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ABSTRACT 
We consider a minimization problem which generalizes the problems of optimal lipschitz (extensión to 
the domain Ω of the functions tha verify the restrictions u = g on ∂Ω). This work deals with the numerical 
approximations of the problem. Our work includes a numerical procedure for solving the discrete 
problem, the proof of convergence of the discrete solutions to the solution of the continuous problem 
and a numerical example that shows the efficiency of the procedure. 
 
Key words: lipschitz extensions, optimization problems, minimax problems, numerical solution,  
                       convergence. 
 
RESUMEN 
Consideramos un problema de minimización que generaliza el problema de la extensión lipschitziana 
óptima (extensión a todo el dominio Ω de una función que verifica la restricción u = g en ∂Ω). En este 
trabajo tratamos la aproximación numérica del problema. Desarrollamos un procedimiento de 
discretización y un algoritmo para resolver discreto. Probamos la convergencia de las soluciones 
discretas hacia la solución del problema continuo y presentamos un ejemplo numérico que muestra la 
eficiencia del procedimiento desarrollado. 
 
MSC: 49K20. 

 
1. INTRODUCTION: THE CONTINUOUS PROBLEMS 
 
 We consider the minimization of a functional of the form 

 
    J(u) = f(x, u, D(u))         (1) 

Ω∈z
supess

 
where = {u ∈ W)(Wu ,1

g Ω∈ ∞ 1,∞(Ω): u = g on ∂Ω}. We assume that Ω is a bounded open domain in IRn. This 

optimization genealizes the problem of finding an extension to the domain Ω of the functions that verify the 
restrictions u = g on ∂Ω. In particular, this generalization comprises the problem of finding the lipschitzian 
extension with minimum lipschitz constant. This problem has been recently studied from different points of 
view in [Barron 2001, Crandall 1997, Crandall 2001 and Kirjner-Neto 1998]. 
 
 This work deals with the numerical approximations of the problem. We analyze here the unidimensional 
case (n = 1). We present a discretization procedure which uses linear finite elements. Our work includes: 
 

• the proof of the convergence of the discrete solutions to the solution of the continuous problem, 
obtaining different orders of convergence in terms of the regularity or convexity of the function f. 

 
• a numerical procedure, based on techniques of penalization, for solving the discrete problem (which 

is essentially a minimax optimization problem in IRp). 
 

• a numerical example that the shows the efficiency of the procedure. 
 
 Let J be the functional (1), we define 
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     V = J(u) = f(x, u, D(u)).         (2) 
)(Wu ,1

g

inf
Ω∈ ∞ )(Wu ,1

g

inf
Ω∈ ∞

Ω∈u
supess

 
 In [Barron 2001], Barron has proved the following theorems concerning issues of existence and necessary 
conditions of optimally: 
 
Theorem 1. 
 
 Lef f: IR  ×  IR  ×  IR  →  IR  satisfy: 
 
 (i) For any (x, s) ∈ IR  ×  IR , f(x, s, ⋅): IR  →  IR is Morrey quasiconvex, i.e. for any p ≠ q ∈ IR and t ∈ (0,1)  
 

f(x, s, tp + (1 – t)q) ≤ max{f(x, s, p), f(x, s, q)}, 
 
 (ii) there exists a function ω: IR +  ×  IR + →  IR + , which continuous in its first variable and non-decreasing in its 
second variable, such that 
 

⏐f(x1, s1, A) – f(x2, s2, A)⏐ ≤ ω (⏐x1 – x2)⏐ + s1 – s2⏐, ⏐A⏐) 
 
for any (x1, s1), (x2, s2) ∈ IR  ×  IR  and A ∈ IR . 
 
 Then for any bounded domain Ω ⊂ IR   the functional 
 

J(u) = f(x, u(x), Du(x)) 
Ω∈z
supess

 
is sequentially weak* lower semicontinuous on W1,∞ (Ω,IR ). 
 
Theorem 2. 
 
 Let Ω ⊂ IR  be a bounded domain and leg g ∈ C2(Ω,IR ). Let f: IR   ×  IR   ×  IR   →  IR   be nonnegative and satisfy: 
 
(f1) f ∈ C2(IR   ×  IR   ×  IR) 
 
(f2) For each (x, s) ∈ IR   ×  IR, f(x,s,⋅): IR   →  IR  is strictly quasi-convex, i.e. 
 

f(x,s,tp + (1 – t)q) < max{f(x,s,p), f(x,s,q)} 
 
for any p ≠ q ∈ IR   and t ∈ (0,1). 
 
(f3) For each (x,s) ∈ IR  × IR,  f(x,s,0) = 0, fp(x, s, 0) = 0 and fp(x,s,q)  ≠ 0 some 0 ≠ q ∈ IR . 
 
(f4) Coercivity condition: 
 
                   f(x,s,A) ≥ C1⏐A⏐p – C2, ∀(x,s,A) ∈ IR   ×  IR   ×  IR          (3) 
 
for some C1 > 0, C2 > 0, and p > 0. 
 
 Then, there exists at least one function u* an absolute minimizer for the functional J over 

moreover u* is a viscosity solution of the Aronson-Euler equation (see [Barron 2001]). ),(W ,1
g Ω∞

 
 In the following sections we present different issues concerning the direct numerical solution of problem 2. 
 
2. DISCRETIZATION PROCEDURE 
 
 We present here a discretization procedure based in  the finite difference. We deal only with the one 
dimensional case, so, without loss of generality we suppose that 
 

Ω = (0,1) and g(0) = 0, g(1) = 1. 
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 Let p ∈ N, we define k = 1(p + 1) and we consider the discretization Ωk of Ω, where Ωk = {xl: l = 0,…,p+1} 
and xl = lk. We also define a discretization Wk of W = i.e. ),(W ,1

g Ω∞

 
       Wk = {vk: ,R→Ω  continuous and piecewise linear in any (xl, xl+1), l  = 0,1,…,p; l = vk = g in ∂Ω}.       (4) 
 
 Function vk will be considered as a vector with p + 2 components, i.e. the components {vi ,p

1} vi ∈ IR , are 
free while always v0 = 0 and vp+1 = 1. As Wk ⊂ W, we have 
 
      V = .V)u(Jinf)u(Jinf kkWuWu kk

=≤
∈∈

           (5) 

 
 We will prove below that Vk → V when k → 0. 
 
 We define 
  

      ,
k

vv
)vD( l1l
l

−
= ++  l = 0,1,…,p, 

 

      ,
k
vv

)vD( 1ll
l

−− −
=   l = 1,…,p+1. 

 
 Once the variables are discretized, we define Fl, the discretization of function f(x,v,Dv) at the nodes xl in the 
following form: 
 
               Fl(v) = f(x1,vl(D+v)l)       l = 0,1,…,p.         (6) 
 
 Also, we define the discrete functional in Wk: 
 

Jk(uk) =  ),u(Fmax k
l

p,,1,0l K=

 
and we denote  
 

).u(JinfV̂ kkWuk
kk∈

=  

 
Remark 1. In a similar way, we can define 
 
      = f(x)v(F̂l

l,vl,(D-v)l)  l = 1,…,p+1         (7) 
 
and 
 

).uF̂max)u(J k
l

1p,,1l
kk

+=
=

K
 

 
 All the convergence results presented below are also valid for this discretization. 
 
2.1. The discrete problem 
  
 The problem to be solved numerically, i.e.; compute becomes: ),u(JinfV̂ kkWuk

kk∈
=

 
        Pp: compute           (8) ).u(Fmaxmin l

p,1,0lRu p K=∈

 
 This problem is equivalent to solve the following linear optimization problem with non linear constraints: 
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                      (9) 
⎩
⎨
⎧

=∀≥ .p,...,1,0l),u(FCtosubject
Cimizemin

:P lp

 
 Then the problem can be stated: 
 

)u,C(Find:Pp ∈ IR p+1 such that 
 
          

pp u

l
p,,0lRu

l
p,,0l

min)u(Fmaxmin)u(FmaxC
IR∈=∈=

===
KK

{C:C ≥ Fl(u), ∀l = 0,1,…,p}.      (10) 

 
Remark 2. Condition (f1) and (f4) imply that Pp has at least a solution. 
 
 Using simple tools from comvex analysis, it is easy to get the necessary conditions of optimality for the 
previous problem: 
 
Theorem 3 
 

 If )u:C( is an optimal element then there exists λ ∈ IR p+1, λl ≥ 0,  such that ∑
=

=λ
p

0l
l 1

 

       ∑
=

=∇λ
p

0l

l
l 0)u(F         (11) 

 
and  
 
      ,0)u(FC )( l

l =−λ  ∀l = 0,1,…,p.       (12) 
 
2.2. Convergence of the discrete problem 
 
 We consider the discretizations Ωk and Wk defined above. We have 
 
         V = )v(Jinf)u(Jinf kWvWu kk∈∈

≤ = Vk.        (13) 

 
 As Jk(vk) = J(vk), then 
 

                   (14) .VV̂ kk =
 
 Condition (f1) and (f4) imply that f is a lipschitz function on the first two variables, i.e. 
 

|f(x1,s1,A) - f(x2,s2,A)| ≤ Lf(|x1 – x2| + |s1 – s2|), 
 
then for vk ∈ Wk we have 
 
         |Jk(vk) - J(vk)| ≤ Lf|k + Lvkk).        (15) 
 
 Finally, from (13), (14) and (15) we obtain 
 
           Vk – Lf(k +         (16) .VV̂)kL̂ kk ≤≤
 
 Let u be a solution of (2). To prove that Vk → V when k → 0, we have to show that the minimizer of the 
original problem can be approximated by elements of Wk which verifies Jk(uk) ≅ J(u). This approximation is 
more or less tighter depending on the structure of f. 
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2.3. Rates of convergence 
 
 Approximation of Case: f = f(Du) :)(Wu ,1

g Ω∈ ∞

 
 We can suppose w.l.g. that 
 
      f(Du) ≤ 1 =        (17) ).u(J)u(Dfsupess )(

x
=

Ω∈

 
 We define the following set 
 

D = {ξ∈[0,M]: f(ξ) ≤ 1}. 
 
 By the continuity of f, D is a closed set. Moreover Du(s) ∈ D a.e. s ∈ [0,1]. As 
 

DD 0

1

0
0 CCds)s(Du∫ =∈  

 
and it verifies 
 

  ∫ =
1

0

,1ds)s(Du  

 
then there exist λ ∈ [0,1], and ξ1, ξ2 ∈ D such that  
 

1 = λξ1 + (1 - λ)ξ2. 
 
Approximation using uniformly spaced sub-intervals 
 
 Let λ = [λ(p + 1)] / (p + 1). We define wk by the following form 
 

[ ]

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

+λξρ−=

⎥
⎦

⎤
⎢
⎣

⎡
+

+λλξ=

λξ=

,1,
)1p(

1)1(Dw

)1p(
1,Dw

,0Dw

2k

2k

1k

 

 
where ρ is such that wk(1) = 1, hence 
 

.

)1p(
11

))((

2

12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−λ−ξ

λ−λξ−ξ
=ρ  

 
 In consequence we have: 
 

.
)1p(

1ML1ML)Du(fsup)Dw(fsup ff
x

k
x +

+≤ρ+≤
Ω∈Ω∈

 

 
 From (13) we obtain 
 

,
)1p(

1MLVV fk +
+≤  
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then, we have 
 

      .kML
)1p(

MLVV0 f
f

k ≤
+

≤−≤         (18) 

 
Approximation of Case: f = f(x,u,Du). We assume that p + 1 = q:)(Wu ,1

g Ω∈ ∞ 2 and 
 

Ωk = {x0} ∪ {xiq+j: i = 0,…,q – 1; j = 1,…,q}. 
 

 Essentially, in each interval [xiq, x(i+1)q] we use the results obtained in the case f = f(Du). 
 
 We define 
 

Di = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+

≤ξ][∈ξ
][∈ +

)Du,u,x(fsupess
q

)M1(L)),x(u,x(f:M,0
q)1i(iq x,xx

f
iqiq  

 
Di is closed by the continuity of f. Moreover Du(s) ∈ Di a.e. s ∈ [xiq, x(i+1)q]. 
 
 Let di = u(x(i+1)q) – u(xiq). We have 
 

.CCCqdds)s(Duq i0i0i0

x

x
i

q)1i(

iq

DDD ==∈=∫
+

 

 
 Then there exist λ ∈ [0,1], and ξ1, ξ2 ∈ Di such that 
 

qdi = λξ1 + (1 - λ)ξ2. 
 

(without loss of generality we suppose ξ2 > ξ1 and λ ≤ ½). 
 
Approximation using uniformly spaced sub-intervals 
 
 For the ith subinterval, we define: λ = [λq] / q and Dwk in (xiq, x(i+1)q) by the following form 
 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛ +λ+ρ−ξ=

⎟
⎠
⎞⎜

⎝
⎛ +λ+λ+ρ−ξ=

λ+ρ−ξ=

+

+

,x,xDw

,x,xDw

,x,xDw

q)1i(q
1

q
1

iqi2k

q
1

q
1

iqq
1

iqi2k

q
1

q)1i(iqi1k

2

2  

 

   When ,
q
M

)(

))((

q
1

q
1

12
i ≤

λ−λξ−ξ
=ρ  we have wk(1) = 1 and d(Dwk, Di) ≤ .

q
M Moreover  

 

            Du)}.u,{f(x,supess
q

1)(2ML
  (x))}Du(x),u{f(x,supess

] x,[xx

f
kk

] x,[xx q)1(iiqq)1(iiq ++ ∈∈
+

+
≤         (19) 

 
 Then, 
 

,
q

1)(2ML  J(u)  )J(u f
k

+
+≤  

 
which implies that 
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           .k 1)  (2ML  
q

1)(2ML  V - V 0 f
f

k +≤
+

≤≤        (20) 

 
3. SOLUTION BY PENALIZATION 
 
 Instead of solving directly Problem Pp, we solve a penalized problem that approximates Pp. Some related 
approaches can be seen in [Kirjner-Neto 1998, Polak 1996 and Polak 2001]. This choice enables us to apply 
methods of Newton type to solve the penalized problem. 
 
 Given q > 0, we define 
 

             (21)  ∑
=

−−+=
p

0l

l
q )))u(FC(qexp(C)u,C(G

 
and we try to find (Cq, uq) in Rp+1 such that 
 
           )u(C,Gmin)u,(CG q

Ru)(C,
qqq 1p+∈

=         (22) 

 
 The optimality conditions for this problem are 
 

      ∑
=

==
∂

∂ p

 0l
q

l
q

q 0,  )))(uF - (C (-q exp q - 1  
C

G         (23) 

 

              ∑
=

=∇=
∂

∂ p

 0l
q

l
qq

lq 0.  ))(uF - (C (-q )exp(uF  q  
u

G         (24) 

 
 In order to find a solution of (22) we find a solution of the non-linear equation system (23-24), using fast 
algorithms of Newton type. From condition (f1) G ∈ C2(Rp+1) and so it is possible to apply Newton’s method. 
 
3.1. Convergence of the penalized problem  
 
 In this section we are interested in finding the asymptotic properties of Cq when q → ∞ and the quasi-
optimality of the cluster points of the sequence {uq}. 
 
Theorem 4 
 
 If )u,C( is an optimal element then 
 

.CClim qq
=

∞→
 

 
Proof: From definition (22) we know that ∀(C,u) ∈ R × Rp, 
 

Gq(Cq, uq) ≤ Gq(C, u). 
 

 Hence, by (23) and (24) we have 
 

,)u,C(G)u,C(G
q
1C qqqqq δ∀δ+≤=+  

 
and then 
 

        ).u,C(Gmin
q
1C qRq δ+≤+

∈δ
         (25) 
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 Since 
 

.)))u(FC(qexp()qexp(Cmin)u,C(Gmin
p

0l

l
RqR ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−δ−+δ+=δ+ ∑

=
∈δ∈δ

 

 
we obtain , for any optimal ,δ the condition 
 

           ∑
=

−−δ−
p

0l

l ))).u(FC(qexp()qexp(
q
1          (26) 

 

 Hence, as )u(FmaxC l

p,,0l K=
= we have p)))u(FC(qexp( l

p

0l

≤−−∑
=

 and by (26) 

 

;pq)))u(FC(qexp(q)qexp(
p

0l

l ≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=δ ∑

=

 

 
therefore 
 

       .
q

)pqlog(
≤δ           (27) 

 
 Finally, from (25), (26) and (27) we obtain 
 

                                        )u,C(G
q
1Cq q δ+≤+  

 

     
q
1

q
)pqlog(C)))u(FC(qexp()qexp(C

p

0l

l ++≤−−δ−+δ+= ∑
=

 

 
and then 
 

              .
q

)pqlog(CCq +≤          (28) 

 

 From (23), we have exp ;p,,0l,
q
1)))u(FC(q( q

l
q K=∀≤−−  then 

      p,,0l)u(F
q

qlogC q
l

q K=∀+≥         (29) 

 

and this implies ,Ru)u(FmaxCAs).u(Fmax
q

qlogC pl

p,,0l
q

l

p,,0l
q ∈∀≤+≥

== KK
it results 

 

        .
q

qlogC)u(FmaxC q
l

p,,0l
−≤≤

= K
        (30) 

 
 From (28) and (30), we have 
 

        ,
q

)pqlog(CC
q

qlogC q +≤≤+         (31) 
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which implies 
 

.CClim qq
=

∞→
 

 
Theorem 5. 
 
 If w is a cluster point of the sequence {uq} then w verifies the necessary conditions of optimality (11 –12). 
 
Proof: Let w be an cluster point of the sequence {uq}. From (30) and (31) 
 

.C)u(Fmaxlim)w(Fmax q
l

p,,0lq
l

p,,0l
==

=∞→= KK
 

 
 

 Let us define 
                       (32) ))),u(FC(qexp(qlim q

l
qql −−=λ

∞→

 

obviously, λl ≥ 0. From (23) it follows that  .1
p

0l
l =λ∑

=

 
 Taking limit in (24) we obtain 

0)u(F
p

0l
q

l
l =∇λ∑

=

. 

 
 We will finally prove the orthogonality condition (12). Naturally, we have to prove this only in the case 

 ).w(Fmax)w(F l
p,,0l

l
K=

<

 
 In consequence, there are exist δ > 0, qδ > 0 such that Fl(uq) ≤ Cq - δ ∀q > qδ. 
 
 Then λl = and therefore 0)qexp(qlim)))u)FC(qexp(qlim

qq
l

qq
=δ−≤−−

∞→∞→

 
.0))w(FC( l

l =−λ  
 

3.2. Practical implementation 
 
 In practice, it is not convenient to solve directly the penalized problem for large values of q, since that 
choice leads to the treatment of ill conditioned optimization problems. The implementation that we have used 
comprises a sequence of approximated optimizations with increasing values q. 
 
Algorithm 
 
 Let ερ → 0, qp → → ∞ 
 
 Step 0. ρ = 0, choose  .ûqρ

 
 Step 1: Solve in approximated form (with an  iterative algorithm from the  the penalized problem until it 

verifies the condition 

)ûqρ

 

ρε≤∂
∂

u
Gq  

obtaining the new  .û
1q +ρ
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 Step 2: ρ = ρ + 1, and go to step 1 
 
Remark 3. The algorithm above defined generates a sequence of points that verify: )u,Ĉ( qq ρ

.CĈlim qq
=

∞→
 

 If w is a cluster point of the sequence then w verifies the necessary conditions of optimality (11 - 12). }{
ρqû

 
4. EXAMPLE 
 
 We present here the numerical results obtained for the following data: 
 

f(x,u,Du) = 2||Du||2 + 80x(1 – x)(u – 0.5)2 u(0) = u(1) = 1. 
 
 Number of discretization points: p = 38. 
 
 The following picture shows the general shape of the solution 

 
 
 The following picture shows how the optimality conditions are verifies (up to errors of order 10-8) by the 
numerical solution obtained. 
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