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MODELLING AND ANALYSIS OF SOME RANDOM 
PROCESS DATA FROM NEUROPHYSIOLOGY*

David R. Brillinger1, Statistics Department, University of California, Berkeley 
ABSTRACT 
Models, graphs and networks are particularly useful for examining statistical dependencies amongst 
quantities via conditioning. In this article the nodal random variables are point processes. Basic to the 
study of statistical networks is some measure of the strength of (possibly directed) connections between 
the nodes. The coeficients of determination and of mutual information are considered in a study for 
inference concerning statistical graphical models. The focus of this article is simple networks. Both 
second-order moment and threshold model-based analyses are presented. The article includes 
examples from neurophysiology. 
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RESUMEN 

Modelos gráficos y redes son particularmente útiles para el examen de dependencias estadísticas entre 
cantidades vía su condicionamiento. En este trabajo las variables nodales aleatorias son procesos 
puntuales. Algunas medidas de la fortaleza de las conexiones entre nodos (posiblemente dirigidas) son 
básicas para el estudio de redes estadísticas. Los coeficientes de determinación y la información 
mutual son considerados en un estudio para inferencias concernientes a modelos gráficos estadísticos. 
El foco de este trabajo son las redes simples. Los dos momentos de segundo orden y sus umbrales, 
basados en un análisis de modelos son presentados. El trabajo incluye ejemplos de neurofisiología. 
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1. INTRODUCTION 
 
 The work presented considers the use of 
coefficients of determination, and of coefficients  
of mutual information as measures of the strength of 
association of connections. Time-side approaches 
are presented for the point process case. 
 
 Two empirical examples are presented. The first 
refers to a time series derived from the intervals of a 
single point process and is by way of introducing a 
discussion of dependency concepts. The data 
involved are the firing times of a neuron of the sea 
hare Aplysia californica. The second example refers 
to collections of simultaneously firing neurons and 
the problem is that of inferring the wiring diagram 
amongst individual neurons and amongst particular 
regions of the brain. The nodes fall into groups and 
the structure or wiring diagram of the system is to be 
discovered. A box and arrow representation of the 
structure is given in Figure 1.  
 
 Basic books discussing statistical graphical models 
include Cox and Wermuth [1998], Whittaker [1990], 
Edwards [1995], Lauritzen [1996]. The paper has the 
following sections: Coefficients of Determination, 
Mutual Information, Networks, Results, Discussion and 
Extensions. 
                                                 
*This paper was presented at VIII Conferencia Latinoamerica
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Figure 1. A schematic diagram related to the auditory 
regions of the brain of the cat. 
na de Probabilidades y Estadística Matemática. 
39 and DMS-9971309.  
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2. COEFFICIENTS OF DETERMINATION 
 
2.1. Ordinary Random Variables 
 
a) Correlation analysis 
 
 Let (X; Y ) denote a bivariate random variable with corr{X,Y} = ρXY. The coefficient of determination is 

{ } 22
XY Y,Xcorr=ρ

 
 It is symmetric in X and Y and invariant under separate linear transformations of the two variates. It is a 
measure of independence, explained variation, and strength of linear dependence. Further it shows the 
uncertainty of various estimates. These points may be elaborated upon as follows: 
 
1) Independence 
 
 It is the case that ρXY = 0 when X and Y are independent. It is not the case that ρXY = 0 implies 
independence. There are many examples of the form  
 

Y = X2 where the distribution of X is symmetric about 0 
 
 Here Y is perfectly dependent on X, yet ρXY = 0. Below it will be seen that mutual information does not suffer 
this disadvantage. 
 
2) Strength of dependence 
 
 i) Let Y = α + βX + ∈  with cov{X,∈} = 0, then 

{ } { } )(/Yvar/Xvar XX
2

XX
22

XY ∈∈σ+σβσβ=β=ρ

  and one sees that increases to 1 when |β|  increases or when σ2
XYρ ∈∈ decreases. 

 
ii) Suppose Y = βX + ∈ and Z = γY + η, with X; η; ∈ independent, then 
 
                     (1) 2

XY
2
XZ ρ≤ρ

 
  i.e. Y is better at linearly explaining X than Z. (An elementary proof of this result will be provided shortly.) 
 
3) Uncertainty of other quantities 
 
 Suppose Y = α + βX + ∈, with cov{X, ∈} = 0. Let β be the least squares estimate of β. Then 
 

{ } 2
iYY

2
XY )xx(/)1(Xvar ∑ −σρ−=β  

 
and one sees how the estimated uncertainty of  β depends on the size of . 2

XYρ
 
 A related aspect to the use of the coefficient of determination as a measure of strength of dependence is 
that one finds that the function of X that maximizes is E{Y|X}, Rao [1965], Brillinger [1975]. 2

XYρ
 
b) Partial analysis 
 
 There is a quantity analagous to the correlation coeficient that is defined for trivariate random variables. It is 
of use in understanding the structure of networks such as those in Figure 2. For the variate (X, Y, Z) the partial 
correlation of X and Z given Y is defined as 
 

                                                 )1)(1(/)( 2
YZ

2
XYYZXYXZY/XZ ρ−ρ−ρρ−ρ=ρ                                         (2) 
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This coefficient corresponds to corr{Ψ,Φ} in the model  

 
     divergent                           convergent 
 
 
 
 
 
 
       closed loop                     series 

                  X = α + βY + Ψ.     Z = γ + δY + Φ                      (3) 

with α,β, γ δ constants and the variable Y uncorrelated with the 
"error" variate {Ψ,Φ}. Partial correlation corresponds to the 
correlation of X and Z having removed the linear effects of the 
variate Y. In the model (3), β and δ are regression coefficients.  

 The partial correlation coefficient ρXZ⏐Y as defined by (2) may 
now be used to prove the inequality (1) above. Specifically 

YZXYXZYZXY 0 ρρ=ρ⇒=ρXZ
2

YZX 0 ρ−ρ⇒=ρ          

which implies the inequality (1). 

 
 
 
 
 
             parallel                        series 
 

Figure 2. Some 3– and 4- node networks. 

 The concept of partial correlation extends directly to the 
case of Y vector-valued. A classic discussion of these ideas 
may be found in Kendall and Stuart [24]. In the case of  
4 variables, 

{ }WYZ,WY δ−γ−β−XcorrYWXZ α−=ρ  

with α, β, γ, δ regression coefficients. 
 

2.2. Processes 
 
 The next consideration will be data that are functions, in particular realizations of stationary processes. Two 
approaches are considered: time-side and frequency-side. 
 
 Also two types of processes, time series and point processes, are studied. 
 
a) Time series 
 
 Consider a stationary time series, Y(t), t = 0, ± 1, ± 2,… . In a time-side approach, as a measure of the 
strength of association, one considers the coefficient of determination at lag u defined as 
 
                                                             { } 22

YY )t(Y),ut(Xcorr)u( +=ρ               (4) 
  
 It may be estimated directly from an estimate of the autocorrelation function. An example will be provided 
later. Such a parameter has an interpretation as the proportion of variation in Y(t + u) explained by a linear 
function of the value Y(t). 
 
 There are direct extensions to the bivariate case and to the frequency domain. For example one has the 
coherence coeficient at frequency λ 
 

{ } 2
YX

2
XY )(dZ),(dZcorr)(R λλ≈λ  

 
with dZX(λ) and dZY(λ) representing the components of frequency λ in the Cramér representation of the 
series. This parameter has an interpretation as the proportion of the variance explained at frequency λ.  
The coherence may be estimated by 
 

{ } 2tietie2
XY )t(Y),t(Xcorr)(R ∑ ∑ λ−λ−=λ  

 
 In a time-side partial analysis one can consider YXZρ  with X = Y(t), Y = Y(t + u), Z = Y(t + v) and be led to  

.)v,u( 2
YXZρ In a frequency-side analysis one can consider the partial coherency 
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)R1()R1(/)RRR(R 2
YZ

2
XYYZXYXZYXZ −−−=  

 
suppressing the dependence on λ. 
 
b) Point processes 
 
 Consider a point process N = {τj} with τj+1 ≥ τj. j = 0, ± 1, ± 2, … . Define the time series of interevent 
intervals, Y(j) = τj+1 - τj. j = 0, ± 1, ± 2, … . In the case that N is stationary, so too will be the time series Y. One 
can consider the use of the quantity corf{Y(j + k), Y(j)} above for the series {Y(j)}. Alternately one might 
choose to work with the values log Y(j). 
 
 Another way to approach the point process case is to approximate a point process by a binary time series, 
Y (t) = 0, 1 having decided on an appropriate unit time interval. It may be mentioned that there are analogs of 
the covariance function such as, for a bivariate process {M; N}, 
 

E{dN(t + u)dM(t)} = pMN(u)dtdu 
 
and the coherence function 
 

{ } 2
NM

2
MN )(dZ),(dZcorr)(R λλ=λ  

 
as before. Some analogs of partial correlations were proposed for the point process case in Brillinger [1975]. 
 
3. MUTUAL INFORMATION 
 
3.1. Discrete case 
 
 Many of the existing statistical results of information theory are for the case of discrete-valued random 
variables. This may be the result of the more common availablility of limit theorems for the discrete case, e.g. 
ergodic theorems. However in this section the focus will be on the real-valued continuous case. 
 
3.2. Continuous case 
 
 The field of information theory provides some concepts of broad use in statistics. One of these is mutual 
information. It is a generalization of the coefficient of determination and it unifies a variety of problems. 
 
 For a bivariate random variable (X; Y ) with density function p(x, y) the mutual information (MI) is defined as 
 

dxdy
)y(p)x(p

)y,x(plog)y,x(pI
YXS

XY ∫=  

 
where S is the region p(x, y) > 0. 
 
 As an example, for the bivariate normal the MI is given by 
 

)1log(
2
1I 2

XYXY ρ−=  

 
and one sees the immediate connection with the coefficient of determination. 
 
 The coefficient IXY has the properties of: 
 
1) Invariance, IXY = IUV if the transformation (X, Y) → (U, V) has the form U = f(X), V = g(Y) with f and g each 

1-1 transforms. 
 
2) Non negativity, IXY ≥ 0. 
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3) Measuring independence in the sense that IXY = 0 if and only if X and Y are statistically independent. 
 
4) Providing a measure of the strength of dependence in the senses that i) IXY = ∝ if Y = g(X), and  
     ii) IXZ ≤ IXY if X is independent of Z given Y. 
 
 The property 3) that IXY = 0 only if X and Y are independent stands in strong contrast to the much weaker 
correlation property of  .2

XYρ
 
 Brief proofs of these results run as follows: 
 
Proof of  1) Suppose that f and g are differentiable. Set down the probability element including the Jacobian. 
 
Proof of 2) Apply Jensen's Inequality to 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

)Y,X(p
)Y(p)X(plogE YX  

 
Proof of  3) From the only if part of Jensen's Theorem. 
 
Proof of  4) One uses the following two expressions for the two parts of the claim. 
 

∫
−δ

−δ= dxdy
)y(p

))x(gy(log))x(gy()x(pI
Y

XXY  

 
YXZXY)YZ(XZXYXZ IIIII +==+  

 
with δ(.) the Dirac delta function. 
 
 References to the present material and the proofs include: Granger and Lin (1994), Cover and Thomas 
[1991], and Joe [1989]. 
 
 A concept related to the MI is that of the Kulback-Liebler information or entropy defined as 
 

∫= dx
)x(q
)x(plog)x(p)q,p(I  

 
for the possible densities p, q of the variate X. It is a measure of how close the density q is to p. Taking the 
variate (X, Y) and p to be p(x, y) and q to be pX(x)pY(y) one is led to the mutual information. 
 
 The mutual information is directly related to the concept of entropy, the entropy of a random variable Z with 
density pZ(z) being defined as 
 

{ }∫ = )z(plogEdz)z(plog)z(p ZZZ  

 
 One has the connection 
 

{ } { } { )Y(plogE)X(plogE)Y,X(plogEdxdy
)y(p)x(p

)y,x(plog)y,x(pI YX
S YX

XY −−== ∫ }   (5) 

 
The estimation of entropy 
 
 There are several methods that have been used. 
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Nonparametric estimate 
  
 Suppose one is considering the bivariate random variable (X, Y). Supposing further that p(x, y), is an 
estimate of the density p(x, y), for example a kernel estimate, then a direct estimate of the entropy is 
 
    { })Y,X(plogE)j,i(plog)j,i(p

j,i

2 =δδδδδ ∑  for δ small         (6) 

 
 In the same way E{log pX(X)}, E{log pY(Y)}  may be estimated and one can proceed to an estimate of the 
mutual information via expression (5). References to the type of entropy estimate just described and some 
statistical properties include: Joe [1989], Hall and Morton [1993], Fernandes [2000], Hong and White [2000], 
Granger et al. (2000). 
 
 Difficulties with this form of estimate can arise when pX(⋅), pY(⋅) are small. The nonparametric form also 
runs into difficulty when one moves to higher dimensions. 
 
 A sieve type of estimate is presently being investigated for this situation, in particular an orthogonal function 
expansion employing shrunken coefficient estimates. 
 
Parametric estimates of entropy 
 
 If the density p(x, y⏐θ) depends on a parameter θ that may be estimated reasonably then an immediate 
estimate of the entropy is provided by 
 

∫ θθ dxdy)y,xlog()y,x(p  

 Another form of estimate is based on the likelihood function. Suppose one has a model for the random 
variable (X, Y) including the parameter  θ, (of dimension ν). Suppose the model has the property that X and Y 
are independent when θ = 0. When there are n independent observations the log likelihood ratio for the 
hypothesis θ = 0 is 
 

∑
θn

1 iYiX

ii

)y(p)x(p
)y,x(p

log  

 
with expected value 
 

nIXY
 
 This suggests the use of the loglikelihood ratio statistic divided by n as an estimate of IXY. A further aspect 
of the use of this statistic is that its distribution will be approximately proportional to  when X and Y are 
independent. An example is provided later in the paper. 

2X ν

 
Partial analysis 
 
 When networks are being considered the conditional mutual information is also of use. One can consider 
 

  

∫ ∫ ∫= dxdydz
)z,y(p)z,x(p
)z(p)z,y,x(plog)z,y,x(pI ZXY  

 
 Its value for the trivariate normal is 
 

)1log(
2
1 2

ZXYρ−−  
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3.3. Processes 
 
 A disadvantage of MI as introduced above is that it is simply a scalar. As consideration turns to the process 
case, i.e. functions, it seems pertinent to seek to decompose its value somehow. 
 
a) Time series 
 
1. Time-side approach 
 
 The entropy of a process is defined by a suitable passage to the limit for example as 
 

limT→∞E{log p(x1, x2,…,xT)} 
 
where p(x1,…,xT) denotes the density of order T. To begin one can simply consider the mutual information of 
the values Y (t +u); Y(t) or of the values Y (t + u), X(t). 
 
 This leads to a consideration of the coefficients 
 

IYY(u), and IYX(u) 
 
i.e. mutual information as a function of lag u. References to this idea include: Li [1990] and Granger and  
Lin [1994]. 
 
2. Frequency side approach 
 
 Similarly it seems worth considering the mutual information at frequency λ of two components of a bivariate 
stationary time series. This could be defined as the mutual information of dZX(λ) and dZY (λ). Because these 
variates are complex valued a 4-variate random variable is involved. In the Gaussian case the MI at 
frequency λ is 
 

- log(1 - ⏐RXY(λ)⏐2) 
 
with the overall information rate 

ωω−− ∫
π

π−

d))(R1log( 2  

Granger and Hatanaka (1964). 
 
 In the general case for each frequency one might construct an estimate, IXY (λ), based on kernel estimates 
of the densities taking empirical FT-values near λ as the data. A difficulty that arises is that the random 
variables are complex-valued, i.e. the situation is 4-dimensional. 
 
 One way to estimate the MI, suggested above, is to fit a parametric model and then to use the loglikelihood 
ratio test statistic for a test of independence. 
 
 A novel way, also being pursued, is to use first recurrence time estimates of entropy Ornstein and Weiss 
(1993) and Wyner (1999). 
 
b) Point processes Definitions of entropy have been set down for this case, namely 

{ }[ ] [ dt))t(1)(t(E)Tt0:N(plnE
T

0
NNt ∫ λ−λ=<≤− ]  

where λN(t) is the conditional intensity function of the process at time t. In the case of a Poisson process λN is 
simply its rate function, Snyder (1975). Daley and Vere-Jones (1988) work from the general expression 

)(logEd)(log)( P Λ=ωωΛωΛ− ∫
Ω
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where Λ = dP=dµ. They also set down an intriguing expression for entropy involving Janosy densities. 
Brémaud [1] considers the MI on the interval [0; t] writing 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

NM

MNt
MN dPdP

dP
logEI  

 
4. NETWORKS 
 
 In crude terms a network is a box (or node) and line (or edge) diagram and some of the lines may be 
directed. Some simple 3- and 4-node networks are shown in Figure 1. In the work here a box corresponds to 
a random entity, to a random variable, to a time series or to a point process. In studying such models the 
methods of statistical graphical models provide pertinent methodology. Typically these models are based  
on conditional distributions. See the books by Edwards (1995), Whittaker (1990), Lauritzen (1996),  
Cox and Wermuth (1998). 
 
 If A, B, C represent nodes a question may be as simple as: Is the structure A → B → C (the series case of 
Figure 2) appropriate or is it better described as (A, B) → C (the convergent example of Figure 2)? One the 
other hand the question may be as complicated as: What is the wiring diagram of the brain? See Figure 1. 
 
 Figure 1, prepared by Alessandro Villa, represents a schematic of the auditory regions of the brain of a cat. 
The boxes represent regions containing countless neurons. The arrows represent postulated directions of 
influence. A basic concern is the strength of connections between the several regions. 
 
 References include: Brillinger (1996), Brillinger and Villa (1997) and Dahlhaus et al. (1997). 
 
5. RESULTS 
 
5.1. Aplysia californica 
 
 The data under consideration in this first example are the intervals between the times at which an observed 
neuron of the sea hare (Aplysia) fires. Such data are considered extensively in Bryant et al. (1973) and  
Brillinger et al. (1970). In the present case the neuron, L10, is discharging spontaneously. The lowest panel 
of Figure 3 graphs the series of time intervals between successive spikes. 
 
 Many stochastic models for neurons firing spontaneously, Fienberg [1974], Holden [1976], imply that the 
intervals between firings are independent and identically distributed, i.e. correspond to a renewal process. 
The intervals' mutual information coefficient as a function of lag is identically 0 for such models. 
 
 Figure 3 provides the estimated coefficients of determination and mutual information at delay k. Also 
presented for these quantities are estimates of the 99 % critical null levels obtained via random permutations 
of the intervals. One can conclude that there is evidence against the assumption of a renewal process. 
Values at lag or delay k, for small k, appear related. When one looks at the trace of the data there is evidence 
for this as well. 
 
 The intervals appear approximately unrelated beyond delay 15 say. This is notable for the parameter  
IYY(k) has much greater implications than ρYY(k)2. Were the former 0 that would imply that Y(j + k) and Y(j) are 
statistically independent at lag k, not just uncorrelated. 
 
 It is interesting that the top two graphs in Figure 3 are quite similar. Were the series stationary Gaussian, 
 

))k((
2
1))k(1log(

2
1)k(I 2

YY
2

YYYY ρ≈ρ−−=  

 
for small |ρYY(k)|2, so approximate normality is an explanation for the similarity. 
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Coefficient of determination 

delay 
The dashes give the critical level of 99 %  

 
Mutual information 

delay 
 

The data 

Figure 3. The bottom panel provides the intereven als of an Aplysia neuron firing spontaneously. 

 
.2. Auditory Syst

nt of Physiology at the University of Lausanne to investigate 

 were located in different regions of the brain, in particular in the pars magnocell (M) of the 

 

index 
 

t interv
The top panel gives the estimated coefficient of determination as a function of lag.  
The middle panel gives the corresponding estimated mutual information.  
The dashed line gives the approximate upper 99 % null level. 

em of the cat 5
 

Experiments were carried out in the Departme 
certain aspects of the hearing system of the cat. In brief, neurons relating to the sense of hearing were 
identified and their firing times were recorded contemporaneously. The data were therefore of multitype point 
process form. 
 

The neurons 
medial geniculate body (MGB) and the reticular nucleus of the thalamus (R or RE). These two regions are 
shown in Figure 1 which provides a schematic for the conjectured way for the various regions of the brain to 
interact. 
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 is its strength? What is its anatomical direction? 

To address these questions experiments of two different types were carried out. In the first spontaneous 
s deliberately applied. In the 

econd there was a sound stimulus lasting for 0.2 second out of each second. There were six electrodes 

n between the 
rocesses of the regions RE and M. 

ltitype point process [Nj(t)]. As a model of a neuron's firing under the 
fluence of the other neurons, a threshold model is considered. In the case of no stimulus being applied, 
u

     )t(dN

j

jk 0
j

<

= ≠            (7) 

where the {ajk(⋅)} represent the influences of the driving neurons of neuron j. The threshold processes, θj(t), 
are viewed as independent and Gaussian white noises. 
 

 level after a firing. This represents the phenomenon 
f refractoriness. Here the dN (t), j = 1,…, J are independent given the history, H  = {N(u), u ≤ t}. The upper 

θ>−α+α
jk 0

jkjkj )t()u(dN)ut()t(Sif1         (8) 

  
 The consideration next is esti
various coefficients of mutual information. 

is done by fitting the overall models 

ociatio

ial and threshold function 

 Questions posed by the experimenter include: Is there an association between the regions RE and M? If 
yes, what
 
 Another is: Is any apparent association completely the result of the stimulus? 
 
 
discharges of the neurons were recorded, i.e. no external sound stimulus wa
s
each of which could register the firings of  2 or 3 neurons. There were a number of replicates. 
 
 Brillinger and Villa (1997) present the results of partial coherence analyses of the data. What is focused on 
now is how a model based analysis may be employed to estimate the mutual informatio
p
 
 The neurons will be viewed as a sample from the regions in which they were located. The overall data will 
be considered a realization of a mu
in
s ppose 

   

(t)θ(u)u)dN(taif1
γ

jkjk

jt

>−∑ ∫

(t)θ""if0

 Figure 4 provides a sketch of the case of the model for one neuron with the piles representing the times of 
influencing neurons' firings. The threshold rises to a high
o j t j

limit in the integration, γjt, is the time elapsed since the neuron j last fired. The model is presented in some 
detail in Brillinger (1992) and Brillinger and Villa (1997). 
 
 To handle the case where the stimulus was applied S(t) is set to 1 when the stimulus is applied and  
to 0 otherwise. Then (7) is replaced by 
 

                                                
γ

=j

jt

)t(dN ∑ ∫
≠

mating 
Membrane potenc

time (seconds) 

Figure 4. Representation of the firing model of a neuron under 
the influence o n are the membrane 
potential and t ic part of the threshold 

g 

f others. Show
he determinist

function. Piles correspond to firing times of influencin
neurons. 

This 
(7) and (8) and examining the change  
in the deviance when the αj and certain 
of the αjk are set to 0. The results are 
presented in Figure 5 with the numbers 
in brackets the estimates degrees of 
freedom. (Following likelihood ratio theory 
the null distributions are .)/2 νχν The 
estimated strengths of connections with 
the stimulus appear very strong. This is 
no surprise. One notes ass n in 
both directions between RE and M 
beyond that imparted by the stimulus. It 
is interesting though that the connection 
from M to RE appears stronger than that 
from RE to M. 

 



6. DISCUSSION AND SECTIONS 
 
 The coefficient of mutual information is a unifying concept extending second-order quantities that have 

The MI is useful when one wishes to make inferences stronger than: "The hypothesis of independence is 

During the work the plots of the function IYY(u), appeared more useful than the simple scalar IYY. Both 

A number of extensions are available and some work is in progress. One can consider the cases of spatial-

 

d.  

 
One needs to develop the statistical properties of other estimates of MI such as the estimate based on the 
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