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ABSTRACT

We analyze the steady state behavior of a single server vacation queue with variable batch size arrivals in
a compound Poisson Process, exponential service in batch of fixed size b following a min(b,n) rule and
general server vacations. However, an arriving batch may or may not be allowed to join the system at all
the times. We obtain explicit steady state results for the probability generating functions for the number of
customers in the system, the average number of customers and the average waiting time in the queue and
the system. Some special cases of interest have been derived and finally a numerical example is provided.
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RESUMEN

Analizamos el comportamiento del estado de la cola de la vacacion de un servidor sencillo con tamafio del
lote variable en un proceso de Poisson compuesto, el servicio exponencial en lotes de tamafio fijo b
siguiendo una regla min(b,n) con servidor general de vacaciones. Sin embargo, puede permitirse o no incluir
en el sistema un lote que arribe en todos los momentos. Obtenemos expresiones explicitas de la
estabilidad del estado para las funciones generatrices de probabilidad para el nimero de clientes en el
sistema, el nimero promedio de clientes y el promedio del tiempo de espera en la cola y en el sistema.
Algunos casos de interés especiales han sido derivados y finalmente un ejemplo numérico es desarrollado.

1. INTRODUCTION

There is extensive literature on bulk queues, for example, see Jaiswal [1960], Bhat [1964], Medhi [1975],
Chaudhry and Templeton [1983] and Neuts [1987], to mention a few. In this paper, we study the steady state
behavior of a bulk queue with Bernoulli schedule server vacations. Vacation queues with Bernoulli schedule and
many other vacation policies have been widely studied by numerous authors including Scholl and Kleinrock
[1983], Keilson and Servi [1986], Shanthikumar [1988], Cramer [1989], Madan [1992, 1999, 2001] and Madan
and Saleh [2001]. For a complete overview of queues with vacations, see Doshi [1986]. In the present paper
we use supplementary variable technique to study a single server bulk queue with Bernoulli schedule server
vacations from a different standpoint. Our additional key assumption is that not all-arriving batches are allowed
into the system at all times. We further assume different policies regarding admissibility of batches for the period
when the server is present in the system and for the period of server vacations. In the case of a mechanical
server, the breakdown periods correspond to the vacation periods of the human server. One may encounter
such queueing situations on some traffic highways, supermarkets, airports and some communication and
computer systems where the management may have to decide to adopt a policy of restricting the input into the
system from time to time. Having thus turned away, an arriving batch immediately leaves the system and is lost
to the system. Our mathematical model is briefly described by the following assumptions:

2. ASSUMPTIONSUNDERLYING THE MATHEMATICAL MODEL

1.Customers arrive at the system in batches of variable size according to a compound Poisson process with

arrival rate A (> 0). Let n; be the probability that a batch of size i arrives at the system where z n, =1.
i=1
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2. Not all-arriving batches are allowed to join the system at all the times. Let r; (0 <r; <1) be the probability
that an arriving batch will be allowed to join the system while server is working and let r, (0 <r, <1) be
the probability that an arriving batch will be allowed to join the system during servers vacation period.

3. Service to customers is provided in batches of fixed size b following a min (b, n) rule which means that a
fixed number b of customers or the entire queue length, whichever is less, is taken up for service. The
service time of a batch of costomers is assumed to be negative exponential with mean 1/u. We further

assume, without loss of generality, that the customers in a batch are pre-ordered for service.

4. We assume Bernoulli schedule server vacations, which means that the server can take a vacation only at
the time marks of completion of a service. At such an instant, the server may take a vacation with
probability p and may not take a vacation with probability 1-p.

5. The vacation times follow a general distribution with probability density function b(v) and the distribution
function B(v) where v is the vacation time of the server. Let &(x)dx be the first order probability that the

vacation of the server will complete during the interval (x, x+dx) given that the same was not complete fill
time x. Therefore,

b
£9=1 509 )
So that
b(v) = £(v) exp{— z&(x)dx} @

6. Various stochastic processes involved in the system are independent of each other.
3. DEFINITIONS AND EQUATIONS

We define:

P, (t): probability that at time t the server is providing service and there are n(>0) customers in the system

including a batch in service, if any. However, if n = 0 at time t, this means that the server is present in
the system but he is idle at such instants.

V, (x,t): probability that at time t there are n (> 0) customers in the system and the server is on vacation with
elapsed vacation time lying between x and x + dx.

Correspondingly Vn(t)=J.Vn(x,t) dx is the probability that at time t there are n(>0)customers in the

0
system and the server is on vacation irrespective of the elapsed vacation time x.

Then, assuming that the steady state exists, we let limP,(t)=P,, lim V,(xt) = V,(X), lim V,(t) = V, so that
t—w t—o t—>o

P, Vih(X) and V, denote the respective steady state probabilities.

Further we define the following probability generating functions:

P(z) :i P.z" | (3a)
n=0

V(z) = i V,z", (3b)
n=0
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n2) = fnizi, IZ]<1. (3c)
i—1

4. STEADY STATE EQUATIONS

Connecting states of the system at time t + dt with those at time t, using usual probability reasoning and
then taking limit as t — « , etc, we have the following set of differential difference equations:

n 0 b 0
(AP = D APy + D AA=)Py +A=P)Y. Prej+ [ Va(X)EX)dX, N 21 4)
i=1 i=1 j=1 0
0 b ©
APy =D Am(L-r)P +p(l-p)> P+ jvo(x)g(x)dx, n=0 (5)
i=1 =1 0
a—axvn(x) + (L + EQOV (%) = gxnirzvn_i(x) + Zl‘, Mm-r)Va(x),  nx1 (6)
V000 + (4 £V o(X) = Y Am(A-r)Vo(¥),  n=0. 7)

i=1
The above equations (4) to (7) are to be solved subject to the boundary conditions
b
Vo(O) =ppY Poyj, n20. (8)
j=1
5. STEADY STATE PROBABILITY GENERATING FUNCTIONS

We multiply both sides of equation (4) by z™P"and sum over n from 1 to . Then we multiply both sides of
(5) by z” and add the two resullts, simplify and use equations (3a), (3b) and (3c). We thus have

b-1 b-1 b-1
(0 +W)2°P(2) — nz°Py = Ayn(2)P(2)2° + u(1-p) Y| 2/P(2) - pu(@-p)Y_ D 2Py
j=1 k=0 j=
+21-1)2°P(2) + 2° I V(% 2)E(x)dX , 9)
0
which simplifies to
bl % bl b1l
(ry —arm(z) +p)z° - u(l—p)z z) |P(z) = zbJ.V(x, 2)E(x)dx +z"Py —p(1— p)z z 2P, . (9a)
=L 0 k=0

Again, we multiply both sides of equation (6) by z" sum over all n from 1 to oo and add the result to
equation (7). Then on simplifying and using (3b), (3c) we have

aix V(X, )+ [rry = Armn(z) + E(X)V(x, 2) = 0. (10)

Next, we multiply both sides of equation (8) by z"* P sum over n from 1to o, use (3a), (3b) and simplify.
We thus have

b-1 b-1
z°V(0,2) = upz ZP(z) —up z zIp, . (11)
j=0 k=0 j=k

o
=

I
o
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Now, we Integrate (10) between the limits 0 and x, we have
V(x,z) = V(0, z)exp{- [, (1- n(2))] x - Té(t)dt} . (12)
0

Next, we integrate (12) by parts w. r. t . x and use (2). We then have

b-1 b-1 b-1 I
_HPINT iy io || 1=b(rr, —ryn(2))
V@)= [gz P(2) Z; > z PKH )| (13)

where b[ir, — Ar,n(z)]= I exp[- (Ar, — Ar,n(z))x|b(x)dx is the laplace transform of b(x).
0

Now, we consider the integral IV(X, z)§(x)dx which appears in equation (9a). Substituting for V(x,z) from

equation (12) this integral becomes

IV(x,z)é(x)dx = V(O, z)J. exp{— (hry — Ar,m(zZ) X - T&,(t)dt} E(x)dx, (14)
0 0 0
which on using (2) yields
IV(X, 2)E(x)dx = V(0,2) b(Ar, — Aryn(z)). (15)
0
Using (15) into (9), we obtain
b-1 b-1 b-1
[(Ml —wn(z) + pz° —u1-p)Y_ z‘]P(z) = 2°V(0,2)b(Ar, ~Ar,n(2)) + 12"y —u(1-p)Y | D 2Py (16)
i=0 k=0 j=k

Substituting for sz(O,z) from equation (11) into equation (16), we obtain

=0 =0

b-1
[(krl Arn(z) + p)z® — (- D)ZZJ]P(Z) welb(ir, ~ar,n(2))] Y 2P(@)

o
=

b-1 b—:
—up[p(ar, - Aryn(2))] 2P, +uz°Py —p(l—p) 2P, (17)
K k=0 j*

o
=
=

?T
o
I
o

which simplifies to

b-1

b-1 - _
[(krl () + W2° ~u(-p)>. 2~ uplb(ir, ~ rr,w(2)] 3 2! ]pm

=0 =0

b-1 b-1
=pz°P, — z z'P, [(1— p) +pb(rr, — krzn(z))], (17a)
k=0 j=k
where
b1 b-1
uz°Py — 2P, [~ p) + pb(ir, — Aryn(2))]

k

i
o
N
x

j

b-1
[(xrl Anm(z) + pz® - p(l- D)ZZ'—up[b (ur, ~2r,n(@)]> 2 ]
j=0

j=0

P(z) = (18)
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Using (18) into (13), V (z) can also be obtained.

It can be shown by Roche’s theorem that the denommeter of the RHS of (18) has b zeroes inside the unit
circle | z| =1 which are sufficient to determine all the b unknowns P,k = 0,1,2,3,...,(b - 1) which appear in the

numerator of P (z) in (18).
6. SPECIAL CASES
Case 1: All ARRIVING BATCHES ARE ALLOWED INTO THE SYSTEM AT ALL TIMES

In this case, we let r; = r, = 1 into the main results found in equations (18) and (13). We then obtain

o

-1 b1 _
- 2P0~ p) + pb(r - An(2))]

k0 K , (19)
b-1

{(x w(2) + 1)2° - u2-p) Y. 2~ uplb(. - M(z))]i ]

Il
(=]

P(z) =

=0

b-1 b-1 b-1 _
V@)= > 2P -3 e {M} "
(2) Zb[j_zoz (2) kZ:(; j:kz k] e 0

Case 2: NO ARRIVALS DURING VACATIONS

In this case we letr; =1 and r,=0in (18) and (13) and have

bl bl B
—n 7P, [(1— p)+pb(ir, —Mzn(z))]

P(2) = k=0 j=k ' (21)
b-1

b-1
[(x a(z) + n)z® — u(1-p) Y. 2’ - upb(r, - 1r,m(2))> 2 ]
j=0

j=0

Ly

b-1 b-1 b-1 M T
i .| 1=Db(Ar, = A
V@) =23 2ip)- S S 2, |lim| LDk —2n(2)
z° I = = oo Ary — Arpmn(2)
[b-1 b-1 b-1 |
- BRI 2ip(z) - 2P, (1 . (22)
ZAN G k=0 jk | S

It may be noted that we employed L’'H 0 pital’s rule to obtain (22), since the second factor is indeterminate
of the zero/zero from atr,= 0. Or alternatively (22) can also be obtained on letting r, = 0 in equation (12).

Case 3: NO VACATIONS

In this case we let p = 0 in equation (13) and (18) and have V(z) = 0 and

(=
=

b-1
—u IR

k j=k
. (23)

(v = Arn(z) + u)z° - HZ z
=y

I
o

P(z) =
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Case 4: ONE BY ONE ARRIVALS, ONE BY ONE EXPONENTIAL SERVICE AND EXPONENTIAL VACATIONS
In this case, we have n; =1, n; =0fori=1,b=1, n(z)=2z and

5[}\1‘2 - szn(z)] = B[Mz - 7\.r22] = #rz_,_g .
2 2

With these substations, equations (13) and (18) yield

-
_hHp B Ay —AIZ+&
V@) =5 [P(z) - P, | YR (24)
nzPy — Py {(l— p)+ p[kr—frz%ﬂ
P(z) = = (25)
_ ul-p)—pp| &
{(Ml Mz +p)z - p(l-p) HF{MZ TAz+ éﬂ
We can further simplify equations (24) and (25) as
T Y | I
V(@)= [P(2) Po]{MZ —Xr22+§] (24a)
p(z) - — HPo[2ltry ~2rpz +E)~A-p)(hr, ~Arpz +E)—pE] (253)

(hry — 2,z +£) (1, ~ Az + )z — p(L-p)(Ar, ~ArZ+E) —pps

Now, we have to determine the only unknown Py, which appears in the numerators of (24a) and (25a).
Using L’H O pital’'s rule (25a) yields

“(&.a - sz)Po . (26)
HE—AE T —uApr,

P(1) = limP(z) =

Then, using (26), equation (24a) yields

i _im MR _ 1 _MPI _ _bp b 1_ pArpPy
V(@) = IzlinﬂV(Z) = |ZI£T1>l - [P(2) PO]{—MZ —M22+Ej £ ['Z'En)lp(z) Po} E P -P,]= L ME T — AT, -(27)

Using (26) and (27) in the normalizing condition P(1) + V(1) = 1, we obtain

P, = pE—ALN —pApr, ' (28)
HE+pApry —pApr,

provided
AGry + phpr, <pk. (29)

In (29), we have the stability condition under which the steady state exists.

We note that when p =0 and r; = 1 (29) reduces to &<1 which is the well known stability condition of the
u

M/M/1 queueing system.
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Further, substituting for Py from (28) into (26) and (27), we have

P —P() = u(& —ryp) , (30)
HE+pApry — uApr,

V = V(1) = HATP . (31)
HE+ pAP T — uApr,

We note that equations (30) and (31) respectively give the steady state probabilities that the server is
present in the system and he is on vacation.

We further note that P found in equation (30) is the proportion of time the server remains present in the
system. Since this also includes the proportion of server’s idle time, therefore, system’s utilization factor p is
given by

p=P-P, = e . (32)
HE + pApPry — HApI,
We may further verify that when ry = r, = 1, equation (32) yields p= > which is the utilization factor for the
n

M/M/1 queue.

Having found the unknown Py in (28), the probability generating functions obtained in (24a) and (25a) are
now completely determined.

7. THE AVERAGE NUMBER AND THE AVERAGE WAITING TIME IN THE QUEUE AND THE SYSTEM

We shall find the average number and the average waiting time in the queue and the system only for the
simplest particular case 4 where the arrivals are Poisson one by one, service is exponential one by one and
also vacations are exponential. In this case, we define T(z) =P(z) + V(z)to be the steady state probability

generating function of the number in the system irrespective of whether the server is working or on vacation,
where P(z) and V(z) are given in (25a) and (24a) respectively.

Substituting for P(z) from (25a) into (24a) we have on simplifying

pApry(z — 1Py

VO G, “iryz+ 9o — iz + w2 WL p)ar, — 7,z + D) Pt | 9
where Py has already been found in (28). Then, we have on adding (25a) and (33),
T(2)=P@)+ V(2) =% (34)
where
N(2) = uPo[(Ar, —Ar,z + &)z — (1-p)(Ar, — A1,z + &)= ]+ uphry(z — 1)Py, (35)
D(2) = (Ary =2z +E)(hry —iryz + )z — p(1-p)(hr, — A1,z + &) - put. (36)

However, since T(z) is indeterminate of the zero/zero form at z = 1, we employ L'H 0 pital’s rule twice and
obtain

L imN@) D ()N’ (1)-D"(1)N'(2)
=1lm = : >
z—1 D(Z) Z[D (1)]

: (37)

where dashes denote derivatives w.r.t. at z = 1. After a lot of algebra and simplification, we have
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N'(z) = uP,[€ + pAr, —pAr, ] and N'(z) = —2hur,Py, (38)
D (2) = p& — A& —phpr, and D'(z) = 20[nyr, —nE —rop). (39)

Substituting (38) and (39) into (37), we have

L [HE,» — A& —ppAr, ][‘ 2uhr,Py ] — uPy [E; + pAr; —pAr, ][Zk(krer —n&— rzu)] _

= . (40)
2lue —Ary — phnr,

Using Little’s formulas, we further obtain L, the average number in the queue as
Lq =L- P (41)

where p has been found in equation (32).

Further, we shall find the average waiting time in the system, W and the average waiting time in the queue,
W, by again using Little’s formulas as

L L,
W=— and W, =—% (42)
7\'3 7\'3

where A, is the actual arrival rate into the system. To find A,we note that we have obtained P, the
proportion of times the server is present in the system and V, the proportion of times the server is on
vacation in equations (30) and (31). Therefore, the actual arrival rate is given by

ha = ALP 4 AL,V = s . (43)
HE + pAPry — PAPT,

We note that when all arrivals are allowed to join the system at all times, then letting r; = r, = 1 in equation
(43) yields actual arrival rate A, = A as it should be.

Finally substituting for L, Ly and A, from equations (40), (41) and (43), equation (42) explicitly yields W
and W,

8.A NUMERICAL EXAMPLE

In order to see the effect of various parameters namely p, r; and r, on various characteristics such as
server’'s idle time, server’s vacation time, systems utilization factor, average number of customers and the
average waiting time in the queue and in the system, we arbitrarily choose values of A =5, u =10, £ = 15 but
vary the values of p, r; and r, from 0.0 to 1.0 such that the steady state condition found in equation (29) is
always satisfied. Based on our results obtained in equations (30)-(32) and (40)-(43), the following tables give
the computed values of the desired queue characteristics.
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Table 1.

Computed values of various states of the system.

2=5u=10,(=15

p r r p Po P \% Aa

0.0 | 0.200000 0.80000 1.00000 0.000000 2.00000

0.2 | 0.200000 0.80000 1.00000 0.000000 2.00000

0.4 0.4 | 0.200000 0.80000 1.00000 0.000000 2.00000

0.6 | 0.200000 0.80000 1.00000 0.000000 2.00000

0.8 | 0.200000 0.80000 1.00000 0.000000 2.00000

0.0 1.0 | 0.200000 0.80000 1.00000 0.000000 2.00000
0.0 | 0.500000 0.50000 1.00000 0.000000 5.00000

0.2 | 0.500000 0.50000 1.00000 0.000000 5.00000

1.0 0.4 | 0.500000 0.50000 1.00000 0.000000 5.00000

0.6 | 0.500000 0.50000 1.00000 0.000000 5.00000

0.8 | 0.500000 0.50000 1.00000 0.000000 5.00000

1.0 | 0.500000 0.50000 1.00000 0.000000 5.00000

0.0 | 0.189873 0.75949 0.94937 0.075949 1.89873

0.2 | 0.194805 0.75325 0.94805 0.077922 1.94805

0.4 0.4 | 0.200000 0.74667 0.94667 0.080000 2.00000

0.6 | 0.205479 0.73973 0.94521 0.082192 2.05479

0.8 | 0.211268 0.73239 0.94366 0.084507 2.11268

04 1.0 | 0.217391 0.72464 0.94203 0.086957 2.17391
0.0 | 0.441176 0.44118 0.88235 0.176471 441176

0.2 | 0.451807 0.42771 0.87952 0.180723 4.51807

10 0.4 | 0.462963 0.41358 0.87654 0.185185 4.62963

0.6 | 0.474684 0.39873 0.87342 0.189873 4.74684

0.8 | 0.487013 0.38312 0.87013 0.194805 4.87013

1.0 | 0.500000 0.36667 0.86667 0.200000 5.00000

0.0 | 0.176471 0.70588 0.88235 0.176471 1.76471

0.2 | 0.187500 0.68750 0.87500 0.187500 1.87500

0.4 0.4 | 0.200000 0.66667 0.86667 0.200000 2.00000

0.6 | 0.214286 0.64286 0.85714 0.214286 2.14286

0.8 | 0.230769 0.61538 0.84615 0.230769 2.30769

10 1.0 | 0.250000 0.58333 0.83333 0.250000 2.50000
0.0 | 0.375000 0.37500 0.75000 0.375000 3.75000

0.2 | 0.394737 0.34211 0.73684 0.394737 3.94737

1.0 0.4 | 0.416667 0.30556 0.72222 0.416667 4.16667

0.6 | 0.441176 0.26471 0.70588 0.441176 4.41176

0.8 | 0.468750 0.21875 0.68750 0.468750 4.68750

1.0 | 0.500000 0.16667 0.66667 0.500000 5.00000
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Computed values of various queue characteristics.

Table 2.

=5 u=10, (=15

p r r L Lq w Wq
0.0 | 0.25000 0.05000 | 0.125000 | 0.025000
0.2 | 0.25000 0.05000 | 0.125000 | 0.025000
0.4 0.4 | 0.25000 0.05000 | 0.125000 | 0.025000
0.6 | 0.25000 0.05000 | 0.125000 | 0.025000
0.8 | 0.25000 0.05000 | 0.125000 | 0.025000
1.0 | 0.25000 0.05000 | 0.125000 | 0.025000
090 0.0 | 1.00000 0.50000 | 0.200000 | 0.100000
0.2 | 1.00000 0.50000 | 0.200000 | 0.100000
10 0.4 | 1.00000 0.50000 | 0.200000 | 0.100000
0.6 | 1.00000 0.50000 | 0.200000 | 0.100000
0.8 | 1.00000 0.50000 | 0.200000 | 0.100000
1.0 | 1.00000 0.50000 | 0.200000 | 0.100000
0.0 | 0.25000 0.06013 | 0.131667 | 0.031667
0.2 | 0.26265 0.06785 | 0.134828 | 0.034828
0.4 0.4 | 0.27738 0.07738 | 0.138690 | 0.038690
0.6 | 0.29452 0.08904 | 0.143333 | 0.043333
0.8 | 0.31446 0.10320 | 0.148846 | 0.048846
0.4 1.0 | 0.33768 0.12029 | 0.155333 | 0.055333
0.0 | 1.00000 0.60526 | 0.253333 | 0.153333
0.2 | 1.13908 0.72700 | 0.276418 | 0.176418
10 0.4 | 1.32574 0.89470 | 0.307571 | 0.207571
0.6 | 1.58398 1.13218 | 0.350588 | 0.250588
0.8 | 1.95614 1.48145 | 0.412093 | 0.312093
1.0 | 2.52381 2.02381 | 0.504762 | 0.404762
0.0 | 0.25000 0.07353 | 0.141667 | 0.041667
0.2 | 0.28295 0.09545 | 0.150909 | 0.050909
0.4 0.4 | 0.32667 0.12667 | 0.163333 | 0.063333
0.6 | 0.38571 0.17143 | 0.180000 | 0.080000
0.8 | 0.46731 0.23654 | 0.202500 | 0.102500
10 1.0 | 0.58333 0.33333 | 0.233333 | 0.133333
0.0 | 1.00000 0.62500 | 0.266667 | 0.166667
0.2 | 117814 0.78340 | 0.298462 | 0.198462
10 0.4 | 1.43434 1.01768 | 0.344242 | 0.244242
0.6 | 1.82353 1.38235 | 0.413333 | 0.313333
0.8 | 2.46429 1.99554 | 0.525714 | 0.425714
1.0 | 3.66667 3.16667 | 0.733333 | 0.633333
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