
An analytical comparison of the different approaches can not be made because the expressions of the 

errors do not share common factors. The comparisons are made by performing Monte Carlo experiments. 
Each run generated an estimate or a prediction of the TAE.  A confidence interval was calculated for each result 
and the percent or runs in which the true value of θ belonged to it was the final result.  Clearly the methods with 
a percent closer to the prescribed α = 0,05 must be  preferred.  The robustness of the competitors can be 
analyzed by establishing which was closer to the results expected.   

 
Three experiments were performed.  The variables were considered as standardized with support  [-4, 4].  This 

interval was partitioned  into 201 subintervals I-100  = ]-4, -0,045[, I-99  = ] -0,045, -0,125[ ,...., I100 = ]3,5, 4[.  They 
were representative of  the corresponding taintings.  As a result 

 
Pi = ∫Iif[z]dz. 

 
The generation of n items permitted to compute the sn'

i  and the estimates or predictors.   
 
In the first experiment a population of 10 000 accounts was generated Bivariate Standard Normal 

distributions, with correlation coefficients ρxz = 0,5 0,7 and 0,9, were generated.  X is the reported book value 
and Z the true one to be detected by the auditory. Then any selected j is classified in a tainting by evaluating 
Zj. The population size was N = 10 000 and samples of size n = 100, 500 and 1 000 were selected.  

 
The results are given in Table 4.1.  Note that the normal approximation is very good for simple random 

sampling, as expected, when it is the sampling design. For DSU sampling θsrs has a very different behavior 
and we can not rely in it. The normal inferences based on θHT seems to be  not reliable. θm has a good 
behavior only for n = 1 000 and for θ*m*  they are adequate when n > 100.  For DSU sampling θ*m* and θ*m 
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have a similar behavior but the former is better for simple random sampling. These results seem to be due to 
the robustness properties of Jacknife procedures. 
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Table 4.1. Percentage of Confidence Intervals that included the true TAE in 100 runs 
Bivariate Standard Normal Case.  

N = 10 000, α = 0,05 
 
 

  Simple 
n = 100 

Random 
n = 500 

Sampling 
n = 1000 

Dollar 
n = 1000 

Unit 
n = 500 

Sampling 
n = 1000 

ρxz 0,5 0,12 0,05 0,06 0,14 0,12 0,13 

0,7 0,11 0,07 0,05 0,13 0,14 0,13 

0,9 0,12 0,06 0,05 0,15 0,11 0,11 

θSRS 

0,5 0,21 0,24 0,10 0,16 0,13 0,10 

0,7 0,22 0,22 0,11 0,11 0,15 0,12 

0,9 0,18 0,24 0,19 0,12 0,11 0,09 

θHT 

0,5 0,19 0,12 0,07 0,22 0,14 0,05 

0,7 0,21 0,13 0,06 0,21 0,12 0,07 

0,9 0,16 0,12 0,04 0,20 0,10 0,05 

θM 

0,5 0,12 0,11 0,08 0,11 0,10 0,07 

0,7 0,14 0,10 0,06 0,14 0,09 0,07 

0,9 0,11 0,10 0,07 0,10 0,12 0,06 

*
mθ  

0,5 0,10 0,09 0,06 0,11 0,08 0,06 

0,7 0,13 0,08 0,05 0,12 0,08 0,04 *
mθ  

0,9 0,11 0,09 0,07 0,10 0,10 0,06 

 
 
In the second experiment m was assumed as representative of the behavior of the account.  Using a 

sampling design n integers  were selected from {1,...,N}.  If j ∈ Ti  an uniform random variable ε with zero 
mean and variance 4Pi[1-Pi] is generated.  If  Pi + ε is closer to one than to zero then Yj[i]  = 1, else another j* 
is selected and Yj*[i*]  = 1 if  j* ∈ Ti*.   

 
The results are given in Table 4.2.  θsrs  is not a good alternative when  m is the generating the belonging to 

the taintings. The use of θHT is similarly unreliable. θm  has a better behavior as expected but *
mθ  is 

considerably better under this superpopulation. This result is supported by the general convergence 
properties of the class to which it belongs.  It is very interesting that *

*mθ and *
mθ  have a similar behavior. 

Again the reliability of the use of *
*mθ  is higher. 

 
The third experiment implemented the model m* by generating Zt = βXt + ε.  Then the value is determined 

once  X is generated and the correlation coefficient is fixed. The results are highly interesting because 
*

*mθ has also a good behavior.  Note in Table 4.3 that θsrs has a behavior similar to those obtained in the 
second experiment. *

mθ has results very close to those of  θm  and  θHT is very unreliable. 
 
These results suggest that the best alternative is to use θ*m*  for predicting TAE under the unknowledge of 

the real state of the account and its relations with other  variables.  
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Table 4.2 Percentage of Confidence Intervals that included the true TAE in 100 runs. 
m generates Y. N = 10 000, α = 0,05. 

 
  Simple 

n = 100 
Random 
n = 500 

Sampling 
n = 1000 

Dollar 
n = 100 

Unit 
n = 500 

Sampling 
n = 1000 

ρxz 0,5 0,23 0,18 0,18 0,21 0,18 0,18 

0,7 0,24 0,16 0,17 0,17 0,19 0,14 
0,9 0,18 0,17 0,16 0,18 0,12 0,18 

θSRS 

0,5 0,25 0,23 0,20 0,22 0,18 0,14 
0,7 0,16 0,19 0,18 0,20 0,12 0,15 
0,9 0,19 0,15 0,15 0,17 0,16 0,10 

θHT 

0,5 0,19 0,08 0,07 0,12 0,08 0,06 
0,7 0,11 0,10 0,07 0,10 0,07 0,08 
0,9 0,10 0,07 0,06 0,10 0,06 0,06 

θM 

0,5 0,12 0,11 0,08 0,10 0,08 0,07 
0,7 0,08 0,07 0,06 0,09 0,09 0,05 
0,9 0,07 0,06 0,05 0,09 0,06 0,04 

*
mθ  

0,5 0,07 0,06 0,06 0,10 0,10 0,08 
0,7 0,08 0,09 0,05 0,10 0,09 0,07 *

mθ  
0,9 0,07 0,09 0,04 0,10 0,06 0,07 

 
The results suggest that the best alternative seem to be the use of *

*mθ  for predicting TAE when the autor 
unknowledge the real state of the account and its relations with other variables. 

 
Table 4.3 Percent of Confidence Intervals that included the true TAE in 100 runs. 

m* generates Z. N=10 000, α=0,05 
 

  Simple 
n = 100 

Random 
n = 500 

Sampling 
n = 1000 

Dollar 
n = 100 

Unit 
n = 500 

Sampling 
n = 1000 

ρxz 0,5 0,22 0,15 0,13 0,24 0,19 0,17 

0,7 0,21 0,15 0,15 0,20 0,18 0,16 

0,9 0,15 0,16 0,16 0,15 0,16 0,17 
θSRS 

0,5 0,26 0,23 0,20 0,22 0,18 0,23 
0,7 0,24 0,18 0,23 0,20 0,22 0,21 
0,9 0,22 0,25 0,21 0,22 0,20 0,21 

θHT 

0,5 0,19 0,08 0,07 0,12 0,08 0,06 
0,7 0,13 0,13 0,11 0,12 0,08 0,08 
0,9 0,11 0,12 0,07 0,09 0,08 0,09 

θM 

0,5 0,07 0,06 0,08 0,11 0,08 0,06 
0,7 0,07 0,07 0,07 0,08 0,07 0,06 
0,9 0,06 0,05 0,05 0,05 0,05 0,04 

*
mθ  

0,5 0,06 0,05 0,06 0,07 0,06 0,06 
0,7 0,06 0,05 0,06 0,06 0,05 0,05 *

mθ  
0,9 0,04 0,04 0,05 0,05 0,06 0,04 
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