
REVISTA INVESTIGACION OPERACIONAL                       Vol. 24, No. 3, 2003 
 
 
 
 
 

UNIFORMLY OPTIMAL DESIGNS: A SPATIAL EXAMPLE*

Werner G. Müller, Department of Statistics and Decision Support Systems, University of Vienna, Austria**

 
ABSTRACT 
In this paper we consider optimal design of experiments in the case of correlated observations, for 
which the regression function is approximately linearly related to the covariance function. This situation 
may arise when observing a random field with a given covariance structure. Müller & Pàzman (2002) 
have further developed the concept of design measures for approximate information matrices for the 
construction of a design algorithm. We will utilize this algorithm for an example on spatial design. 
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RESUMEN 
En este trabajo consideramos el diseño óptimo de experimentos en el caso de variables correlacio-
nadas, para las cuales la función de regresión está relacionada aproximadamente en forma lineal con la 
función de covarianza. Esta situación puede aparecer cuando se observa un campo aleatorio con una 
estructura de covarianza determinada. Muller & Pàzman (2002) han desarrollado aún más el concepto 
de medidas de diseño para matrices de información aproximadas para la construcción de un algoritmo 
de diseño. Utilizamos este algoritmo en un ejemplo de diseño espacial. 
 
MSC: 62K05 
 

1. INTRODUCTION 
 
 Spatial data collection schemes usually exhibit two decisive features that distinguish them from classical 
regression designs (cf. the review paper by Fedorov, 1996). First, spatial observations are often determined 
by local correlations, which are unaccounted for by standard optimum design of experiments techniques. 
Second, at least in the framework of random field models, there is implicitly no possibility for instantaneously 
replicated measurements, so that the classical concept of design measures is not applicable. Müller & 
Pàzman (2002) have developed an extension of information matrices with a different definition of design 
measures, that allowed them to construct a design optimisation algorithms. 
 
 Still, however some heuristics are used in the definition of these algorithms: the problem is smoothed and 
designs are computed iteratively and without restrictions on the number of design points. In a simple direct 
approach, when the regression function is generated linearly by the covariance function (see Näther, 1985), 
the exact optimal designs can be readily derived from the resulting design measures. Thus this set-up will be 
considered in this note. 
 
2. UNIFORMLY OPTIMAL DESIGNS 
 
 Let Ξ denote the design space (a finite set of potential trials). At each x ∈ Ξ one can observe a random field 
 

y(x) = f T(x)θ  +  ε(x). 
 
 Here f T(x)θ is the response function at x containing m unknown parameters θ = (θ1,…, θm)T∈ ℜ m. The noise 
ε(x) is supposed to have zero mean and a covariance function 
 

Cov[ε(x), ε(z)]  =  σ 2C(x,z), 
 
with C(x,z) known, and σ 2 unknown.  
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 In some experiments the regression function f(x) is related to the covariance function C(x,z) by a linear 
relation 
 

f(x) = Σz ∈ D C(x,z) r(z),     ∀ x ∈  Ξ 
 
where D = {x1,…,xN} is some finite set without replications (i.e. xi ≠ xj if i ≠ j) and r(z) ∈ ℜ m are given vectors. 
This set D is uniformly optimum among all exact designs with respect to any given convex design criterion 
Φ[.] (see Näther, 1985 or Müller & Pàzman, 2002 for a proof). 
 
3. THE ALGORITHM 
 
 Perturbing the original random field by a design dependent virtual white noise allowed Müller & Pàzman 
(2002)  to derive a standard iterative algorithm for the construction of design measures in the given context. 
Such an algorithm consists of a stepwise one-point correction of the design. That means at the n-th step we 
take 
 

ξn+1 = nξn /(n+1) + δ(.,x*) /(n+1), 
 
where ξn is the design measure in the n-th step and δ(.,x*) is the design measure concentrated at one point x*. 
This point is chosen such as to minimize the directional derivative of the design criterion in the direction of 
δ(.,x*). In the current situation this algorithm boils down to a very simple and elegant structure, namely to add 
measure according to the allocation rule: 
 

x* = arg minx ∈ Ξ ξn
-1(x) {d (x) - [Σz ∈ Ξ d(z)] ℑBξn(x) / NBξn}, 

 
where 
  

d(x) = aT(x)∇Φ[J]a(x), 
 

with a(x) = Σz ∈ Ξ [C -1(Ξ)]x,z f(z), and J = Σx,z ∈ Ξ f(x)[C -1(Ξ)]x,z f(z), being the information matrix.  
 
 The gradient matrix ∇Φ[J] of Φ[J] has entries ∂Φ[J]/∂Jij; i,j = 1,…,m. The set of support points with maximal 
measure is denoted by Bξn and its number by NBξn. ℑBξn(x) stands for the indicator function corresponding to 
set B. As starting design the uniform design ξ on Ξ is routinely chosen. Note that this algorithm, other than 
such attempting to directly calculate exact optimal designs, is very simple in structure and performs very 
quickly. The time consuming inversion of the covariance matrix needs only to be performed in the first step 
and the remaining computational operations at every iteration are of much lower complexity. 
 
 This algorithm yields a design measure, but since no a priori restrictions on the number of support points 
are imposed, the measure should always be uniform and supported on the whole Ξ. However, computations 
show that the measures resulting from the algorithm above are not uniform. The reason for this, we believe, is 
the use of the approximations for smoothing the problem. At this step some experimentation on the computer 
and some heuristics are unavoidable, especially because we still cannot exclude the possibility that there is 
some non-uniform ξN

*, which solves the optimisation problem. This non-uniform solution ξN
* for N = NΞ has an 

interesting feature: a larger value of ξN
*(x) indicates that observations at x contain more information about the 

parameter θ (just as in the classical uncorrelated case). Since for uniformly optimal designs – and only for 
such – the amount of information is the same for ξ  and the non-uniform solution D, we conjecture that our 
algorithm converges to a corresponding design measure ξN

* in all such cases. This is corroborated by an 
interpretation in terms of norms given in Müller & Pàzman (2002). 
 
4. A SPATIAL EXAMPLE 
 
 In set-ups from spatial contexts it is of utmost importance that we have quick and efficient algorithm for 
screening designs. It is obvious that the one given in Section 3 can be readily used for identifying uniformly 
optimal designs. 
 
 Let us, for example, consider the simple linear (spatial) regression 
 

y(x) = (1, x[1], x[2])θ + ε(x);     x = (x[1], x[2])T ∈ [-1,1]2
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with the covariance function 
 

C(x,z) = 
⎪⎩

⎪
⎨
⎧

≥−−

<−−−−⋅−−
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1)zx,zxmax(;)zx1()zx1(

]2[]2[]1[]1[

]2[]2[]1[]1[]2[]2[]1[]1[ , 

 
 We applied the algorithm given in the previous section (for D-optimality, i.e. Φ[J] = -log|J|) to this example. 
Our gradient method (after just a few steps) yielded a design measure that practically collapses at the 9-point 
design D = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)}, as can be seen from Figure 1. 

 
Figure 1. The calculated design measure for a spatial example;  

            area of circles correspond to weights. 
 
 Indeed, for this design D = {z1,…z9} the condition for uniformly optimal designs in Section 2 holds obviously 
for all x∈ [-1,1]2, as can be further derived from 
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 This design is thus the optimum design giving the full information about θ, which is contained in the random 
field {y(x): x ∈ [-1,1]2}. 
 
5. CONCLUSIONS 
 
 The example presented here demonstrates that the given gradient algorithm is of potential use in 
applications, especially in complex – e.g. spatial - settings, where enumerative methods are unfeasible. 
 
 Such applications can be found in various fields, especially in the design of computer simulation 
experiments (see Sacks et al., 1989 for various set-ups). There, the covariance matrix is usually assumed to 
be known up to scalar parameter, which is certainly one of many possible directions of extending our 
technique. For a comparison of the method to alternative ones refer to Chapter 5 in Müller (2001). 
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