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ABSTRACT 
We analyze the steady state behavior of a single server vacation queue with variable batch size arrivals in 
a compound Poisson Process, exponential service in batch of fixed size b following a min(b,n) rule and 
general server vacations.  However, an arriving batch may or may not be allowed to join the system at all 
the times.  We obtain explicit steady state results for the probability generating functions for the number of 
customers in the system, the average number of customers and the average waiting time in the queue and 
the system.  Some special cases of interest have been derived and finally a numerical example is provided.             
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RESUMEN 
Analizamos el comportamiento del estado de la cola de la vacación de un  servidor sencillo con tamaño del 
lote variable en un proceso de Poisson compuesto, el servicio exponencial en lotes de tamaño fijo b 
siguiendo una regla min(b,n) con servidor general de vacaciones. Sin embargo, puede permitirse o no incluir 
en el sistema un lote que arribe  en todos los momentos. Obtenemos  expresiones explícitas de la 
estabilidad del estado para las funciones generatrices de probabilidad para el número de clientes en el 
sistema, el número promedio de clientes y el promedio del tiempo de espera en la cola y en el sistema.  
Algunos casos de interés  especiales han sido derivados y finalmente un ejemplo numérico es desarrollado. 
 

1. INTRODUCTION 
 
     There is extensive literature on bulk queues, for example, see Jaiswal [1960], Bhat [1964], Medhi [1975], 
Chaudhry and Templeton [1983] and Neuts [1987], to mention a few.  In this paper, we study the steady state 
behavior of a bulk queue with Bernoulli schedule server vacations. Vacation queues with Bernoulli schedule and 
many other vacation policies have been widely studied by numerous authors including Scholl and Kleinrock 
[1983], Keilson and Servi [1986], Shanthikumar [1988], Cramer [1989],  Madan [1992, 1999, 2001] and Madan 
and Saleh [2001]. For a complete overview of queues with vacations, see Doshi [1986].  In the present paper 
we use supplementary variable technique to study a single server bulk queue with Bernoulli schedule server 
vacations from a different standpoint. Our additional key assumption is that not all-arriving batches are allowed 
into the system at all times. We further assume different policies regarding admissibility of batches for the period 
when the server is present in the system and for the period of server vacations.  In the case of a mechanical 
server, the breakdown periods correspond to the vacation periods of the human server. One may encounter 
such queueing situations on some traffic highways, supermarkets, airports and some communication and 
computer systems where the management may have to decide to adopt a policy of restricting the input into the 
system from time to time. Having thus turned away, an arriving batch immediately leaves the system and is lost 
to the system.  Our mathematical model is briefly described by the following assumptions:     
 
2. ASSUMPTIONS UNDERLYING THE MATHEMATICAL MODEL 
 
1. Customers arrive at the system in batches of variable size according to a compound Poisson process with 

arrival rate .  Let π)0( >λ i be the probability that a batch of size i arrives at the system where . ∑
∞

=

=π
1i

i 1
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2.  Not all-arriving batches are allowed to join the system at all the times.  Let  (1r 1r0 1 ≤< ) be the probability 
that an arriving batch will be allowed to join the system while server is working and let   (0 2r )1r2 ≤≤  be 
the probability that an arriving batch will be allowed to join the system during servers vacation period. 

 
3.  Service to customers is provided in batches of fixed size b following a min (b, n) rule which means that a 

fixed number b of customers or the entire queue length, whichever is less, is taken up for service. The 
service time of a batch of costomers is assumed to be negative exponential with mean  . We further 
assume, without loss of generality,  that the customers in a batch are pre-ordered for service.  

µ/1

 
4.  We assume Bernoulli schedule server vacations, which means that the server can take a vacation only at 

the time marks of completion of a service. At such an instant, the server may take a vacation with 
probability p and may not take a vacation with probability 1-p. 

 
5.  The vacation times follow a general distribution with probability density function b(v) and the distribution 

function B(v) where v is the vacation time of the server.  Let dx )x(ξ  be the first order probability that the 
vacation of the server will complete during the interval (x, x+dx) given that the same was not complete till 
time x. Therefore, 

 
 

                   
B(x)-1

b(x) )x( =ξ                           (1)                                 

                                        

   So that     

                      (2) ⎥
⎦

⎤
⎢
⎣

⎡
∫ ξ−ξ=
v

0
dx)x(exp (v) )v(b

   
6. Various stochastic processes involved in the system are independent of each other. 
 
3. DEFINITIONS AND EQUATIONS 
 
      We define: 
 

( )tPn : probability that at time t the server is providing service and there are  customers in the system 
including a batch in service, if any. However, if n = 0 at time t,  this means that the server is present in 
the system but he is idle at such instants. 

)0( n ≥

 
( )t,xVn : probability that at time t there are customers in the system and the server is on vacation with 

elapsed vacation time lying between x and x + dx.        
)0( n ≥

       

 Correspondingly is the probability that at time t there )0( n ≥ customers in the 

system and the server is on vacation irrespective of the elapsed vacation t

∫
∞

=
0

nn dx )t,x(V)t(V  are 

ime x.  
 
 
 Then, assuming that the steady state exists, we let nnt

P)t(Plim =
∞→

, )x(V)t,x(Vlim nnt
=

∞→
, so that 

P

nnt
V)t(Vlim =

∞→

n , Vn(x) and Vn denote the respective steady state probabilities.   
 
 Further we define the following probability generating functions: 
 

                                   (3a)               ,   zP)z(P n
n

0n
∑
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n
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∑
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=π        |z| 1≤  .        (3c) 

 
4. STEADY  STATE  EQUATIONS 

    Connecting states of the system at time t + dt with those at time t, using usual probability reasoning and 
then taking limit as  , etc, we have the following set of differential difference equations:  ∞→t
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=
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    ( ) ∑
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=−λπ=ξ+λ+
∂
∂
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x
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     The above equations (4) to (7) are to be solved subject to the boundary conditions  
 

                    .                          (8) ∑
=

+ ≥=+
b
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jnn 0n  , Pp(0)V µ

 
5.  STEADY  STATE  PROBABILITY  GENERATING  FUNCTIONS 
 
 We multiply both sides of equation (4) by and sum over n from 1 to bnz + ∞ .  Then we multiply both sides of 
(5) by zb and add the two results, simplify and use equations (3a), (3b) and (3c).  We thus have  
 

    k
j

1b

kj

1b

0k

j
1b

1j

b
10

bb Pz)p1()z(Pz)p1(z)z(P)z(rPz)z(Pz)( ∑∑∑
−

=

−

=

−

=

−µ−−µ+πλ=µ−µ+λ

                                                                             ,                   (9) ∫
∞

ξ+−λ+
0

bb
1 dx)x()z,x(Vz)z(Pz)r1(

which simplifies to  
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 Again, we multiply both sides of equation (6) by zn sum over all n from 1 to ∞  and add the resu
equation (7).  Then on simplifying and using (3b), (3c) we have  
 

     [ ] 0)z,x(V)x()z(rr)z,x(V
x 22 =ξ+πλ−λ+
∂
∂ .             

 
    Next, we multiply both sides of equation (8) by  , sum over n from 1 to bnz + ∞ , use (3a), (3b) and simp
We thus have  
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 Now, we  Integrate (10) between the limits 0 and x, we have 
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 Next,  we integrate (12) by parts w. r. t . x and use (2). We then  have 
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where [ ] ( )[∫
∞

πλ−λ−=πλ−λ
0

2222 dx)x(b x)z(rrexp)z(rrb ]  is the laplace transform of b(x). 

      Now, we consider the integral which appears in equation (9a).  Substituting for V(x,z) from 

equation (12) this integral becomes 
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 Using (15) into (9), we obtain     
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 Substituting for  zbV(0,z) from equation (11) into equation (16), we obtain 
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 Using (18) into (13), V (z) can also be obtained. 
 
 It can be shown by Roche’s theorem that the denommeter of the RHS of (18) has b zeroes inside the unit 
circle 1z =  which are sufficient to determine all the b unknowns 1)-(b.,0,1,2,3,..k ,Pk = which appear in the 
numerator of P (z) in (18). 
 
6. SPECIAL CASES 
 
Case 1: All  ARRIVING  BATCHES  ARE  ALLOWED  INTO  THE  SYSTEM  AT  ALL  TIMES 
 
 In this case, we let r1 = r2 = 1 into the main results found in equations (18) and (13). We then  obtain 
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Case 2: NO  ARRIVALS   DURING  VACATIONS 
 
 In this case we let r1 = 1 and r2 = 0 in (18) and (13) and  have 
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 It may be noted that we employed L’H pital’s rule to  obtain (22), since the second factor is indeterminate 
of the zero/zero  from at r

ô
2 = 0.  Or alternatively (22) can also be obtained on letting r2 = 0 in equation (12). 

 
Case 3: NO  VACATIONS 
 
In this case we let p = 0 in equation (13) and (18) and have V(z) = 0 and 
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Case 4: ONE BY ONE ARRIVALS, ONE BY ONE EXPONENTIAL SERVICE AND EXPONENTIAL VACATIONS 
 
 In this case, we have  z(z)  1,b 1,i for 0  1, i1 =π=≠=π=π and 
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 We can further simplify equations (24) and (25) as   
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 Now, we have to determine the only unknown P0 which appears in the numerators of (24a) and (25a).  
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 Using (26) and (27) in the normalizing condition P(1) + V(1) = 1, we obtain 
 

                  
21

21
0 prr p 

prr 
P

µλ−µλ+ξµ
µλ−λξ−ξµ

=  ,         (28) 

 
provided 
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 In  (29),  we have the stability condition under which the steady state exists. 
 

 We note that when p = 0 and r1 = 1 (29) reduces to 1<
µ
λ   which is the well known stability condition of the 

M/M/1 queueing system. 
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 Further,  substituting for P0 from (28) into (26) and (27),  we have       
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 We note that equations (30) and (31) respectively give the steady state probabilities that the server is 
present in the system and he is on vacation.   
 
 We further note that P found in equation (30) is the proportion of time the server remains present in the 
system. Since this also includes the proportion of server’s idle time, therefore, system’s utilization factor ρ is 
given by  
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 We may further verify that when r1 = r2 = 1, equation (32) yields ρ
µ
λ

=  which is the utilization factor for the 

M/M/1 queue.  
  
 Having found the unknown P0 in (28), the probability generating functions obtained in (24a) and (25a) are 
now completely determined. 
 
7. THE  AVERAGE  NUMBER  AND THE  AVERAGE WAITING TIME  IN THE QUEUE AND  THE  SYSTEM 
 
 We shall find the average number and the average waiting time in the queue and the system only for the 
simplest particular case 4 where the arrivals are Poisson one by one, service is exponential one by one and 
also vacations are exponential. In this case, we define )z(V)z(P)z(T += to be the steady state probability 
generating function of the number in the system irrespective of whether the server is working or on vacation, 
where P(z) and V(z) are given in (25a) and (24a) respectively. 
 
 Substituting for P(z) from (25a) into (24a) we have on simplifying 
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where P0 has already been found in (28).  Then, we have on adding (25a) and (33),  
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where dashes denote derivatives w.r.t. at z = 1.  After a lot of algebra and simplification, we have  
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[ ][ ] [ ] ( )[ ]

[ ]221

21212100221

rpr2
rrrr2rprpPPr2rpr

L
λµ−ξλ−µξ

µ−ξ−λλλ−λ+ξµ−µλ−µλ−ξλ−µξ
= .      (40) 

 
    Using Little’s formulas, we further obtain Lq, the average number in the queue as       
     
                  Lq = L - ρ,          (41) 
 
where  ρ has been found in equation (32). 
 
 Further, we shall find the average waiting time in the system, W and the average waiting time in the queue, 
Wq by again using Little’s formulas as  
 

                     LW
aλ

=  and  
L

W
a

q
q λ
=          (42) 

 
where  is the actual arrival rate into the system. To find aλ aλ we note that we have obtained P, the 
proportion of times the server is present in the system  and V, the proportion of times the server is on 
vacation in equations (30) and (31). Therefore, the actual arrival rate is given by  
 

                 VrPr 21a λ+λ=λ
21

1

prpr
r

µλ−µλ+µξ
ξµλ

= .           (43) 

  
 We note that when all arrivals are allowed to join the system at all times, then letting r1 = r2 = 1 in equation 
(43) yields actual arrival rate as it should be.  λ=λa

 
 Finally substituting for L, Lq and from equations (40), (41) and (43), equation (42) explicitly yields W  
and W

aλ

q. 
 
8. A  NUMERICAL  EXAMPLE 
 
 In order to see the effect of various parameters namely r,p 1 and r2 on various characteristics such as 
server’s idle time, server’s vacation time, systems utilization factor, average number of customers and the 
average waiting time in the queue and in the system, we arbitrarily choose values of λ = 5, µ = 10, ξ = 15 but 
vary the values of p, r1 and r2 from 0.0 to 1.0 such that the steady state condition found in equation (29) is 
always satisfied.  Based on our results obtained in equations (30)-(32) and  (40)-(43), the following tables give 
the computed values of the desired queue characteristics.  
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Table  1. 

Computed  values  of  various  states  of  the  system. 
 

λ = 5, µ = 10, ζ = 15 

p r1 r2 ρ P0 P V λa

0.0 0.200000 0.80000 1.00000 0.000000 2.00000 
0.2 0.200000 0.80000 1.00000 0.000000 2.00000 
0.4 0.200000 0.80000 1.00000 0.000000 2.00000 
0.6 0.200000 0.80000 1.00000 0.000000 2.00000 
0.8 0.200000 0.80000 1.00000 0.000000 2.00000 

0.4 

1.0 0.200000 0.80000 1.00000 0.000000 2.00000 
0.0 0.500000 0.50000 1.00000 0.000000 5.00000 
0.2 0.500000 0.50000 1.00000 0.000000 5.00000 
0.4 0.500000 0.50000 1.00000 0.000000 5.00000 
0.6 0.500000 0.50000 1.00000 0.000000 5.00000 
0.8 0.500000 0.50000 1.00000 0.000000 5.00000 

0.0 

1.0 

1.0 0.500000 0.50000 1.00000 0.000000 5.00000 
0.0 0.189873 0.75949 0.94937 0.075949 1.89873 
0.2 0.194805 0.75325 0.94805 0.077922 1.94805 
0.4 0.200000 0.74667 0.94667 0.080000 2.00000 
0.6 0.205479 0.73973 0.94521 0.082192 2.05479 
0.8 0.211268 0.73239 0.94366 0.084507 2.11268 

0.4 

1.0 0.217391 0.72464 0.94203 0.086957 2.17391 
0.0 0.441176 0.44118 0.88235 0.176471 4.41176 
0.2 0.451807 0.42771 0.87952 0.180723 4.51807 
0.4 0.462963 0.41358 0.87654 0.185185 4.62963 
0.6 0.474684 0.39873 0.87342 0.189873 4.74684 
0.8 0.487013 0.38312 0.87013 0.194805 4.87013 

0.4 

1.0 

1.0 0.500000 0.36667 0.86667 0.200000 5.00000 
0.0 0.176471 0.70588 0.88235 0.176471 1.76471 
0.2 0.187500 0.68750 0.87500 0.187500 1.87500 
0.4 0.200000 0.66667 0.86667 0.200000 2.00000 
0.6 0.214286 0.64286 0.85714 0.214286 2.14286 
0.8 0.230769 0.61538 0.84615 0.230769 2.30769 

0.4 

1.0 0.250000 0.58333 0.83333 0.250000 2.50000 
0.0 0.375000 0.37500 0.75000 0.375000 3.75000 
0.2 0.394737 0.34211 0.73684 0.394737 3.94737 
0.4 0.416667 0.30556 0.72222 0.416667 4.16667 
0.6 0.441176 0.26471 0.70588 0.441176 4.41176 
0.8 0.468750 0.21875 0.68750 0.468750 4.68750 

1.0 

1.0 

1.0 0.500000 0.16667 0.66667 0.500000 5.00000 
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Table  2. 
Computed  values  of  various  queue  characteristics. 

 
λ = 5, µ = 10, ζ = 15 

p r1 r2 L Lq W Wq

0.0 0.25000 0.05000 0.125000 0.025000 
0.2 0.25000 0.05000 0.125000 0.025000 
0.4 0.25000 0.05000 0.125000 0.025000 
0.6 0.25000 0.05000 0.125000 0.025000 
0.8 0.25000 0.05000 0.125000 0.025000 

0.4 

1.0 0.25000 0.05000 0.125000 0.025000 
0.0 1.00000 0.50000 0.200000 0.100000 
0.2 1.00000 0.50000 0.200000 0.100000 
0.4 1.00000 0.50000 0.200000 0.100000 
0.6 1.00000 0.50000 0.200000 0.100000 
0.8 1.00000 0.50000 0.200000 0.100000 

0.0 

1.0 

1.0 1.00000 0.50000 0.200000 0.100000 
0.0 0.25000 0.06013 0.131667 0.031667 
0.2 0.26265 0.06785 0.134828 0.034828 
0.4 0.27738 0.07738 0.138690 0.038690 
0.6 0.29452 0.08904 0.143333 0.043333 
0.8 0.31446 0.10320 0.148846 0.048846 

0.4 

1.0 0.33768 0.12029 0.155333 0.055333 
0.0 1.00000 0.60526 0.253333 0.153333 
0.2 1.13908 0.72700 0.276418 0.176418 
0.4 1.32574 0.89470 0.307571 0.207571 
0.6 1.58398 1.13218 0.350588 0.250588 
0.8 1.95614 1.48145 0.412093 0.312093 

0.4 

1.0 

1.0 2.52381 2.02381 0.504762 0.404762 
0.0 0.25000 0.07353 0.141667 0.041667 
0.2 0.28295 0.09545 0.150909 0.050909 
0.4 0.32667 0.12667 0.163333 0.063333 
0.6 0.38571 0.17143 0.180000 0.080000 
0.8 0.46731 0.23654 0.202500 0.102500 

0.4 

1.0 0.58333 0.33333 0.233333 0.133333 
0.0 1.00000 0.62500 0.266667 0.166667 
0.2 1.17814 0.78340 0.298462 0.198462 
0.4 1.43434 1.01768 0.344242 0.244242 
0.6 1.82353 1.38235 0.413333 0.313333 
0.8 2.46429 1.99554 0.525714 0.425714 

1.0 

1.0 

1.0 3.66667 3.16667 0.733333 0.633333 
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