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ABSTRACT 
In Grycko-Moeschlin (1998a) and (1998b) the control of traffic lights at a bottleneck with a stochastic 
volume of traffic is discussed. The present paper generalizes the developed theory to the case of arrival 
processes being renewal processes. The finiteness of the asymptotic expected queue length is proved 
by a domination principle. Computer experimentation shows, that the optimal time of open passage 
does not only depend on the traffic intensity but also on the distribution of interarrival times, which 
means that a precise traffic control requires to estimate this distribution. 
 
RESUMEN 
En Grycko-Moeschlin (1998a) y (1998b) el control de las luces de tráfico en un cuello de botella con 
volumen de tráfico estocástico es discutido. El presente trabajo generaliza la teoría desarrollada en el 
caso en que los procesos de arribo son procesos de renovación. La finitud del largo esperado asintótico 
de la cola es probado a partir del principio de denominación. La experimentación computacional 
muestra, que el tiempo óptimo de apertura del paso, no solo depende de la intensidad del tráfico sino 
de la distribución de los tiempos entre arribos, lo que significa que un control preciso del tráfico requiere 
de estimar esta distribución. 

  
1. INTRODUCTION 
 
 In Grycko-Moeschlin (1998a) and (1998b) the asymptotic behaviour of the queueing process at a bottleneck 
controlled by traffic lights is discussed assuming that the arrivals of vehicles form a homogeneous Poisson 
process. Moreover, a concept of optimal control of traffic lights at a bottleneck with the time of open passage 
as control variable (in the hand of the administrator of the installation) is introduced there. A time of open 
passage is called optimal, if it minimizes the first moment of the limiting distribution of the queueing process.  
 
 In Heidemann-Wegmann (1997) it is argued that the Poisson assumption is justified in the case of a low 
traffic intensity. For the purpose of modelling higher intensities one sometimes prefers to use independent 
interarrival times following a bunched exponential distribution or an Erlang distribution (cf. Heidemann-
Wegmann (1997), which leads to a renewal arrival process. 
 
 The aim of the present paper is to extend the concept developed in Grycko-Moeschlin (1998a) and (1998b) 
to the more general class of renewal processes. To this end we show the weak convergence of the queueing 
process by a self-contained proof (section 3) and prove the finiteness of the asymptotic expected queue 
length by a domination principle; while in Grycko-Moeschlin (1998b) a fixed point argument was used. 
 
 Usually, in traffic control only intensities are measured. Our computer experimentation (section 6) shows, 
that this only allows to handle the worst case situation. Precise traffic control requires to estimate the 
distribution of the interarrival times. 
 
2. RENEWAL ARRIVAL PROCESSES 
 
 In this section we shortly describe the stationary renewal arrival process at the bottleneck. Renewal 
processes are of course well-known in queueing theory, for details we refer the reader to König-Schmidt 
(1992). 
 
 Let the arrivals of vehicles at the bottleneck described by a sequence of random variables T1, T2,… defined 
over some probability space (Ω, A, P). It is now supposed that the sequence (Tn) satisfies the condition that 
the interarrival times 
 
          (Tn – Tn-1)n≥2         (2.1) 
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form a sequence of independent and identically distributed square-integrable random variables.The distribution 
function F of Tn+1 - Tn is supposed to have the property that 
 
          F(0) = 0,         (2.2) 
 
from this it follows 
 
       E(Tn+1 - Tn) > 0.        (2.3) 
 
 Furthermore, the arrival of the first vehicle T1 at the bottleneck is assumed to be independent of the 
sequence (Tn - Tn+1)n≥2 and to satisfy 
 

          .

´dt))t(F1(

dt))t(F1(

)uT(P

0

u
1

∫

∫
∞

∞

−

−

=>        (2.4) 

 
 We then define the renewal arrival process (At)t≥0 associated with the sequence of arrivals (Tn) by 
 

At := max{n : Tn ≤ t}. 
 
 The "starting" condition (2.4) ensures the arrival process to be stationary in the sense that the distribution of 
the random variable At – As, which counts the number of arrivals in the time interval (s; t] depends only  
on t – s. 
 
 The intensity of the renewal process is defined by the expectation  
 
       I := E(A1) = E(At+1 - At)        (2.5) 
 
and satisfied the equation 

                    ( ) .)TT(EI 1
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 Thus, I is the expected number of vehicles arriving at the bottleneck in a time interval of length 1. 
 
3. MODEL DESCRIPTION AND QUEUEING PROCESS 
 
 Following Grycko-Moeschlin (1998a) and (1998b) the technical part of a bottleneck controlled by traffic 
lights (symmetric case) is described by 
 
                 ∆, tR.         (3.1) 
 
∆ in [veh/s] is the passage capacity (for both sides) of the bottleneck. tR in [s] denotes the clearance times (both 
sides). 
 
 The arrival process A = (At)t≥0

 for an arbitrary direction is assumed to be a renewal process on the 
probability space (Ω, A, P) in the sense of the previous section with the sequence (Tn) of arrival times and 
intensity I being the traffic intensity in [veh/s] in a traffic-theoretic interpretation. 
 
 It is sensible to assume the times of open passage (signalized by GREEN and afterwards by YELLOW) to 
be the same for both sides. The time tF > 0 of open passage is the control variable in the hand of the  
administrator of the installation. 
 
 The duration of the closed passage (for both sides) is given by 
 
                 tC := 2(tR + tF)         (3.2)  
 
while 
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                 tU := 2(tR + tF)        (3.3) 

presents the length of a full control period. The function 
 
re :α R+ → Z+ defined by  
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nd the condition that a α is periodic with the period tU on R+, represents the maximal number of vehicles, 

en

(Notice that [a] means the greatest integer number less than or equal to a.) 

The number  

                 α(tF) := ⋅[ tF ⋅ ∆] =

which can pass the bottl eck from the beginning of a control period until the time t of a control period.  
 
 
 
 
 
  )t( uα       (3.5) 

enotes the maximal number of vehicles, which may pass the bottleneck during one control period 

Let  

                               N (tF) := (A(j+1)tU
AjtU

         (3.6)

enote the number of arriving vehicles in the (j + 1)-th control period that depends on tF by tU. We assume the 

                   (3.7) 

Recursions of the type (3.7) are in fact well-known in queueing theory, the asymptotic behaviour depends 

               (3.8) 

By the definition of the intensity I of the arrival process we have 
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respectively during one phase of free passage. 
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d
queue length to the time 0 to be L0 : = 0. The sequence of random variables (Lj) that describe the process of 
queue lengths (of vehicles) at the end of the time of free passage is defined recursively by 
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on the value α(tF) and expectation 
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(tF) is the expectation of the numbe of vehicles arriving at the bottleneck during a control periodo f length tU. 

Now it is possible to prove the following: If the expected number of arrivals given by λ(tF) is greater than the 

To prove this convergence statement we base on a straightforward self-contained proof rather than 

If U  is the random variable defined by 

        Uj := Nj(tF) - α(tF).                 (3.10) 

en it can be shown by induction and by the stationarity of the arrival process that 

           (3.11) 

 
λ
 
 
number of vehicles α(tF) that may pass the bottleneck during one control period then the system collapses,  
if λ(tF) < α(tF) then the process of queue lengths is stabilizing. 
 
 
showing that the Lindley recursion (3.7) defines a workload process in a system D/G/1, which would mean to 
clear a lot of technical details. 
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 With the help of the strong law of large numbers for the sequence (Uj) one obtains that 

             ∑
=

 (3.12) 

and 

         converges to a random variable Y: Z+ . 

.10), (3.11) in mind this im

                      λ(tF) - α(tF) > 0 P(Lj < ∞) → 0, j → ∞     (3.14) 

ase of a traffic collapse), and 

                              λ(tF) - α(tF) < 0 P(Lj ∈ A) → P(L ∈ A), j → ∞ (A ⊂ Z+)    (3.15) 

ase of a stabilizing queue), where L is a limiting random variable L: Ω → Z+ which describes the asymptotic 
 at he bot

 is now of interest, whether the expectation E(L) of the asymptotic queue length is finite in the case  

I  this ction we assume λ(tF) - α(tF) < 0. According to (3.7) we may express the queue length Lj+1 in terms 

he number of vehicles leaving the bottleneck in the interval (jtU; (j + 1) tU] of the (j + 1)-th control period. 

We will now define a queueing system of type GI/D/1 with arrivals (Tn) and constant service times t  ⋅α (t )
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(c
queue length  t tleneck in a probabilistic sense. For the purpose of establishing an objective function  
it
λ(tF) - α(tF) < 0. 
 
4. FINITENESS OF THE ASYMPTOTIC EXPECTATION 
 

n se 
of arrivals and departures by 
 
         Lj+1 = Lj + Nj(tF) - Dj(tF),        (4.1) 

where 

      Dj(tF) := min{Lj + Nj(tF), α(tF)}        (4.2) 
 
equals t
 

-1  U F

and let jL~  describe the queue length in this system in to the time jt , j = 0,1,... with initial condition 0L~0 =U

(for a detailed description of systems GI/GI/1 we refer the reader to [1], chapter 11). 
 
 By the definition of the service times, we obtain for the number of custumers being served in the l 
(jtU; (j + 1)tU], denoted by  ),t(D~ Fj the inequality 
 
      { }L~min)t(~

Fj ≤ .)t)(),t(ND FFjj α+                    (4.3) 

This is of course due to the fact, that by definition of the service times in this system GI/D/1 maximal α(t )  
a e place in a time interval of length tU

pare the b ttleneck process (Lj) with the process 

.5. Lemma 

 
 F
services of length tU ⋅ α(tF)-1 can t k . 
 
 Similar to the recursion (4.1) we are able to express the queue length in this system GI/D/1 in terms of 
departures and arrivals by the recursion 
 
     ).t(D~)t(NL~L~,0L~ FjFjj1j0 −+== +        (4.4) 
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 The inequalit holds for every j ∈ Z+. 

ove the statement by induction. 
 

r j ∈ Z+. Then (4.1) – (4.4) imply 

y jj LL~ ≥

Proof. 
 
 We pr
 
 For j = 0 it is trivially true. 
 
 Let the assertion be true fo
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aus was assumed to be valid, an evaluation of the minima leads in any case to the conclusion 

 

  
 The Lemma states that the system GI/D/1 is a dominating queueing system for the bottle-neck process. 

 the condition λ(t ) - α(t ) < 0  we now get that in the system GI/D/1 the expectation of service times  

 In this case it is known that the system GI/ that the asymptotic expectation is finite (see 
l

+Z   6) 

n  

              (4.7) 

sult

on of the asymptotic queue length E(L) for the bottleneck process is finite. 

basic probability theory the expectation E(L) and  can be expressed by 

 Bec
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From F F
tU⋅ α(tF)-1 strictly less than the expectation of the square integrable interarrival times given by 
 

E(Tn+1 - Tn) = I-1. 
 

D/1 is stable and 
A smeyer (1991), 11.1.5 and 11.4.2), i.e. there exists a random variable +→Ω Z:L  with the property that 
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 As the expectation of the limiting random variable for the bottleneck process is finite, one is able to apply 
the strong law of large numbers that follows from the ergodic theorem (see Brandt et al. (1990)). 

ss of queue lengths it follows 

4.9. Corollary 
 
 For the proce
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P-almost sure. 
 

 opportunity to approximate the expectation E(L) in a computer experiment. 

.

he time of open passage acts as the control variable for the bottleneck process. 
enerally, in traffic control one is interested 

installation in the sense of optimal throughput per time unit and 

 
 Ha ity with probability 1 in the case λ(tF) - α(tF) > 0, it is 
ensible to choose a time of open passage tF that satisfies λ(tF) - α(tF) < 0 if possible, in which case we call  

 define an objective function the results of the previous sections give the opportunity to work with 
e asymptotic expectations in the case that the bottleneck process converges to equilibrium. Let us first 

 quantity in the case of an ergodic time of open passage tF we take the expected 
umber of vehicles leaving the bottleneck per time unit in equilibrium. Define 

     (5.1) 

symptotic queue length L. D(t ) can be interpreted as the asymptotic number of vehicles leaving the bottleneck 

        (5.2) 

ium e by recurs

     (5.3) 

h it follows 

                     (5.4) 

 is ju  the inten ity-conservatio
e stable bottleneck process. 

he minimization of the waiting time over the set of all ergodic tF. As computer 
xperiments have shown, the expected queue length at the end of the time of closed passage divided by the 

 This gives the
 
5  OPTIMALITY CONCEPT 
 
 As mentioned in section 2, t
G
 

• in maximizing the efficiency of a traffic 

• in minimizing the mean individual waiting time. 

ving in mind that the queue length goes to infin
s
tF ergodic.  
 
 In order to
th
consider the efficiency. 
 
 As a definition of this
n
 
      D(tF) := min{L + N(tF), α(tF)}   
 
with N(tF) being a random variable following the distribution of A(j+1)tU

 - AjtU
 and being independent of the 

a F
during one control period.Then 
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may stand for the efficiency. But in equilibr we hav ion (4.1) 
 
                 E(L) = E(L) + E(N)(TF)) – E(D(tF)),  
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i.e., the efficiency is the same for all ergodic tF. This, of course, st s n principle for 
th
 
 Consequently, one is led to t
e
traffic intensity is a good estimator for the time a newly arriving vehicle has to wait until it has the possibility to 
pass the bottleneck. As E(L) is the asymptotic expectation of the queue length at the end of the time of open 
passage, the number 
           E(L) + I ⋅ tC           (5.5) 
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equals the asymptotic expectation of the queue length at the end of the time of closed passage because the 
expected number of arrivals during the time of closed passage of length tC is I ⋅ tC. We therefore take 
               

       
I

tI)L(E:)t(J C
F

⋅+
=         (5.6) 

s an estimator for the asymptotic waiting time. Note therreby, that E(L) depends on the special choice of t . 

.7. Definition 

An ergodic time of open passage is called optimal, iff J(⋅) defined by (5.6) has a minimum in 

Thus, the optimality concept remains the same as in the Poisson case. But in the case of renewal arrival 

. EXPERIMENTAL RESULTS 

In order to determine the optimal time of open passage 

In Figure 1 the dependence is demonstrated by 

ge associated with t l processes having 
Erl(10,10 ⋅ 0.

The experimentation shows, that the Poisson arrival 

A technical realization of determining the arrival 

For the curve of the renewal process Erl(3, 3 ⋅ 0.125) 

 
a F
With the help of the function J(.) we are in the situation to establish the notion of an optimal time of open 
passage. 
 
5
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Ft .t *
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processes the value of the objective function J(⋅) does not only depend on the traffic intensity I but also on the 
distribution of the interarrival times. 
 
6
 
 
in a computer experiment, we calculate the asymptotic 
expected queue length basing on the strong law of large 
numbers (see 4.9) for a class of Erlang distributions.  
A justification for the Erlang distribution is given in 
Heidmann-Wegmann (1997). The experimentation, cp. 
Figure1, shows that the optimal time of open passage 
does not only depend on the traffic intensity but also on 
the distribution of interarrival times.  
 
 
plotting the asymptotic expected queue length for three 
different Erlang distributions Erl(n,α) choosing n = 1, 3, 10 
and α = 0.125, 3 ⋅ 0.125, 10 ⋅ 0.125 for varying time of 
open passage. The corresponding renewal processes 
all have intensity 0.125. Note that Erl(1, 0.125) is just 
the Exponential distribution Exp(0.125) with parameter 
0.125, so that this distribution of interarrival times 
corresponds to the Poisson arrival process. In  Figure 1 

)3(
F

)2(
F

)1(
F t,t,t denote the optimal times of open passa

125), Erl(3, 3 ⋅ 0.125), Exp(0.125) as distribution of interarrival times, respectively. 
 

Figure 1. 

he arriva

 
process may serve to describe a worst case situation, 
requiring only to know the traffic intensity. But precise 
traffic control requires to estimate the distribution of 
interarrival times. 
 
 
process at a certain time is possible through induction 
loops lying on both sides some meters before the 
bottleneck. 
 
 
already choosen in the example of Figure 1, the arrival 
process is estimated in a computer experiment 
measuring the interarrival times at the induction loops in 
order to determine not only the optimal time of free 
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Figure 2. 



passage expected queue lengths as functions of the time of open passage, i.e. the characteristics. 
 
 Comparison with Erl(3, 3 ⋅ 0.125) in Figure 1 shows a good accordance of the characteristics of Figure 2 
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