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ABSTRACT 
In this paper we analyze the consequences produced by introducing the notions of weakly efficient 
bounds and suprema in the multiple objective programming model. These concepts can be seen as 
generalizations of their scalar counterparts and some properties and results concerning them are 
obtained. Through the developed theory it is shown that under certain assumptions, we can get a 
polarity relation, in a weakly efficient sense, between the multiobjective convex programming problem 
and the one that arises in computing its weakly efficient suprema. This provides us with a restricted dual 
weakly vector problem definition for the linear case. Some apparently new theorems of the alternative 
given in this work have special relevance in this issue. 
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RESUMEN 
En este artículo analizamos las consecuencias que se derivan al introducir las nociones de cotas y 
supremos débilmente eficientes en el modelo de programación multiobjetivo. Estos conceptos pueden 
considerarse como las generalizaciones de sus análogos escalares, habiéndonos sido posible obtener 
algunas propiedades y resultados relativos al caso vectorial. La teoría desarrollada muestra que bajo 
ciertas hipótesis podemos obtener una relación de polaridad, en un sentido débilmente eficiente, entre 
el problema de programación multiobjetivo convexo y el que surge al calcular todos sus supremos 
débilmente eficientes. Esto nos proporciona una definición restringida de problema vectorial dual en 
sentido débil para el caso lineal. Ciertos teoremas de la alternativa aparentemente inéditos presentados 
en este trabajo resultan fundamentales para el desarrollo de la teoría aquí expuesta. 
 

1. INTRODUCTION 
 
 The multiple objective programming problem (MOP) involves the simultaneous maximization of  
noncomparable criterion functions, , over a feasible region, , which is given in an implicit 
way. Thus, this problem may be written as: 

2k ≥
kn R R : z → nRX ⊆

 
                                            ( ){ Xx / xzmax }∈            (1) 
 
 The set  =  is called outcome set or criterion set. ( )Xz ( ){ Xx / xz ∈ }
  
 Before going further, for convenience, let us introduce the following notation. Let , then: nRy ,x ∈
 

1. x ≤ y   ⇔ ,y  x jj ≤ ∀ j ∈{1,…,n}. 

2.    yx ≤ ⇔ y  x ≤ , . yx ≠

3.    ,∀ j ∈{1,…,n} yx < ⇔ jj yx <

4.      ⇔   nR+ { }0  x/Rx n ≥∈ . 

5.      nR ++ ⇔ { }0x/Rx n >∈ . 

6.      ⇔   nR− { }0  x/Rx n ≤∈ . 

                                                           
E-mail : 1jjorge@ull.es 

25 



7.      nR −− ⇔ { }0x/Rx n <∈ . 

8. e       Vector whose components are each equal to 1. ⇔
 
 When all the objective functions that appear in (1) are linear and X is a polyhedron, we have a multiple 
objective linear programming problem (MOLP). Without loss of generality, we can assume that the 
formulation of a MOLP is as follows: 
 
            max {Cx / x ∈ X}                        (2) 
 

where , being  fixed real matrices. { }bAx / RxX n =∈= + ,RCandRb,RA nk1mnm ××× ∈∈∈
 
 Another important version of problem (1) arises when X is a convex closed set and z is concave. Then we 
have the so-called convex multiobjective programming problem (CMP). 
 
 There are many different approaches for analyzing and solving multiple objective programs, such as vector 
maximization, interactive programming or goal programming among others (the reader is referred to, e.g., 
Evans (1984), Steuer (1986), and the references therein). In almost all of them, the concept of nondominated 
or weakly nondominated solution has played a prominent role. Particularly, the analysis we are about to 
present will be concerned on the second of these concepts, which is formally defined as follows: 
 
Definition 1.1 We say that kRYy ⊆∈  is a weakly nondominated point of Y if, and only if, there exists no  
y ∈ Y such that yy > . Otherwise it is a weakly dominated point of  Y. 
 
 Let P be a MOP. We will refer to the weakly nondominated points of the outcome set z(X) as weakly 
nondominated solutions of P. The above concept can be translated to the decision set X. Thus, we can get: 
 
Definition 1.2 A point Xx∈  is said to be a weakly efficient solution of P if, and only if, ( )xz  is a weakly 
nondominated solution of  P. 
 
 Let WEP  denote the set of all weakly efficient solutions for problem P. 
 
 In this research we introduce a new theoretical frame that has been developed by Jorge (2002b) as a part 
of his Ph.D. Thesis, with the aim of achieving a dual formulation (in a weakly efficient sense) of a vector 
program. This theory is based on the concepts of weakly efficient bounds and suprema for the MOP, which 
have been defined in a way that extends their scalar counterparts. Although these names have been used 
other times in the existing literature (see, i.e., Sawaragi et al. (1985) and references therein), the approach 
presented here is quite different than the developments previously published. 
 
 Unfortunately, in our proposal the weak efficiency is not powerful enough to get directly a dual vector 
problem definition, even under convexity or linear hypothesis. However, we will see that this can be 
accomplished if we additionally impose that the outcome set recedes in every direction of the nonpositive 
orthant . kR−

 
 This article is organized as follows: Section 2 presents some theoretical prerequisites that will be used later, 
including two unknown theorems of the alternative for the weakly efficient case. In Section 3 we give a 
classification of multiple objective programs according to the set of weakly efficient solutions. In Section 4 we 
introduce the notions of weakly efficient bounds and suprema of a MOP and we obtain some properties and 
results. The paper concludes with some final remarks. 
 
2. THEORETICAL BACKGROUND 
 
 In this section we provide the reader with some previous results that will assist our developments. 
Particularly, the theorem of the alternative stated in Corollary 2.4 emerges as a highly useful tool for 
theoretical developments concerning the MOLP, as will be shown in section 4. 
  
 First, we start with a definition. 
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Definition 2.1 (Rockafellar (1970), p. 61) Let  be a non-empty set and {0}. We shall say 
that X recedes in the direction of d if, and only if, 

nRX ⊆ −∈ nRd
Xx∈∀ , +∈β∀ R , we have Xdx ∈β+ . 

 
 Directions in which X recedes are referred to as directions of recession of  X. 
 
 Let . We define the program  as: kR∈λ λP
 

                                                     ( ){ }Xx/xzmax t ∈λ          (3) 
 
 In the sequel,  and  will denote, respectively, the set of all optimal solutions of problem  and the 
dual problem of (3). 

λPS λD λP

 
 It is well known that, in the linear case, the following result holds: 
 
Theorem 2.2 (Steuer (1986), Theorem 9.25) PWEx∈  if, and only if, { }0R k −∈λ∃ +  such that 

λ
∈ PSx . 

 
 Let us consider an arbitrary . Without loss of generality, we can assume . To the author's 
knowledge, the following theorems of the alternative appear in the literature for the first time. 

kR∈α 0C ≠

 
Theorem 2.3 The system 
 
                                              , bAx = 0   x ≥ ,          (4) α>Cx
 
is feasible if, and only if, the system 
 
                                              ttt 0  CAu ≥λ− , ,          (5) butt =δ−αλ 0),( t ≥δλ
 
is infeasible. 
 
Proof. Clearly, system (4) being feasible is equivalent to system 0byAx =+− , , 0y > 0   x ≥ , 0yCx >α− , 
being feasible. Since this system can be rewritten as: 
 

                                              ( ) , , 0
y
x

b,A =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 0

y
x

10
C

t >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α−
0  

y
x

)0,I( ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,                 (6) 

 
applying Motzkin’s theorem of the alternative (Mangasarian (1969), p. 28), system (6) is feasible if, and only 

if, system , ( ) ( ) 0b,Au)0,I(s
10

C
, tt

t
t =−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ α−
δλ 0   s ≥ , ( ) 0,t ≥δλ , is infeasible, which is equivalent 

to system (5) having no solution. 
 

 The above result can be improved under the assumption that  X = { }bAx/Rx n =∈ +  is not empty. 
 
Corollary 2.4 If  then system (4) is infeasible if, and only if, the system ∅≠X
 
                                       ttt 0  CAu ≥λ− , ,          (7) butt ≥αλ 0≥λ
 
is feasible. 
 
Proof. By Theorem 2.3, system (4) is infeasible if, and only if, ttt 0  CAu ≥λ− , , , is 

feasible. Now, suppose by contradiction that , . Thus 

butt =δ−αλ 0),( t ≥δλ

0=λ 0>δ tt 0  Au ≥  and . On the other hand, 

taking an arbitrary x ∈ X we obtain , which is a contradiction. Therefore, system (7) is feasible. 

0but <

0buAxu tt ≥=
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3. A CLASSIFICATION OF MULTIPLE OBJECTIVE PROGRAMS 
 
 In this section we shall focus on establishing a classification, in a weak sense, of multiple-objective 
problems which is a generalization of that existing for scalar objective programs. The classification presented 
here is alike to other developed in Isermann (1976) for the linear efficient case. 
 
 Let P be a MOP given by (1). We will say that: 
 
Definition 3.1 P is infeasible if, and only if, . ∅=X
 
Definition 3.2 P is weakly bounded if, and only if, . Otherwise P is said to be weakly unbounded. ∅≠PWE
 
 Note that P can be weakly bounded and WEP unbounded. 
 
The following is a mutually exclusive and exhaustive classification of multiple objective programs. 
 
Proposition 3.3 Only one of the following assertions holds: (i) P is infeasible, (ii) P is weakly bounded, (iii) 
P is weakly unbounded. 
 
 It can be shown (by means of Theorem 2.2) that, in the linear case, if X is bounded then P is weakly 
bounded. Of course, the converse implication is not necessarily satisfied, as illustrated in the following 
example. 
 
Example 3.4 Let P be the MOLP ( ){ }.Rx ,1x/x,xmax 2

221 +∈≤−  It is clear that X is unbounded (see Figure 1) 

and  = {  . PWE }1x/R)x,0( 2
2

2 ≤∈ + { }2
1 R)1,x( +∈U

}

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 1. 
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4. THE CONCEPTS OF WEAKLY EFFICIENT BOUNDS AND SUPREMA 
 
 In this section we introduce the notions of weakly efficient bounds and suprema of a MOP, as 
generalizations of their scalar counterparts. This allows us to develop a theory that shows a connection, 
under certain conditions, between the weakly efficient suprema set of a CMP and its weakly nondominated 
solutions. In particular, a dual formulation, in a weakly efficient sense, for the MOLP is obtained. 
 
 Let P be an arbitrary MOP. The next concept plays a key role. 
 
Definition 4.1  is said to be a weakly efficient bound for P if, and only if, there exists no x ∈ X such 
that . 

kR∈α
( ) α>xz

 
 Let WB(P) denote the set of all weakly efficient bounds for problem P. 
 

Example 4.2 Let us assume that z(X) =  (see Figure 2 for a graphical representation). 

Then, it can be shown that WB(P) = 

{ 1z ,1z/Rz 21
2 ≤≤∈ +

{ }1/R 1
2 ≥α∈α   U { }1/R 2

2 ≥α∈α . 
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Figure 2. 
 
 Example 4.2 shows us that, in general, WB(P) is not convex (even whether z(X) is). 
 
 An interesting property of  WB(P) is the following: 
 
Proposition 4.3 WB(P) is closed. 
 
Proof. Suppose that  is a sequence of elements of WB(P) that converges to some α*. We need to 

show that α* ∈ WB(P). Suppose on the contrary that α* ∉ WB(P). Then 

K,, 21 αα

Xx ∈∃  such that ( ) *xzz α>= . 

Since  we have , such that *k
klim α=α∞→ Nk0 ∈∃ 0kk ≥∀ , zk <α . Therefore, 0kk ≥∀ , ( )PWBk ∉α , a 

contradiction. So, α* belongs to WB(P). 
 

 
 The following result states that every weakly nondominated point of z(X) is also a weakly efficient bound  
for P. 
 
Proposition 4.4 z(WEP) ⊆ WB(P). 
 
Proof. Let )WE(zz P∈ . Then PWEx ∈∃  such that z)x(z = . Since by Definition 1.2  verifying 
z(x) > 

Xx ∈∃/
z  we conclude ( )PWBz∈ . 

 
 
 Of course, from the above proposition we get as direct consequences: 
 
Corollary 4.5 If P is weakly bounded then ∅≠)P(WB . 
 
Corollary 4.6 . )X(z)P(WB)WE(z P I=
 
Furthermore, it is clear: 
 
Proposition 4.7  then kP R)WE(z −−+∈α∀ ( )PWB∉α . 
 
 It is important to remark that, in the general case, P can be weakly unbounded and, however, ∅≠)P(WB . 
For instance, let us consider the following example. 
 

Example 4.8 Let ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤+≡ 0

2
1x/x ,xmaxP

1x221  (see Figure 3 for the graphical representation of its feasible 

region). Then,  = ( )PWB { }0/R 2
2 ≥α∈α  and . ∅=PWE
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 The following theorem states an interesting property. 
 
Theorem 4.9 If  and P is a MOLP as that given in (2), with ∅≠X ( ) ∅≠PWB , then  P is weakly bounded. 
 
Proof. If  then ∃ α∈ R( ) ∅≠PWB k such that the system , bAx = 0   x ≥ , , is infeasible. Since ,  

by Corollary 2.4, it is equivalent to system 

α>Cx ∅≠X
ttt 0  CAu ≥λ− , , , is feasible. Therefore, 

 such that  and  are both feasible (remember that  is the dual of ). Thus 

 such that  is bounded. Now by Theorem 2.2 we conclude that . 

butt ≥αλ 0≥λ

{ }0R k −∈λ∃ + λP λD λD λP

{ }0R k −∈λ∃ + λP ∅≠PWE
 

 
 It seems clear that, the tighter the weakly efficient bounds the more useful they are. For this reason, we are 
interested in those weakly efficient bounds that are minimal in a weakly efficient vector sense. 
 
Definition 4.10 The elements of  that are weakly nondominated by the minimum criterion, that is, the 
weakly efficient solutions of the following problem 

( )PWB

 
                                       ( ){ }PWB/min ∈αα ,         (8) 
  
are called weakly efficient suprema of P. 
 
 We will denote by WS(P) the set of all weakly efficient suprema of P. 
 

Example 4.11 Considering Example 4.8 again, we have ( )PWS  = { }0x/Rx 2
2 =∈ . 

 
 
Example 4.12 In the trivial case with  then ∅=X ( ) kRPWB =  and thus WS(P) = ∅ . 

 

 In the more general case, computing all the elements of WS(P) can be a very hard task because WS(P) is 
usually a nonconvex set. 
 
 The following result states that any weakly nondominated solution of P is always a weakly efficient 
supremum. 
 
Theorem 4.13 . )P(WS)WE(z P ⊆

Proof. Let )WE(zz P∈ . We know by Proposition 4.4 that ( )PWBz∈ . Suppose on the contrary that 
)P(WSz∉ . Then, by definition,  such that )P(WBẑ ∈∃ zẑ < . Since Xx∈∃  verifying ẑ)x(zz >=  we have 
, a contradiction. Thus, it follows that )P(WBẑ∉ )P(WSz∈ . 
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 The next result follows immediately from Theorem 4.13: 
 
Corollary 4.14 If P  is weakly bounded then . ∅≠)P(WS
 
The converse of this statement, however, does not hold. Indeed, it is possible that  although P is 
weakly unbounded. 

( ) ∅≠PWS

 
Example 4.15   Let us consider ( ) ( ){ } 0z ,1zz/Rz ,z)X(z 121

2
21 <−≥∈=  U ( ) ( ){ } 0z ,1zz/Rz ,z 121

2
21 >−≤∈   

(see Figure 4 for a graphical representation). Then, it is clear that ,  =   
and  =  U  

∅=PWE ( )PWB 2R+

( )PWS ( ){ }+∈αα R/,0 ( ){ }+∈αα R/0, . 
 

 
 

0

1z

2z

( )Xz

( )PWB

 

z(X) 

Figure 4. 
 
 We are going to find what conditions guarantee . First, it is clear that although  were 
closed and convex or even a polyhedral set, the above inclusion could be wrong. The following example 
proofs this: 

)X(z)P(WS ⊆ ( )Xz

 

Example 4.16 Let P be the MOLP . It is clear that ( ){ }2
221 Rx ,1x/x,xmax +∈≤ ( ) XXz =  is an unbounded 

polyhedron. Furthermore,  = , ( )PWB { }1/R 2
2 ≥α∈α ( )PWS  = { }1/R 2

2 =α∈α  and . ( ) ( )XzPWS ⊆/
 

 
 Now we will be concerned with establishing some conditions that guarantee the factibility of the weakly 
efficient suprema set. We need first a preliminary result: 
 
Proposition 4.17 Let Y be a nonempty subset of Rk  and  a hyperplane given by kRH⊆ { }β=α∈ z/Rz tk . If 

Y recedes in every direction of  and kR− ∅=YHI  then α has all its components of the same sign. 
 
Proof. Contrary to the conclusion, suppose that we can partitionate { }, ..., k1  in two nonempty sets, I and J 

such that  and . It is clear that we can get a vector  with the property . 
Therefore, d is a direction of recession of H. Thus, given 

0I ≥α 0J ≤α kRd −−∈ 0dt =α

Yy ∈  and  we have that verifying 

 =  and 

Hŷ∈ +∈λ∃ R 

y~ Hdŷ ∈λ+ yy~ < . Since Y  =  we obtain y~ . So, kRY −+ Y∈ ∅≠YH , a contradiction. I
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Theorem 4.18 Let  be nonempty, closed and convex. If ( )Xz ( )Xz  recedes in every direction of  then 
. 

kR−

( ) ( )XzPWS ⊆
 
Proof. Let ( )PWSz∈ . Contrary to the conclusion, assume that ( )Xzz ∉ . Then, there exists a  

hyperplane { }β=α∈= z/RzH tk  such that , β<α zt ( )Xzz ∈∀  and β>α zt . Since, ( ) ∅=XzHI  and  

 = , by Proposition 4.17 we know that ( )Xz ( ) kRXz −+ α  has all its components of the same sign. Now, having 

in mind that ,  we have . Let β<α zt ( )Xzz ∈∀ kR+∈α ++∈γ R  and  = z~ ez γ−  such that . It is clear 

that 

β>α z~t

zz~ < . Suppose on the contrary that Xx∈∃ , ( ) z~xz > . This implies that , a 
contradiction, so . Since 

( ) β>α>α z~xz tt

( )PWBz~∈ zz~ <   ⇒ ( )PWSz∉ . This contradicts the initial hypothesis. Therefore, 
( )Xzz ∈ . 

 
 
Corollary 4.19 Let  be nonempty, closed, convex and such that it recedes in every direction of . Then ( )Xz kR−

( ) ( )PWEzPWS ⊆ . 
 
Proof. Let ( )PWSz∈ . By Theorem 4.18 we have that ( )Xzz ∈ . Since, ( )PWBz∈ , applying Corollary 4.6, 

( )PWEzz∈ . 
 

 
Corollary 4.20 Let  be nonempty, closed, convex and such that it recedes in every direction of . Then ( )Xz kR−

( ) ( )PWEzPWS = . 
 
Proof. Follows immediately from Theorem 4.13 and Corollary 4.19. 

 
 
 The next results are direct consequences of Corollary 4.20. 
 
Corollary 4.21 If  P is a CMP such that z(X) recedes in every direction of  then kR− ( ) ( )PWEzPWS = . 
 
Corollary 4.22  If  P is a MOLP such that z(X) recedes in every direction of  then kR− ( ) ( )PWEzPWS = . 
 
 The above results are very important in order to develop a duality theory for the convex and linear cases 
under the assumption that  recedes in every direction of . For these types of problems, to 
compute their weakly nondominated solutions is equivalent to solve D  

∅≠)X(z kR−

≡  ( ){ }PWB/min ∈αα , in a weakly 

efficient vector sense, due to the fact that ( ) DP WEWEz = . 
 
 Moreover, for a linear problem P, ( )PWB  = { }solution no has ,Cx ,0  x ,bAx/Rk α>≥=∈α . Applying 

Corollary 2.4, we conclude that D  ≡ { }mttttk Ru 0, ,bu ,C  Au/Rmin ∈≥λαλ≤λ≥∈α . Thus, we have a dual 
formulation, in a weakly efficient sense, for the MOLP problem P. 
 
5. CONCLUSIONS 
 
 We have derived some new theorems of the alternative which enable us with powerful tools for theoretical 
developments in vector optimization involving weakly efficient solutions. Actually, such theorems seem to 
have applications in a wide variety of contexts (see, e.g., Jorge (2002a)). 
 
 Also, the notions of weakly efficient bounds and suprema for a MOP problem were introduced. Such 
concepts have an obvious geometric meaning that allows an easy interpretation in the criteria space, Rk. 
 
The developed theory establishes a sufficient condition under which it is possible to define a dual vector 
problem for a CMP in a weakly efficient sense. With these hypotheses, a restricted dual vector problem 
definition for the MOLP, similar to that given in Gale et al. (1951), is achieved.  
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