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ABSTRACT 
Maximum attractors of copulas star unimodal (about an (a, b)) are determined. If (a, b) ≠ (1,1) these 
attractors form a two-parameter family of copulas extending that of Cuadras-Augé whereas if  
(a, b) = (1,1) they cover all maximum value copulas. Relationship between unimodality and Archimax 
copulas  of Capéraà, Fougères, and Genest [3] is also examined. 
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RESUMEN 
Atractores maximales de estrellas-copula unimodal (alrededor de un (a,b)) son determinadas. Si  
(a,b) ≠ (1,1) estos atractores forman una familia bi-paramétrica de copulas extendiendo el de Cuadras-
Augé mientras que si (a,b) = (1,1) ellos cubren todas las copulas de valor máximo. Relaciones entre 
unimodalidad y las cópulas Archimax de Capéraà, Fougères y Genest (J. Mult. Ana., 2000) son exami-
nadas también. 
 
MSC: 60E05 

1. INTRODUCTION 

 An important property of a distribution is unimodality. It is then natural to ask whether copulas are unimodal. 
This question has been answered for central convex, block, and star unimodality in Cuculescu and 
Theodorescu (2002). As a follow-up we examine in this paper the maximum domain of attraction for star 
unimodal copulas.  

 The paper is organized as follows. Section 2 has an auxiliary character; here we indicate several definitions, 
notations, and results to be used throughout this paper. In Section 3 we show that the maximum domain of 
attraction to which copula C star unimodal about (a, b) ≠ (1,1) belongs is an element of a two-parameter 
family of copulas extending that of Cuadras-Augé. When (a, b) = (1,1) the set of all possible attractors 
changes dramatically covering all maximum value copulas. As a consequence of the results in Section 3 we 
examine in Section 4 the relationship between star unimodality and Archimax copulas of Capéraà, Fougères,   
and Genest [2000]; we show that many of them are hot star unimodal. 

2. PRELUDE 

 We shall use the term probability measure or distribution at our convenience; m is Lebesgue measure,  
⊗ stand s for measure product, IA for the indicator function of A, C for complementation, µ  for the ′survival′ 
function of µ, and fµ for the measure ∫ f dµ. 

2.1 Copulas: maximum domain of attraction 

 Let I = [0,1]. It is Sklar [1959] in 1959 coined the term copula for a distribution on I2 whose margins are 
uniform. The notations M, V, and Π stand for the copulas min{u, v}, max{u + v - 1, O}, and uv respectively. 
For details on copulas we shall refer the reader to the recent book by Nelsen (1999). 

 A copula C* is said to be the maximum attractor of copula C (or C belongs to the maximum domain of 
attraction of C*) if we have 
 
                 (1) .Iy,x),y,x(*C)y,x(Clim n/1n/1n

n
∈=

∞→
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 The concept of maximum attractor is related (Galambos (1987), Theorem 5.2.3, p. 294) to the convergence in 
distribution of the suitable normed sequence {(X(n), Y(n)): n  ≥ 1}, where {(Xi, Yi) : i  ≥ 1} are independent pairs 
of random variables, each having the same joint distribution function and X(n) = max{X1: 1 ≤ i ≤ n}, 
Y(n) = max{Y1: 1 ≤  i ≤ n}. Here (1) is equivalent to 
 
              (2) .Iy,x),y,x(*Clog))y,x(C1(nlim n/1n/1

n
∈−=−

∞→

 
 Since 
 
       1 - C{x, y) = (1 - x) + (1 - y) - ,Iy,x),y,x(C ∈   
 
where ] ]))1,y(1,x((C)y,x(C ×=  is the joint survival function of C, (2) is equivalent to  
 
             .Iy,x),y,x(*Clog)xylog()y,x(Cnlim n/1n/1

n
∈+−=

∞→
         (3) 

 
 Only the behavior of C near the point (1,1) plays a role in deciding whether C belongs or not to the 
maximum domain of attraction of C*. 
 
Remark 2.1. A copula C* is said to be the minimum attractor of copula C(or C belongs to the minimum 
domain of attraction of C*) if (using a similar argument as for the maximum attractor) we have 
 

.Iy,x),y,x(C)y1,x1(Clim *
n/1n/1n

n
∈=−−

∞→
 

 
 In other words, C belongs to the minimum domain of attraction of C* if and only if C* is the maximum 
attractor of the survival copula 
 

.Iy,x),y1,x1(C1yx)y1,x1(C)y,x(Ĉ ∈−−+−+=−−=  
 

 Therefore any assertion concerning the minimum domain of attraction is equivalent to one concerning the 
maximum domain of attraction by changing C to  .Ĉ
 
 Since the work of Pickands (1982) (see also Tawn (1988)) it is known that C*, also called extreme value 
copula, can be expressed in the form 
     
    C*(x,y) = CA(x,y) = exp{log(xy)A(log(x)/log(xy))},  x, y ∈ l,        (4) 
 
in terms of a convex dependence function A defined on l in such a way that max{t, 1- t} ≤ A(t) ≤ 1 for all t ∈ I.  
The bounds 1 and max{t, 1 - t} correspond to copulas Π and M respectively. We denote by A the set of all 
A' s. 
 
Remark 2.2. Let A ∈ A and set 
 

     [ ] .It,
)t1(t

tA)t1(t)t(A~ rr

r
r/lr/1rr ∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
−+=           (5) 

 
 Then for r  ≥ 1. Actually for r = 1,  so we assume r > 1. Further we consider copula CAA~∈ ;AA~ = A and we 

observe that  is a bivariate distribution function for any q > 0. Hence, for any probability 

measure ν on (0, ∞), C

)y,x(C)y,x(C qq
A

q
A =

o =  is a bivariate distribution function which may be written as  ψ(- log C)q(dCq
A

0

ν∫
∞

A), 

where ψ is the Laplace transform of ν. We now take ν to be the stable distribution with characteristic exponent 
1/r and ψ(s) = exp{-s1/r}. Both margins of Co coincide and are equal to F(x) = exp{-(-log(x))1/r} with x ∈ l.  
It follows that C1(x,y) = CO{F-1(x), F-1(y)) is a copula and 
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C1(x,y) =  x, y ∈ l. ,)xylog(/)xlog(A~log(xy)exp }{ )(
 
 Since C1(x1/n, y1/n)

n
 = C1(x, y) we conclude that C* belongs to its own maximum domain of attraction; thus 

A different argument for the proof of this assertion is in Capéraà, Fougères, and Genest [3, p. 37]. .AA~ ∈
 
  A dependence function A which will occur in the sequel is 
 
            Aθ1

,θ2
(t) = max{1 - θ1(1 - t), 1 - θ2t},  θ1, θ2 ∈ (0,1],          (6) 

 
and A0,0 = 1 (we observe that A0,0, Aθ1,1 and A1,θ2

 are extreme elements of A). Such an Aθ1,θ2
 leads to the 

copula 
 

  
⎪⎩

⎪
⎨
⎧

≤
≤=

θθθ−

θθθ−

θθ ,xyforyx
,yxforxy)y,x(C

122

211

21 /1/11

/1/11

,

 
and C0,0 = Π. This two-parameter family of copulas is an extension of the one-parameter Cuadras-Augé 
(Nelsen (1999), p. 12 and p. 47) family of copulas , 
 

⎪⎩

⎪
⎨
⎧

≤
≤=

θ−

θ−

θ ,xyforyx
,yxforxy)y,x(C 1

1
 

where θ ∈ l. 
 
2.2. Unimodality 
 
 In what follows we shall be concerned with the following notion of bivariate unimodality: 
 
 Star unimodality Dharmadhikari and Joag-dev (1988), p. 38, Bertin, Cuculescu, and Theodorescu (1997),  
p. 72 :a distribution C is said to be star unimodal about x ∈ R2 if it belongs to the closed convex hull of the set 
of all uniform distributions on sets which are star-shaped about x (i.e. which contain together with an y the 
whole segment joining x to y). 
 
 A distribution C is star unimodal about (a, b) if and only if it is a mixture of the form 
 
                     (7) ∫ µσ= ),v,u(dC )v,u(),b,a(

 
where the probability measure µ on R2 is unique, σ(a,b),(a,b) = ε(a,b) (εw stands for the point mass at w), 
σ(a,b),(u,v), for (u, v) ≠ (a, b), is concentrated on the segment joining (a, b) to (u, v) and has with respect to the 
uniform distribution a probability density function f(u', v') which is proportional to the distance between (u', v') 
and (a, b).  
 
 In the sequel we shall use the following result (Cuculescu and Theodorescu (2002), (Proposition 3.3]) 
concerning star unimodal copulas. 
 
Proposition 2.3. A copula C star unimodal about a point (a, b) ∈I2 is a mixture of the form 
 
           ∫ µσ=

2I

)v,u(),b,a( ),v,u(dC            (8) 

 
with the unique probability measure 
 
                               (9) ,c)mf(d)mf(d)mf(d)mf(dc 1

2
1

2
10

2
0

2
0

1
11

1
1

1
00

1
0),(,

1,0,

ξ+ε⊗+ε⊗+⊗ε+⊗ε+ε=µ βαβα
}{∈βα

∑
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where  the remaing c's and d's are nonnegative such that ∑
}{∈βα

βα=
1,0,

, ,cc

     c00 + c01 +   c,2/ad1
0 = 10 + c11 +  ,2/)a1(d1

1 −=
(10) 

 c00 + c10 +   c,2/bd2
0 = 01 + c11 +  ,2/)b1(d2

1 −=
 
and are probability density functions on I satisfying ifα
 

,2/m1cm)fdfd(cm)fdfd( I1
2
1

2
1

2
0

2
02

1
1

1
1

1
0

1
0 =ξ++=ξ++  

 
ξ1 and ξ2 being the margins /of the distribution ξ. 
 
Remark 2.4. If in Proposition 2.3 copula C is star unimodal about (1,1) the representation (9) of µ becomes 
 

              µ = c[ε(0,0) + ξ] + (0.5 - c) [ ] ,)mf)mf( 0
2
0

1
00 ε⊗+⊗ε        (11) 

 
where c ∈ [0, 0.5] and (0.5 – c)  .2/m1cmf)c5.0(cmf I1

2
02

1
0 =ξ+−=ξ+

 
Remark 2.5. If C is star unimodal about (a, b) ∈ I2 then  is star unimodal about (1 - a, 1 - b). With 
selfexplanatory notations we can translate Proposition 2.3 in 'hat' terms. More precisely we can write  

 = C o ρ

Ĉ

Ĉ -1, where C o ρ-1l is the image of C by the map (x, y) a ρ(x, y) = (1 - x, 1 - y) and similarily for the 
other quantities. For instance  .cĉ 0011 =
 
3. ASYMPTOTICS OF EXTREMES 
 
 Let copula C be star unimodal about (a, b) ≠ (1,1). 
 
Proposition 3.1. Copula C belongs to the maximum domain of attraction of copula Cθ1, θ2 with  
θ1 = 2c11/(1 - b), θ2 = 2c11/(1 - a) for a, b < 1 and θ1 = θ2 = 0 for a = 1 or b = 1. 
 
Proof.  (a) We have 
 
      )),y1()x1((kc)y,x( 11 −+−≤−µ                   (12) 
 

where k is a constant; (12) shows that only the term c11ε1,1) in (9) plays an important part. 
Inequality (12) holds since (Proposition 2.3) 

 

,2/)z1()z)(mf(d
____

i
j

i
j −≤  

 
,2/))y1()x1(()y(c)x(c)y,x(c 21 −+−≤ξ+ξ≤ξ  

 
).1,1(),(,0)y,x(),( ≠βα=ξ βα  

 
(b) Further we take into account representation (8) and inequality (12) to evaluate )y,x(C  when x, y are 

sufficienly clase to 1. Namely we suppose in the remaining of the proof that min {x, y} > min {a, b}. 
With this purpose in mind, we diminish the domain of integration I2. Indeed if (a, b) ≠ (1,1) then 

0)y,x()v,u)(b,a( =σ  for (u, v) ∉ (x', 1] ×  (y', 1]), where x' = x'(x, y) and y' = y'(x, y) are defined by:  

x' = x for a ≤ x and  
by
b1

xa
xa

−
−

=
−

′−  for x < a and y' = y for b ≤ y and 
bx
a1

yb
yb

−
−

=
−

′− for y < b. Thus 
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.1)y1/(´)y1(lim)x1/(´)x1(lim
1y,x1y,x

=−−=−−
→→

 

 
 Therefore we can write 
 
    ;R)y,x(c)v,u(d)y,x()y,x(C )1,1(),b,a(11)v,u(),b,a(

1´,y(1´,x(

+σ=µσ= ∫
]×]

      (13) 

here, 

´))y1(´)x1((k1´,y(1´,x()v,u(:)y,x(supR )v,u(),b,a( −+−]}×]∈σ{≤  
(14) 

          ,))y1()x1((k1´,y(1´,x()v,u(:)y,x(sup 1)v,u(),b,a( −+−]}×]∈σ{≤  
 
where k1 is a constant. 
 
  (c) In order to evaluate the upper bound in (14) we denote by SA,B the segment with endpoints A and B;  
                  for (w, z) ∈ S(a,b),(u,v) we observe that 
 

     .
bv
bz1

au
aw1S(

22

)v,u(),z,w()v,u(),b,a( ⎟
⎠

⎞
⎜
⎝

⎛
−
−

−=⎟
⎠

⎞
⎜
⎝

⎛
−
−

−=σ       (15) 

 
 Since in (15) we have two equal values for the mass of S(w,z),(u,v) we shall use the notations S(∗,z),(∗,v) and  
S(w,∗),(u,∗) when missing coordinates do not play any role in calculations. For (u, v) ∈ (x, 1] × (y, 1] we have  
(by (15)) 
 

}σσ{≤σ ∗∗∗∗ )S(,S(min)y,x( )1,(),y,()v,u(),b,a(),1(),,x()v,u(),b,a()v,u(),b,a(  
 

      .
bv
by1,

au
ax1min

22

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−⎟
⎠

⎞
⎜
⎝

⎛
−
−

−=  

 
 For (u, v) ∈ (x', x] × (y, 1] we obtain (by (15)) 
 

)S()y,x( )1,(),y,()v,u(),b,a()v,u(),b,a( ∗∗σ≤σ  

  .
bv
by1

2

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−=  

 
 For (u, v) ∈ (x, 1] × (y', y] we are led to (by (15)) 
 

)S()y,x( ),1(),,x()v,u(),b,a()v,u(),b,a( ∗∗σ≤σ  

  .
au
ax1

2

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−=  

 
 It is not possible that x' < x and y' < y since this implies x < a, y < b, and min{x,y} < min{a,b}. Por u > a we 
have u ∉ (x',x] and 
 

        
a1
x12

a1
x1

a1
ax1

a1
ax1

au
ax1

22

−
−

≤
−
−

⎟
⎠

⎞
⎜
⎝

⎛
−
−

+=⎟
⎠

⎞
⎜
⎝

⎛
−
−

−<⎟
⎠

⎞
⎜
⎝

⎛
−
−

−         (16) 

 
while for v > b we have v ∉ (y', y] and 

       .
b1
y12

bv
by1

2

−
−

<⎟
⎠

⎞
⎜
⎝

⎛
−
−

−          (17) 
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 Since (a, b) # (1,1), for x, y sufficiently close to 1, inequalities (16) and (17) lead to 
 
               )),y1()x1((k1´,y(1´,x()v,u(:)y,x(sup 2)v,u(),b,a( −+−≤]}×]∈σ{        (18) 
 
where k2 is a constant. Hence, in view of (13), (14), and (18), we conclude that 
 
     ),)y1()x1(k)y,x(c)y,x(C 22

3)1,1)(b,a(11 −+−≤σ−        (19) 

 
where k3 is a constant. 
 
  (d) By virtue of (10) for a = 1 or b = 1 we have C11 = O, while for a, b < 1 and x > a, y > b 
 

     

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
−

≤
−
−

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−

−
−

≥
−
−

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−

=σ

.
b1
by

a1
axfor

b1
by1

,
b1
by

a1
axfor

a1
ax1

)y,x(
2

2

)1,1(),b,a(       (20) 

 
 Rewriting (20) we obtain 
 

    

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−
−

≤
−
−−−η+

−
−

≥
−
−

−−η+

=σ

,
b1
by

a1
axfor)b1/()y1))(x(1(2

,
b1
by

a1
axfor)a1/()x1))(x(1(2

)y,x(

2

1

)1,1(),b,a(       (21) 

 
where η1(z), η2(z) → 0 as z → 1. 
   
  (e) We now fix O < x, y < 1. We consider the inequality 
 

.
b1

y
a1

x bn1an1

−
>

−

−−

 

  
 Since n(1 – x1/n) → log(l/x) as n → ∞  the inequality is valid for n ≥ n0(x, y) if 
 

,
b1

)y/1log(
a1

)x/1log(
−

<
−

 

 
i.e. if x1-b > y1-a; the opposite inequality is valid for n ≥ n1(x, y) if x1-b < y1-a. We obtain (by (19) and (21)) 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
−

>
−

=

−−

−−

∞→

.yxfor
b1

c2
)y/1log(

,yxfor
a1

c2
)x/1log(

)y,x(Cnlim

a1b111

a1b111

n1n1
n

 

 
 These two limits coincide for x1-b = y1-a. Thus the limit relations are also valid for x1-b = y1-a. Hence (3) holds 
with C* = Cθ1, θ2

.      
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Remark 3.2. Copula Cθ1, θ2
 is not star unimodal except when θ1, θ2 = 1 (i.e. C1,1 = C A1,1

 = M) and θ1, θ2 = 0 
(i.e. C0,0 = Π). This is the consequence of the fact that the singular part of a star unimodal (about (a, b)) 
copula is concentrated on a union of half-lines originating in (a, b) (Cuculescu and Theodorescu [(2002), 
Remark 4.3]). If we leave M and  Π out, copula Cθ1, θ2

 has a singular part concentrated on I2 ∩ {(x, y):  

 which charges every arc of this curve. To show this property we observe that the conditional 

distribution function C

}xx 21 /1/1 θθ =

θ1,θ2
(⋅|x) has the probability density function (1 - θ2)x

-θ2 on the interval (0, x
θ2/θ1) and  

(1 - θ1)y-θ1 on (xθ2/θ1,1), and the masses of these two intervals sum up to xθ2/θ1-θ2(1 - θ2) + 1 – x(1 - θ1)θ2/θ1 = 
1 - θ2x(1- θ1)θ2/θ1, i.e. Cθ1, θ2

 (⋅|x) has an atom of mass θ2x(1-θ1) θ2/θ1 at xθ2/θ1. 
 
Remark 3.3 For every copula Cθ1, θ2

 there exists a star unimodal (about (a, b) ≠ (1,1)) copula C such that the 
assertion in Proposition 3.1 holds. 
 
 The following result deals with the case (a, b) = (1,1) which was left out in the preceding proposition. In 
what follows copula G is related to the measure µ by (7). 
 
Proposition 3.4. Let copula G be star unimodal about (1,1). The following are equivalent:  
 
 (I) G belongs to the maximum domain of attraction of CA (given by (4)) for some dependence function A. 
 
 (II) For all x, y ∈l there exists 
 
           ).y,x(h))y,x(1(nlim n1n1

n
=µ−

∞→
         (22) 

 
 Moreover 
 
               h(x,y) = -0.5 Iog CA(x,y),        x,y∈  l. 
 
Proof.  Part (II) → (I) 
 

(a) We note that h(xz, yz) = zh(x, y) for z > 0. This result follows immediately for z = 1/k, then for rational 
z; the fact that h is nonincreasing in x and y extends the property to all z > O. 

 
 We have to show (2), i.e. 
 

).y,x(h2)v,u(d))y,x(1(nlim))y,x(C1(nlim n1n1

I

)v,u(),1,1(n
n1n1

n
2

=µσ−=− ∫∞→∞→
 

 
(b) We observe that 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥≥

≤≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−
−

⎟
⎠

⎞
⎜
⎝

⎛
−
−

−

=σ

yvorxufor0

yvandxufor
v1
y1,

u1
x1max1

)y,x(

22

)v,u(),1,1(  

 
 Hence 
 

σ(1,1),(1-(1-x)/z,v)(x,y) = σ(1,1),(u,1-(1-y)/z)(x,y) = 1 – z2

 
for v ≤ 1- (1 - y)/z and u ≤ 1- (1- x)/z with z ∈ [max{1 - x, 1 - y}, 1]. 
  
  (c) Now we set 
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⎪
⎩

⎪
⎨

⎧

}−−{<

]}−−{[∈−−−−µ−

=λ

.y1,x1maxtfor1

,1,y1,x1maxtfor)t/y1(1,t/)x1(1(1
)t(y,x  

 
 We note that the function  is nonincreasing. For the sake of simplicity, we assume that x > y. Then  )t(t y,xλa

 

)v,u(d))y,x(1(

)v,u(d))y,x(1(

)y,x(C1

)v,u(),1,1(
y,0x,0

)v,u(),1,1(

)y,0x,0( c

µσ−+

µσ−

=−

∫

∫

][×][

][×][  

 
 For the second integral we can write 
 

.)v,u(d
v1
y1,

u1
x1min)v,u(d))y,x(1(

2

y,0x,0
)v,u(),1,1(

y,0x,0

µ⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−

=µσ− ∫∫
][×][][×][

 

 
 The set 
 

 ]z/)y1(1,0 ]z/)x1(1,0z
v1
y1,

u1
x1min:)v,u( −−[×−−[=

⎭
⎬
⎫

⎩
⎨
⎧

>
⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−  

 
has µ-mass λx,y(z). Consequently integrating by parts we obtain 
 

)z(dz)y,x(1)y,x(C1 y,x
2

1,y1

λ−µ−=− ∫
]−[

  

(23) 

        .dz)z(z2)y1()1()1( y,x
y1

2
y,xy,x λ+−+λ−λ= ∫

−

(d) Since n(l - y1/n)2 → 0 as y  1 we can write a

 

.dz)z(,zn2lim))y,x(C1(nlim n/1n/1

n/1
yx

1

y1
n

n1n1
n

λ=− ∫
−

∞→∞→
 

  
 Further we set tn,z = [1 - (1 – t1/n)/ z]

n
. Then tn,z → t1/z as n →∞. Hence  

 
.z/)y,x(h)y,x(h))y,x(1(nlim)z(nlim z/1z/1n/1

z,n
n/1
z,nny,xn

n/1n/1 ==µ−=λ
∞→∞→

 

 
 Also 
 

).y1x1(n)y1x1(nz)z(zn n/1n/1n/1
z,n

n/1
z,ny,x n/1n/1 −+−=−+−≤λ  

  
 The last quantity, having as limit - log(xy) as n → ∞, is bounded; therefore Dominated Convergence Theorem 
applies yielding 
 

              ∫ ==−
∞→

1

0

n/1n/1
n

).y,x(h2dz)y,x(h2))y,x(C1(nlim
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Part (I) → (II) 

(a) Let x > y be fixed. From (23) we obtain 

        (24) 

 
y < s < 1/(1 - x) be fixed and set u = 1 - (1 - x)/ s, v = 1 - (1 - y)/ s. For t  ∈ (1 - u, 1) we have 

 
) Denoting 1 - (1 - x1/n)/s =  we have ux,n → x1/s as n → ∞. Consequently  

 
(d) Since for z ≤ 1 we have 

 
we obtain, taking s < 1 in (b), 

 
hile for s > 1 

 
We conclude the proof by letting s ↑ 1 and s ↓ 1 in the two preceding formulas.          

We now consider representation (11). If c = 0 then C = Π. 

orollary 3.5. If c ∈ (0,0.5] then for any dependence function A there exists a measure µ of the form (11) 

roof.  (a) We have to find a µ of the form (11) satisfying (22) with 

h(x, y) =

 

 

.Iy,x),y,x(Clog5.0)y,x(hdz)z(znlim Ay,x

1

y1
n

n/1n/1

n/1

∈−==λ∫
−

∞→
 

 (b) Let s, 1 - 
1 - (1 - u)/t  = 1 - (1 - x)/(st), 1 - (1 - v)/t = 1 - (1 - y)/(st); thus λu,v(t) = λx,y(st). 

(c n/1
n,xu

 

).y,x(sh)y,x(hsdz)z(znlimsdz)z(znlim s/1s/12
u,u

1

u1
n

2
y,x

s

y1
n

n/1
n,y

n/1
n,x

n/1
n,y

n/1n/1

n/1

==λ=λ ∫∫
−

∞→
−

∞→
 

 
)y,x(1)1()z( n/1n/1

y,xy,x n/1n/1n/1n/1 µ−=λ≥λ  

 

),y,x(h)s1(dz)z(znlim)y,x(1suplim)s1(5.0 n/1n/1 y,x

1

s
n

n/1n/1

n

2 )( −=λ≤µ−− ∫∞→∞→
 

w
 

).y,x(h)1s()y,x(1inflim)1s(5.0 )( n/1n/1
n

2 −≥µ−−
∞→

 

 
 
 
 
C
such that copula C (given by (7)) belongs to the maximum domain of attraction of CA (given by (4)). 
 
P
 

 - 2
1 log(xy)A(log(x)/log(xy)). 

 
In other words, 

           

 
 
  .)xylog(/)xlog(A1)xylog()y,x(nlim )(2

1n/1n/1
n

][ −−=µ
∞→

      (25) 

(b) In view of (11)  
 

.cξ=µ  So finding µ amounts to finding ξ and as in (11) such that ,2,1i,f i
0 = ξ=µ c  

satisfies (25). 
 

 With this purpose in mind we take ζ to be a copula which belongs to the maximum domain of attraction of CA. 
For c = 0.5 we take ξ = ζ in the representation (11) of µ. For c ∈ (0,0.5) we take 2

0
1
0 ff =  to be the uniform 

probability density function on the interval (0,1 - 2c) and 
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[

] );c2(c/)m1()m1)(c1,c1(

c/)1()m1(

c/)m1()1(1

2
c1,c21c1,c21

21,c1c1,0c1,c21

c1,c211c1,01,c11,c11,c1

]−−[]−−[

]−[×]−[]−−[

]−−[]−[×]−[]−[×]−[

⊗−−ζ+

ζ⊗+

⊗ζ+ζ=ξ

 

 
here subscripts 1, 2 stand for margins. It follows that 
 

[
]

[ ]
[ ] ).c2/(m1)c2()m1()m1

)c2(c/)1,c11,0()m1()1(

)c2(c/)m1)(c1,c1(

c/)c,11c1,0()m1()1()1(

1,c21c1,c211,c1

c1,c2111,01,c1
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]=+=

]−[×][ζ+ζ=

−−ζ+

]−[×]−[ζ+ζ+ζ=ξ

]−[]−−[]−[

]−−[][×]−[

]−−[

]−−[]−[×]−[]−[×]−[

 

 
 In a similar manner we obtain  ξ2 = ξ1. Hence 
 

(0.5 - c)  + cξmf1
0 2 = (0.5 - c) + cξmf 2

0 1 = 1[0,1-2c]m/2 + 1[1-2c,1]m/2 = 1Im/2, 
 
i.e. (11) is satisfied with these elements. Moreover .5.0c ζ=ξ   
 
Remark 3.6. Why is the behavior of star unimodal copulas so different for (a, b) ≠ (1,1) and for (a, b) = (1,1) as 
far as the maximum domain of attraction is concerned? For (a, b) ≠ (1,1) Part (b) in the proof of Proposition 3.1 
shows that for every given (u, v) ≠ (1,1) we have 0)y,x()v,u(),b,a( =σ if x, y are sufficiently close to 1. This does 
not happen when (a, b) = (1,1). In this case if the point (u, v) is away from (1,1) then the contribution of 

Cto)v,u(),1,1(σ becomes negligeable when x, y → 1, so only the contribution of µ is pertinent. 
 
4. MORE ON UNIMODALITY AND ARCHIMAX COPULAS 
 
 Results in Section 3 allow us to infer that certain copulas are not star unimodal. 
 
 Let φ:I → [0, ∞] with φ(1)  = 0 be a continuous, convex, and strictly decreasing function and denote by φ[-1] 
its pseudo-inverse given by 
 

⎪⎩

⎪
⎨
⎧

∞≤≤φ
φ≤≤φ=φ

.t)0(for0
),0(t0for)t()t(

-1
[-1]  

 
 If φ(0) = ∞ then φ[-1] = φ-1. For the sake of simplicity we shall use only the notation φ-1. Further we consider a 
dependence function A. A copula C is Archimax if 
 

.Iv,u,A)v()u()v,u(C
)v()u(

)u()(1-
A, ∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
φ+φφ=

φ+φ
φ

φ  

 
 The function φ is its generator. For φ(t) = log(1/t) we are led the extreme value copula (4) and for A ≡ 1 we 
obtain the Archimedean copula (Nelsen [1999, p. 90]). Archimax copulas were introduced by Capéraà, 
Fougères, and Genest (2000). The llame 'Archimax' was chosen to reflect the fact that the new family 
includes both the maximum value distributions and the Archimedean copulas. 
 
 We observe that for any generator φ we have CφA1,1

 = M, where A1,1 is given by (6). 
 
 According to Cuculescu and Theodorescu (2002), [Propositions 6.1 and 6.2] Archimedean copulas are not 
star unimodal except Π and W. Maximum value copulas are neither except Π and M (Proposition 4.2). 
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 We start with a preliminary result. 
 
Lemma 4.1. Let copula C be star unimodal about (a, b) ≠ (0,0). Then 
 
     ,Iy,x),y,xmin()n/y,n/x(nClim 12n

∈θθ=
∞→

        (26) 

 
with θ1 = 2coo/a, θ2 = 2coo/b for a, b > 0 and θ1 = θ2 = 0 for a = 0 or b = 0. 
 

Proof. We have nC(x/n, y/n) = ).n/y1,n/x1(Ĉn −− Since  is star unimodal about (1 - a, 1 - b) ≠ (1,1) we 

deduce (Proposition 3.1) that the survival copula  belongs to the maximum domain of attraction of C

Ĉ

Ĉ θ1,θ2
. 

i.e. (by (3)). 
 

,)vlog()ulog(min)v,u(Clog)uvlog()v,u(Ĉnlim 12
n/1n/1

n 21
}θ−θ{−=+−= θθ

∞→
 u,v ∈ I. 

 
 We set 1 - x/n =  and observe that un/1

n,xu x,n → e-x as n → ∞. By substitution we obtain our result.           
 
Proposition 4.2. A maximum extreme value copula is not star unimodal about any (a, b) ∈ I2 except Π and M. 
 
Proof. Suppose that CA is star unimodal about (a, b). 
 
(a) If (a, b) ≠ (1,1) then, since CA belongs to its own domain of attraction, it follows (Proposition 3.1) that  

CA = Cθ1
,θ2

 = 0 for some θ1, θ2. We conclude (Remark 3.2) that Cθ1
,θ2

 is not star unimodal unless θ1= θ2 = 0, 
i.e. CA = Π, or θ1 = θ2 = 1 when CA = M. 

 
(b) If (a, b) = (1,1) we have (Proposition 2.3) c0,0 ≠ 0 otherwise CA = Π . But 
 

}{
∞→∞→

= )( )n/xylog(/)n/xlog(A)n/xylog(expnlim)n/y,n/x(nClim 22
nAn

. 

 
 Let CA ≠ M; for some  η > 0 we have A(t) > ½ + η  for all t. Since log(xy/n2) < 0 we obtain 
 

0n)xy()n/xy(n)n/xylog(/)n/xlog(A)n/xylog(expn 22/12/1222 )( →=≤ η−η+η+}{  
 
as n → ∞. Contradiction (Lemma 4.1).     
 
Remark 4.3. A by-product of the proof of Proposition 4.2 is: for every dependence function A ≠ 1, A1,1 we 
have ≠ CAĈ B for all dependence functions B. The case A ≠ 1 implies  since, denoting 

u

0)n/y,n/x(Ĉnlim An
≠

∞→

x,n = (1 - x/n)n →  e-x as n → ∞, this limit equals (by (3) and (4)) 
 

]+−[+=
∞→

)yx/x(A1)yx()u,u(Cnlim n/1
n,x

n/1
n,x

___

An
. 

 
 For A ≠ A1,1 (i.e. it was seen in the proof of Proposition 4.2 that )MĈA ≠
 

0)n/y,n/x(nClim Bn
==

∞→
 

 
for CB  ≠ M. 
 
 Since in general neither Archimedean nor maximum value copulas are star unimodal let us look closer at 
Archimax copulas. 
 
Proposition 4.4. Suppose that A ≠ A1,1 . If φ(1 – 1/t) is regularly varying at infinity with degree – r for some  
r > 1 then copula Cφ,A is not star unimodal about any (a, b)  ≠ (1,1). 
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Proof. According to Capéraà, Fougères, and Genest [(2000), Proposition 4.1] copula Cφ,A belongs to the 
maximum domain of attraction of  with A~C A~  given by (5). If Cφ,A  is star unimodal about (a, b) ≠ (1,1) then 

(Proposition 3.1) A~ = Aθ1,θ2
 for some θ1, θ2. Hence  

 

 t}, -1 t), - (1 - {1max
)t1(t

tA]t) - (1  [t 21rr

r
1/r1/rrr θθ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
+   t ∈ I. 

 
 For u = tr/(tr + (1 – t)r) we obtain 
 

A(u) = [max {u1/r + (1 - θ1)(1 - u)1/r, (1 - θ2)u1/r + (1 - u)1/r }]r 
. 

 
 Suppose θ1, θ2 > O. Then A1/r0(0) = max{1 - θ1,1} and therefore there exists η > 0 such that  
A(u) = [(1 - θ2)u1/r + (1- u)1/r]

r
 for u < η. If  θ2 < 1 then the derivative at 0 of (1 - θ2)u1/r + (1 - u)1/r is +∞; hence A 

cannot be a dependence function. In the same way we deal with the case θ1 < 1. For θ1 = θ2 = 0 we have  
A(u) = [u1/r + (1 - u)1/r]

r
 and the same argument applies.   

 
Lema 4.5. Let copula Cφ,A be an Archimax copula. We assume that φ (0) = ∞  and φ(l/t) is regularly varying at 
infinity with degree k for some k > 0. Then 
 

⎟
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φ
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Proof. We write 
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where 
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 From the regularity of φ we obtain 
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therefore  
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⎜
⎜
⎝

⎛

+
+→φγ kk

k
k

n yx
yA)y/x(1)n/x(y)/(x, )(  

 
as n → ∞. We now observe that φ-1 is regularly varying at infinity with degree -1/k. 
 
 Hence 
 
       )()( )n/x(/y)(x, xlim y/n) (x/n,nC lim -1
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Proposition 4.6. Suppose that A ≠ A1,1. If φ(0) = ∞ and φ (1/t) is regularly varying at infinity with degree k for 
some k > 0 then copula Cφ,A is not star unimodal about any (a,b) ≠ (0,0). 
 
Proof.. If Cφ,A  is star unimodal about (a, b) ≠ (0,0) then from Lemmas 4.1 and 4.5 we deduce 
 

    ,
yx

yA)yx  y)x,min( kk

k
k/1k/1kk

12 ( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=θθ −−−−  x,y ∈ I.       (27) 

 
 Thus θ1, θ2 ≠ 0. Formula (27) involves only x/y = u: 
 

.
1u

1A)1uu(  )u,min( k
k/1k/1k

12 ⎟
⎠

⎞
⎜
⎝

⎛
+

+=θθ −−  

 
 For t = 1/(uk + 1) we obtain 
 

A(t) = max{ }. k
2

k
1 t, t)-(1 −− θθ

 
 But A(t) ≤ 1 so we are led to θ1 = θ2  = 1. Contradiction since A ≠ A1,1.         
  
 From Propositions 4.4 and 4.6 we deduce 
 
Corollary 4.7. Suppose that A ≠ A1,1. Under the regularity conditions in Propositions 4.4 and 4.6 copula Cφ,A 
is not star unimodal about any (a, b) ∈ I2. 
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