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ON THE DISTANCE FROM A POINT TO A QUADRIC 
SURFACE*
D. Martínez Morera1 y J. Estrada Sarlabous2, ICIMAF, Cuba  
  

ABSTRACT 
In this paper we present a new algorithm to compute the Euclidean distance from a point to a quadric 
surface. In some sense, this algorithm is a generalization of a previous work of V. Hernández,  
J. Estrada and P. Barrera, where an effective algorithm to compute the Euclidean distance from a point 
to a plane conic is developed. It provides good approximations of the Euclidean distance from a point to 
a conic, as well as of the coordinates of its orthogonal projection (footpoint), even when the point is not 
close to the conic. In fact, the current algorithm uses the previous one and shares with it the desirable 
features of working well if the point may not be assumed to be very close to the quadric surface and 
permitting to improve iteratively the approximations, up to obtain a prescribed accuracy. 
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RESUMEN 
En este artículo presentamos un nuevo algoritmo para calcular la  distancia de un punto a una cuádrica. 
En cierto sentido, este  algoritmo es una generalización de otro propuesto anteriormente por  
V. Hernandez J. Estrada y P. Barrera donde se desarrolla un algoritmo robusto para calcular la 
distancia euclidiana de un punto a una cónica en el plano, el cual nos permite obtener una buena 
aproximación de la distancia euclidiana así como las coordenadas de su proyección ortogonal 
(footpoint). De hecho, nuestro algoritmo utiliza el anterior en cada paso y, como este, funciona bien 
incluso cuando el punto exterior se encuentra alejado de la curva. También permite mejorar 
iterativamente la aproximación obtenida hasta lograr la exactitud que se desee. 
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1. INTRODUCTION 
 
 There are several practical problems arising from computer graphics, computer vision, 3D robot planning 
pattern recognition and computational mechanics, where it is necessary to compute the Euclidean distance 
from a point in the three-dimensional space to an arbitrary quadric surface as well as the coordinates of the 
footpoint (of the orthogonal projection on the quadric). Additionally, we may not assume that the point is close 
to the quadric surface. 
 
 However, the above mentioned problem does not seems to be deeply studied. There are general 
optimization methods, which may be used to solve this problem, but it is not easy to ensure their global 
convergence and they may be computationally expensive. There exists methods to solve the two-dimensional 
problem which can be generalized to our case, but they only work when the point is close to the quadric and 
also avoid the computation of the coordinates of the footpoint. 
 
 In Hernández et al. (2002), it is presented an algorithm to compute the Euclidean distance from a point on 
the plane to an arbitrary conic. In that paper, it is proposed to find a suitable arc of conic limited by two points 
P1 and P2, such that the footpoint is contained in that arc. Once these points are determined they compute an 
initial approximation to Newton's Method using the Bisection Method on the arc. The algorithm we present 
here represents, in some sense, a generalization of the previous one. Moreover, we use it in each step taking 
advantage of its footpoint coordinates computation and accuracy. This new algorithm provides a good 
approximation for the Euclidean distance, even when the point is far from the given quadric. Furthermore, the 
approximation may be improved iteratively to attain a prescribed accuracy without increasing too much the 
computational cost. 
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1.1 Mathematical statement of the problem 
 

 Let be Q a quadric with implicit equation: 
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and 

q = (x0, y0, z0)  
 
a point in the space not on Q. 
 
 By definition, the Euclidean distance from q to Q,d(q,Q), is given by: 
 
                                                                    d(q,Q) = min {||x - p||: f(p) = 0}                                (2) 
 
 Thus, in order to compute the Euclidean distance we have to solve a constrained non-linear minimization 
problem. More geometrically, the Euclidean distance from q to Q is attained at a point p on Q such that the 
normal of Q at p passes through q.  
 
 If we have the quadric represented by its implicit equation (1), then the coordinates (x,y,z) of the footpoint p 
and the Euclidean distance d may be computed as the solution of the following nonlinear system of 
polynomial equations (Hoffman (1990)). 
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 In the general case, for each point not on Q 
we have more than one solution of this problem. We are 
interested in that solution which gives us the global minimum 
(2). Figure 1 shows geometrically the orthogonal projection p 
over of a point q (not on Q). 

 )z, y,(xq 000=
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1.2 Other approaches 

 
 So far we know, another methods to compute the Euclidean 
distance from a point to a quadric are not reported in the 
literature. However, there are some other approaches to the 
distance from a point to a plane conic that can be easily 
generalized to solve our problem. Using elimination theory 
(Abhyankar (1990), Walker (1978)) we can eliminate in the 
system (3) the variables x, y and z and obtain a single 
polynomial on d whose minimal positive root d*, is the Euclidean 
distance from q to Q. This method generalizes that one given in 
Kriegman (1990) and Ponce et al (1992), hence it does not 
provide us with the footpoint coordinates computation and also ma
(Hernández et al. (2002)). 
 
 In order to eliminate the last two problems, different approximati
considered. The simplest is the algebraic distance given by:  
             
                                                                     )z,y,x(f)Q,q(d 000a =  
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Figure 1. The orthogonal projection of  q. 
y be expensive and numerically unstable 

ons to the Euclidean distance have been 

                                            (4) 



 The computation of the algebraic distance is very cheap since it is given by a closed expression, but it is a 
poor approximation of the Euclidean distance and does not give the coordinates of the footpoint. In Taubin 
(1994), are introduced several approximations to the Euclidean distance from a point to an implicit curve  
f(x,y) = 0, if f(x,y) has continuous partial derivatives in a neighborhood of q. Generalizing this ideas to 
surfaces, Taubin's approximate distance of first order, 1δ is given by: 
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 Again, the distance is given by a closed expression and it is more precise than the algebraic distance, but q 
must be in a neighborhood of Q to attain a good approximation. The algorithm we propose here solves both 
problems, computing a very precise Euclidean distance and locating the footpoint coordinates. 
 
2. COMPUTING THE EUCLIDEAN DISTANCE 
 
2.1 Theoretical result 
 
 In order to compute the Euclidean distance, we have to solve the system of nonlinear equations (3). If we 
can compute the coordinates of the footpoint, the distance d may be obtained from the first equation of the 
system, so we can avoid this equation and solve the new system: 
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 Newton’s Method may efficiently solve this system if: 
 

i.  The jacobian matrix is nonsingular in a neighborhood of the solution. 

ii. A good initial approximation of the footpoint is known. 
 
 The following result is concerned with the first point. The rest of the paper will be devoted to the second one. 
 
Theorem 1. Let be a quadric surface and Q )z,y,x(q 000= a point not on Q. Then there exists a set of points  

on (with Lebesgue measure zero) Z( ), such that: 3E Q
 
1. If  then the jacobian matrix of the system (6) is nonsingular in any of its solutions. )Q(Zq∉
 
2. If  then the jacobian matrix of the system (6) may be singular in some of its solutions. )Q(Zq∈
 
Proof: Consider the system (6). The determinant of the jacobian matrix of this system J(x,y,z) is a polynomial 
of degree 2 in the variables x, y and z. The system (6) is singular in a solution p = (x,y,z), if and only if the 
polynomial system      
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has a solution. Using elimination theory, we may eliminate z from the pairs of equations , and 
, obtaining ,  and . Now we can eliminate y from  and  obtaining two 

equations; finally we can eliminate x from these two equations and obtain a polynomial equation in the 
variables ,  and , . The coefficients of 

)F,F( 21 )F,F( 31

)F,F( 41 1G 2G 3G )G,G( 21 )G,G( 31

0x 0y 0z )z,y,x( 000Ψ Ψ depend on the coefficients of the quadric Q 
and (7) has a solution if  is a root of )z,y,x( 000 Ψ  ((Abhyankar (1990), Walker (1978))). So, we can define:  
 
     }0)z,y,x(:)z,y,x{()Q(Z 000000 =Ψ=              (8) 
 
 Obviously, this set has Lebesgue measure zero and satisfies the thesis of the theorem. 

�     
 
 Using the generalization of Bezout theorem for higher dimensions ((Abhyankar (1990)), we can see that 
any pair of the equations in the system (7) has at most a degree four space curve as interception. As a 
consequence, at most for a finite subset of points on the surface Z(Q), the jacobian matrix of the system (6) is 
singular and it is not possible to compute the Euclidean distance solving this system by the classic Newton's 
Method. 
 
2.2. Locating the footpoint 
 
 As we know, a good initial approximation of the footpoint coordinates must be given to Newton's Method. In 
this section we present a simple procedure to find it. 
 
 The idea is to find three points on the quadric Q such that the footpoint is contained in the "triangle"1 
defined by these points on Q. Next we have to reduce the area of the triangle finding three new points in each 
step. In this way the vertices of the triangle will be closer to the footpoint. After few steps, it can be 
guaranteed that a vertex of the current triangle is near enough to the footpoint, so, we can take such vertex as 
initial approximation to Newton's Method in order to refine more this approach. Below we make a more 
detailed exposition. 
 
2.2.1. Finding the three initial points 
  
 As we saw, in each stage of the procedure it is necessary to obtain three points that form a triangle over the 
quadric in which interior is contained the footpoint. The problem now is how to obtain these points in the first 
step. 
 
 To obtain the initial points ( , we first project the point q, not on Q, over each coordinate plane. 
These three projections of q build up the set of points needed to determine the first triangle. After that, we find 
in each of these planes a point over Q in the following way: 

)q,q,q 1
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1

1
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1
iq

 
 Suppose we have in each coordinate plane a point  obtained 
as the orthogonal projection of q. Consider the conic curve C

1
iq

i 
obtained as the intersection of Q with that coordinate plane. So, 
we compute the orthogonal projection of qi on Ci and obtain the 
initial point Figure 2 shows how this process is done for  .q1

i .q1
0

  
Figure 2. Selection of the first three points. 

 
 The procedure described above provides us with three initial 
points in all the cases of non-degenerated quadrics, except for 
the hyperboloid of two sheets. In that case, there are no 
interception points between one coordinate plane and the 
surface. So, there will be only two initial points. To avoid this 
problem, we select as third point the vertex of the hyperboloid 
that is at the same side as the external point, with respect to 
that coordinate plane. 
 

 
1By triangle we mean the part of the surface limited by three curves on Q obtained as the intersection of the surface with certain 
planes. These curves meet each other at a point.  
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2.2.2. Iteration 

 Assume we have three points ,  and  on the quadric Q such that the footpoint is contained in the 

interior of the "triangle" on Q whose boundary curves  defined as the interception of Q with the planes 

, , and  passing through q and every pair of these  three points. On 

 we can find the footpoint of q; it will be the point used in the next algorithm's step and so on. This 

process will stop when any of the new points has the normal vector almost parallel to the line that joins it 

to q, i.e. the absolute value of the cosine of the angle between the normal of Q at  and the line 
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is close to 1. Any of the vertices satisfying that condition is a good initial approximation to Newton's method. 
The point resulting from here is the orthogonal projection of q  .Qon

3. THE ALGORITHM 

 In this section we resume our algorithm to compute the Euclidean distance from a point  to  
a quadric Q  in three-dimensional space. 

)z,y,x(q 000=

Input:  The vector of coefficients  of the quadric Q, a point 
→
a )z,y,x(q 000=  and the termination criteria 

. 2121 ,,N,N εε
 
Output: The Euclidean distance d  from q  to Q and the coordinates of the orthogonal projection p of q on Q. 

 
1. Compute the linear change of coordinates T(x,y,z)  that  reduces Q to the canonical form Q’. 
 

2. Initial approximation 

(a) Computing the first three points: 
 

i. Compute the orthogonal projection of q on the coordinate planes  iq .3,2,1i,0
i =Π

ii. On each coordinate plane define the conic curve . 0
i

0
i 'QC Π= I

iii. Compute the first point as the orthogonal projection of in the conic curve  
See Hernández et al. (2002). 
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(b) Iteration:  For j = 1 ... do   1N

i. Compute the equation of the planes  defined by the points ,  defined by 

and defined by . 
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ii. On each plane define the conic curve . j
iΠ j

i
j
i 'QC Π= I

iii. Compute the point 1as the orthogonal projection of the external point q in the conic curve 
0
iC . See Hernández et al. (200

j
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iv. Compute the normal vector to at , 'Q j
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v. Compute the cosine of the angle  between the vector parallel to the line joining q and  and 

the normal vector to  at , :               
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vi. If for any j, , then put , END. Else, set j = j+1 and return to i. 1
j
i 1 ε−>θ j

iq'p =

vii. If  then select p’ as the point corresponding to                    (10)1N1 + 1N
iq }3,2,1i|,cos{|max 1N

i =θ
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and set 1N
iq'p = . 

3. Newton's Method (To solve (6) for the quadric  from the initial approximation ).     

 F   

(a) Compute where J is the jacobian matrix of (6) 

cto f the left side  (6). 

(b) Correct the position of 

(c) Obtain the relative error 

,'Q 'pp0 =

or j = 0...N2 do

s the solution of the linear system jp∆ a  )p(Fp)p(J jjj =∆

and T
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(d) If then END, else set j = j+1 and return to (a). 

1− . 

2
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4. Set Tp = )'p(

pq)Q,q(d −= . 5. Compute
 
4. CONVERGENCE 

 It was presented in section 3 an algorithm to compute the algebraic distance from a point to a quadric 
surface. It basically consists of two iterative processes: one to find an initial approximation to Newton's 

ethod and then Newton's Method itself, whichM  converges if a good initial approximation is given. So, we just 
f the first one. 

e convergence, we need to recall first some classical definitions and theorems related to 

efinition 1  a orithm 

have to prove the convergence o
 
4.1 Global convergence Theorem 
 

In order to proof th 
optimization theory. 
 

. An lgD A  is a mapping defined on a space  that assigns to every point  a subset 

efinition 2. A point-to-set  to is said to be closed at 

X  Xx∈
of .X  

 
D  mapping A from X Y Xx∈ if the assumptions 
 

k → y, yk ∈ A(xk) 

imp

-point mapping is always closed. The converse is, however, not true in 

 (Glob Let A b X, an , the 

equence is generated satisfying

i. xk → x, xk ∈ X 

ii. y

ly  

iii. . y ∈ A(x) 
 

Note that a continuous point-to 
general (see Luenberger (1973)). 
 
Theorem 2 al convergence theorem) e an algorithm on d suppose that, given 0x

s ∞
=0kk }x{ )x(Ax k1k ∈+ . Let a solution set X⊂Γ  be given, and supp
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ose: 

i. All points kx are contained in a com act s t XS ⊂ . 

. There continu nction suZ X

 1. If x , then Γ∉ Z(x)Z(y)< for all )x(Ay∈ . 

 2. If Γ∈x , then Z(x) Z(y)≤ for all A(x)y ∈ . 

iii. The mapping A is closed at points outside Γ
 

. 

Then the limit of any convergent subsequence of xk is a solution.  
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 A proof of this theorem can be found in Luenberger (1973). 
.2. The Algorithm Converges 

algorithm, we
he se

4
 
 To prove the convergence of our  only need to check the hypothesis of the global 
convergence theorem. Consider t t ,QQQX ××=  now we can write our algorithm in the language of the 
lobal convergence theorem as: 

 
g

)X(X:A ℘→ , 

, 

o q over the 

egment of the conic and is reached, and is the plane defined by q, and

en -to-point 00

t footpoint that we find, since all of them give us the 
ame distance from q. Let's check the other hypothesis: 

 
i. nce xk belong to the ball of radius 

))}p,p(m),p,p(m),p,p(m{()p,p,p(A 202110210 =
 
where )X(℘ is the power set of X  and )p, ji  is the point where the  minimum distance tp(m

πIQ  between ip jp ip ip jp . s
 
 Note that A can be se  as a point map and given any )p,p,p(X 2100 =  we have only one way  
of construct a sequence kx such that ,xx k1k ∈+  and it reproduces the algorithm proposed on this paper. Of 
course, the set Γ is {(p,p,p)} where p is the footpoint on Q; in some very special cases this set may contain 
more than one element, but we will choose only the firs

0

s

It is obvious since all the points in the seque
∞0x centered at the 

 if Q is centered at the origin in E . 

ii. Defining

origin in E9 3

 222120210 ||p-q||||p-q||||p-q|| )p,p,Z(p ++= , the item holds. 

iii. In order to prove that the map A  is w  c n p st that if we closed e a rove ju have the sequences 
and , whereRRk → , TTk → S)T,R(mS kkk →= QT,R kk ∈ , then )T,R(mS = . 

 
 Obviously, S belongs to the plane generated by ,q  R and T, T),R,(q,π  so it belongs to the conic 

T)R,(q,Q πI . Suppose now that exists a point on Q, such that )T,R(mH =  and .SH ≠  Consider the 

continuous function 2  which give us the distance from x to q and is defined over , for all 
 it can be found  and such that: 

q ||xq||)x(d −= 3E
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 Since the minimum is reached at H and S  for k S)R,(q,  Q πI  and )S,R(q,  Q kkπI  respectively, we can 
hooseε such that, c

 
         )H(d )S(dqq <ε+               (15) 
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       d)S(d qkq )H(<ε+ k                (16) 

      

by the inequalities (13) and (14) respectively we have: 

ε+<<ε− )S(d)S(d)S(d kqqkq               (17) 

       ε+<<ε− )H(d)H(d)H(d qkqq           (18) 

om (16), the second inequality of (18) and (15) we have: 

           

 
fr
 

)S(d)H(d)H(d)S(d qqkqkq <ε+<<ε+           (19) 
e

              
i. . 

)S(d)S(d qkq <ε+           (20) 

quation and the second inequality of (17) are contradictory we conclude that H = S and the 
map A is closed. 

 could be applied this first approach until a good approximation is 
d. 

5. EXPERIMENTAL RESULTS 

puted by the new algorithm. The implicit equations of the quadrics selected 
for the numerical experiment are: 

 

 Since this last e

 With this result we can assure the convergence of the algorithm proposed even when Newton's Method 
can't be performed. In these few cases it
found without applying Newton's Metho

 In this section we compare the relative errors associated with different approximations of the Euclidean 
distance from a point to a quadric. In the following table the relative errors resulting from this new algorithm 
can be compared with the relative errors resulting from the previously mentioned approximations to the 
Euclidean Distance for different quadrics. The column "ealg" corresponds to the relative errors of the 
algebraic distance, "etau1" to the relative errors of the Taubin's first order approximation, and "enew" to the 
relative errors of the distance com

Ellipsoid: 76925z25y36x 222 =++  
Hyperboloid of one sheet: 

et: 
369z4y9x 222 =++  

 Hyperboloid of two she 369z-4y9x 222 =+
Elliptic paraboloid: 

Hyperbolic paraboloid: 
4zyx 22 =+  

36z4y-9x 22 =  
 

 Relative errors Quadric 
Surface 

External  
point 

Euclidean 
distance ealg Etau1 enew 

Ellipsoid (156,153,204) 293.62 8516.4 0.4987 *  -12101.586×

Hyp. (1S) (1.24,3.32,0.75) 0.4722 0.0034 0.0389 *  -9102.203×

Hyp. (2S) (4.89,3,4) 1.5703 2.2995 0.0441 *  -16101.413×

Par. (ell) (15,15,49) 7.1414 7.8918 0.1626 
*

-16102  .846×

Par. (hip) (6.33,2.22,1.83) 2.7222 1.8086 0.1341 * 103.271×  -16

  
As it can be seen, the best results (marked with "*") correspon d to the n

approximations even when the point is far from the surface. 
 
 Figure 3 shows a massive use of our algorithm. For a uniform grid  
of 1000 points generated in the cube 3[0,5]  it was computed and 
displayed the corresponding footpoints with respect to the unitary sphere. 
For almost all the points, the number of iterations 1N required to compute 
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the initial approximation to Newton's Method was equal to 3, and in all the cases it was less than 6. All relative 
errors were less tha
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