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ABSTRACT 
We study a multiobjective optimization problem in finite-dimensional spaces with a feasible set defined 
by directionally differentiable (or quasiconvex) inequality constraints and Fréchet differentiable equality 
constraints. Under a suitable constraint qualification (of the Mangasarian-Fromovitz type) an expression 
for the contingent cone to the feasible set is obtained. As application, necessary conditions of Pareto 
optimality both Fritz John type and Kuhn-Tucker type are obtained by means of Lagrange multipliers 
rules. 
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RESUMEN 
Estudiamos un problema multiobjetivo de optimización en espacios de dimensión finita con un conjunto 
de factibilidad definido por restricciones en desigualdades que son direccionalmente diferenciables (o 
cuasiconvexas) y restricciones de igualdad que son Fréchet diferenciables. Bajo una adecuada 
calificación (del tipo Mangasarian-Fromovitz) una expresión para el cono contingente de las restricciones 
es obtenida. Como una aplicación, las condiciones necesarias para la Pareto optimalidad del tipo de 
Fritz John y del tipo Kuhn-Tucker son obtenidas por medio de las reglas de los multiplicadores de 
Lagrange. 

 
1. INTRODUCTION 
 
 Over the last three decades, the classical multiplier rule was extended in the direction of eliminating the 
smoothness assumptions. These extensions were given under assumptions of directional differentiability and 
Lipschitz continuity. In this work we are going on along this way using mixed assumptions of Fréchet and 
directional differentiability in multiobjective optimization problems with inequality and equality constraints. 
 
 Di (1996) obtains some first and second order multiplier rules for nonlinear optimization problems with 
equality, inequality and abstract constraints and considers all functions Fréchet differentiable. Ye (2001) gives 
multipliers rules for a scalar nonlinear optimization problem under assumptions of Fréchet differentiability and 
Lipschitz continuity. 
 
 On the other hand, constraint qualifications have a significant role in optimization problems, since they 
allow us to guarantee the effective intervention of the objective functions in the Fritz John type necessary 
conditions for a point to be an optimum. Since the decade of the 50's, the study of these qualifications has 
been the aim of several researchers with different approaches, proposing various regularity conditions. In this 
work we use a constraint qualification of Mangasarian-Fromovitz type. 
  
 This paper is structured as follows: Section 2 is devoted to the definitions,  notations and preliminaries, in 
Section 3 we study explicit expressions for the tangent cone to the feasible set when it is defined by Fréchet 
differentiable equality constraints and or well Hadamard differentiable inequality or well mixed inequalities 
functions. 
 
 To be more precise, if we consider a feasible set S defined by equality and inequality constraints, then if the 
equality constraints are continuous on a neighborhood of the point and Fréchet differentiable at this point with 
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Jacobian of maximal rank, and if the inequality constraints are Dini differentiable with convex derivative, it can 
be shown that, under a suitable Mangasarian-Fromovitz constraint qualification, the tangent cone is equal to 
the linearized closed cone in the following cases: 
 
1. When the inequality constraints are Hadamard differentiable (Theorem 3.6). 
 
2. When each inequality constraint is either continuous on a neighborhood of the point and quasiconvex on a 

neighborhood of the point or Fréchet differentiable at the point (Theorem 3.7). 
  
 If there is no equality constraints, it is enough that the inequality constraints are either quasiconvex at the 
point or Hadamard differentiable (Theorem 3.5). 
 
 As an application, necessary optimality conditions of Fritz John type and Kuhn-Tucker type for Pareto 
optimum are obtained (Theorem 3.10). 
 
2. NOTATIONS AND PRELIMINARIES 
 
 Let S ⊂ IR

 n a nonempty set. As usual, cl S, int S, ri S, co S, cone S and Lin S will denote closure, interior, 
relative interior, convex hull, generated cone and generated subspace by S, respectively. 
 
 Give a function f: IR

n
 →  IR

p
, the following multiobjective optimization problem is considered 

 
(MP) Min{f(x): x ∈ S}. 

 
 A point x0∈ S is said to be a local weak Pareto minimum, if there exists a neighborhood B(x0, δ)  of x0  such 
that 

 
             Sf  ∩ S ∩ B(x0, δ) = ∅           (1) 
 
where  Sf = {x ∈ IR

n
 : f(x) < f(x0)}. 

 
 Because of the difficulties in verifying condition (1), local approximations of the sets S and Sf through 
different tangent cones are used. 
 
Definition 2.1. Let S be a subset of IR

n
 and x0 ∈ cl S. 

 
(a) The tangent (contingent) cone to S at x0 is 
    

T(S, x0) ={v ∈ IR
n
: ∃tk → 0+, ∃xk ∈ S  such that }vt/)xx( k0k →− . 

 
(b) The cone of attainable directions is 
 

A(S,x0) = {v ∈ IR
n
: ∃δ > 0, ∃γ: [0,δ] → IR

n
 / γ(0) = x0,γ(t) ∈ S ∀t ∈ (0, δ], γ´(0) = v}. 

 
 We have the following inclusion  

 
                         (2) ) x,S(T  ) x,S( A 00 ⊂
 
 A complete and rigorous analysis of different tangent cones can be found in Bazaraa and Shetty (1976) or 
in Aubin and Frankowska (1990). 
  
 Let D ⊂  IR

n
, the polar cone to D is D* = {v ∈ IR

n
: 〈v,d〉 ≤ 0 ∀d ∈ D}, which is a closed and convex set. The 

normal cone to S at  is defined by . 0x ∗) x,S(T=) x,S(N 00

  
 Let us remark that the normal cone is often used in order to discuss properties of the constraint set. 
Moreover, if the sets are defined by functions constraints, their approximation is realized through the cones 
defined by different directional derivatives. 
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Definition 2.2. Let f: IR
n
 → IR

p
, x0, v ∈ IR

n
 . 

 
(a) The Dini derivative (or directional derivative) of f at  in the direction v is 0x
 

t
)x(f)tvx(flim)v,x(Df 00

0t
0

−+
=

+→
. 

 
(b) The Hadamard derivative of f at  in the direction v is 0x
 

t
)x(f)tux(flim)v,x(df 00

)v,0()u,t(
0

−+
=

+→
. 

 
(c) f is Dini differentiable (respectively Hadamard differentiable) at  if its Dini derivative (resp. Hadamard 

derivative) exists in all directions. 
0x

  
 The next definition of Dini subdifferential for a function f: IR

n
 → IR is well known (see, for example,  

Penot 1978). 
 
Definition 2.3. The Dini subdifferential of  f  at  is 0x
 

=)x(f 0D∂ {ξ ∈ IR
n  
: 〈ξ, v〉 ≤ Df(x0, v) ∀v ∈ IR

n
}. 

 
 If  is a convex function, then there exists the subdifferential (in the sense of Convex Analysis), 

, is a nonempty, compact and convex set in IR
),x(Df 0 ⋅

)0(),x(Df 0 ⋅∂
n
 and we have that: 

 
)0(),x(Df)x(f 00D ⋅∂=∂  and { })x(f:v,Max)v,x(Df 0D0 ∂∈ξ〉ξ〈= . 

 
 If  is nonconvex, then  can be empty. ),x(Df 0 ⋅ )x(f 0D∂
  
 We also consider the following extensions of convexity. 
 
Definition 2.4. Let  IR⊂Γ

n
 be a convex set, →Γ: f  IR and Γ∈0 x . 

 
(a) f is quasiconvex at x0 if 

 
)1,0( )x(f)x)1(+x(f  )x(f)x(f ,x 000 ∈λ∀≤λ−λ⇒≤Γ∈∀ . 

 
   f is quasiconvex on Γ  if  f  is quasiconvex at each point of Γ . 
 
(b) f is Dini-quasiconvex at if . 0x 0)x x,x(Df   )x(f)x(f ,x 000 ≤−⇒≤Γ∈∀
  
 The most valuable properties for our purposes related to these concepts are summarized in the next 
proposition. 
 
Proposition 2.5. 
 
(a) (Bazaraa, Shetty 1979). f is quasiconvex on Γ  if and only if the level sets 
    are convex for all  α ∈ IR. })x(f:x{= α≤Γ∈Γα
 
(b) Let f be Dini differentiable at . If f is quasiconvex at , then f is Dini-quasiconvex at . 0x 0x 0x
 
(c) (Giorgi, Komlósi 1992, Theorem 3.2). If f is continuous and Dini-quasiconvex on Γ , then f is quasiconvex  
      on . Γ
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 The next proposition, that will be often used, is deduced from (Ref. 3, Theorem 3.9) with Q = IR
n
. 

 
Proposition 2.6. Let m, r be nonnegative integers with 1rm ≥+ ,  be sublinear functions 

(positively homogeneous and convex) from IR
m21 g,...,g,g

n
 to IR., and  be linear functions from  IRr21 h,...,h,h

n
 to IR. given 

by , . We denote 〉〈= v,c)v(h kk }r,...,2,1{Kk =∈ }m,...,2,1{J = . 
 
 Then the following statements are equivalent: 
 
(a) For each set {ξj: j = 1,2,…,m}, with ξj ∈ ∂gj(0), we have that: 

 
∈µ≥λµξλ ∑∑

∈∈

 ,0  ,0=c+ kk
Kk

jj
Jj

IR
 n
 implies 0= ,0= µλ . 

 
(b) For each λ ≥ 0, µ ∈ IR

 r
 IR∈∀≥µλ ∑∑

∈∈

v ,0)v(h+)v(g kk
Kk

jj
Jj

 r
, implies 0 ,0= =µλ . 

 
(c) {ck: k ∈ K} is linearly independent and there exists v ∈ IR

 n
 such that 

 
r,....,2,1k,0)v(h,m,...,2,1j,0)v(g kj ===< . 

 
(d) {ck: k ∈ K}  is linearly independent,  
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂∉

∈
U

Jj
j )0(gco0  and  . { } 0Kk:cLin)0(gcocone k

Jj
j =∈

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈
IU { }

 
3. SOME EXPRESSIONS FOR THE CONTINGENT CONE AND APPLICATIONS TO OPTIMALITY 
CONDITIONS 
 
 In this section we consider a set S defined by equality and inequality constraints, a point of S at which we 
will obtain the tangent cone and we suppose that h is Fréchet differentiable at x0 and continuous on a 
neighborhood of x0. Under different conditions, we provide an expression for the tangent cone (Theorems 3.5, 
3.6 and 3.7). 
 
 When the feasible set of the problem (MP) is defined by: 
 
      S  = {x ∈ IR

 n
 : g(x) ≤ 0, h(x) = 0}           (5) 

 
with g: IR

n
 → IR

m
  and h: IR

n
 → IR

r
, whose component functions are, respectively, , 

, we shall adopt the following notation. Given , the active index set at  is  
J

}m,...,2,1{=Jj ,g j ∈

}r,...,2,1{=Kk ,hk ∈ Sx0 ∈ 0x
0 = {j ∈ J: gj(x0) = 0}. The sets defined by the constraints g and h are denoted, respectively, by  

G = {x ∈ IR
n
: g(x) ≤ 0}, H = {x ∈ IR

n
: h(x) = 0}, following that . HG=S ∩

 
 Assuming that the constraint functions are Dini differentiable at x0, the cones that we shall use in order to 
approximate S at x0 are (linearized cones): 
 

C0(S) = {v ∈ IR
n
: ,0=v)x(h ,Jj 0)v,x(Dg 000j }∇∈∀<  

 
            C(S) = {v ∈ IR

n
: .0=v)x(h ,Jj 0)v,x(Dg 000j }∇∈∀≤  

 
C0(G) and C(G) are defined analogously and we denote K(H) = Ker ∇h(x0). Consequently, 

 and . )H(K)G(C)S(C 00 ∩= )H(K)G(C)S(C ∩=
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 If g is differentiable at x0, the relationship between these cones and the ones given in Definition 2.1 is 
(Bazaraa, Shetty 1976, Theorems 6.1.2 and 6.2.2): 
 
(a) If there is no equality constraints  then )G=S(

 
)G(C)x,G(T)x,G(A)G(C 000 ⊂⊂⊂ . 

 
(b)  (1) . )S(C)x,S(T 0 ⊂
   
  (2) If {  is linearly independent, then . }Kk ),x(h 0k ∈∇ )x,S(A)S(C 00 ⊂
 
 Let us begin by studying these inclusions for Dini or Hadamard differentiable functions. We will suppose 
that all the functions are continuous at x0 and the active ones Dini differentiable at x0. 
 
 Our aim is to obtain the inclusions 

 
                                  ,           (6) )S(C)x,S(T)S(C 00 ⊂⊂
 
such that if the first set is nonempty and its closure is C(S), we have that the two last sets are the same. 
 
 In the differentiable case it is enough that  is nonempty in order to have . But, in 
general, this result is not true. It is still possible to obtain this result if the inequality constraints have convex 
Dini derivative and the equality constraints have linear Dini derivative. The following lemma gives us the basic 
properties of the linearized cones and the aforementioned sufficient condition. 

)S(C0 )S(C)S(Ccl 0 ⊂

 
Lemma 3.1. Let  be convex and . Then: 00j Jj),,x(Dg ∈⋅ ∅≠)S(C0

 
(i)  is a convex cone, relative open in K(H), and C(S) is a closed convex cone. )S(C0

 
(ii) . )S(C)S(Ccl 0 =
 
Proof. 
 
 Part (i) follows immediately from the convexity of 00j Jj),,x(Dg ∈⋅ , the linearity of )x(h 0∇  and continuity of 
all of them. 
 
(ii) The following is a classical reasoning. Let )S(Cu 0∈ , )S(Cv ∈ , v)1(uu λ−+λ=λ  with . Then 

 and the proof will be completed if we show that 
)1,0(∈λ

vulim
0

=λ
→λ +

)S(Cu 0∈λ . But this follows because of the 

convexity of  and the linearity of . 00j Jj),,x(Dg ∈⋅ )x(h 0∇

 
 In the following proposition sufficient conditions for the second inclusion in the sequence (6) are stated. 
 
Proposition 3.2. Let suppose that for each 0Jj∈ , either  is Hadamard differentiable at  or  is Dini-

quasiconvex at  whose derivative  is continuous on IR
jg 0x jg

0x ),x(Dg 0j ⋅
 n
. Then . )S(C)x,S(T 0 ⊂

 
Proof. 
 
 Let us consider . Then, there exist  such that )x,S(Tv 0∈ vv,0t nn →→ + Svtxx nn0n ∈+= , ∀n ∈ N. 
 
 (a) Let . 1) If  is Hadamard differentiable at , then 0Jj∈ jg 0x
 

n

0jnj

n0j t
)x(g)x(g

lim=)v,x(dg
−

∞→
. 
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 As and we obtain that  and, therefore, . Thus 

 

Sxn ∈ 0Jj∈ 0= )x(g,0)x(g 0jnj ≤ 0 )x(g)x(g 0jnj ≤−

.0)v,x(dg)v,x(Dg 0j0j ≤=
 
2) Now let gj be Dini-quasiconvex with continuous Dini derivative. Then, as , it follows that 

. Because of Dini-quasiconvexity we have that , i.e. , 

and consequently, . By continuity we obtain 

Sxn ∈
 )x(g0)x(g 0jnj =≤ 0)xx,x(Dg 0n0j ≤− 0)vt,x(Dg nn0j ≤

0)v,x(Dg n0j ≤ 0)v,x(Dg 0j ≤ . 
 
 (b) As , we have that HGSxn ∩=∈ 0)x(h)x(h 0n ==  for all n. Hence, 

 

0v)x(h
t

)x(h)x(h
lim 0

n

0n
n

=∇=
−

∞→
. 

 
 So,  and , which means that v ∈ C(S).  0)v,x(Dg,Jj 0j0 ≤∈∀ 0v)x(h 0 =∇

  
 If it is only required that  is continuous on IR),x(Dg 0j ⋅

 n
, it is not true in general that , even if 

 is nonempty and  is convex, as the next example shows. 

)G(C)x,G(T 0 ⊂

)G(C0 ),x(Dg 0j ⋅

 
Example 3.3. In IR

 2
, let D be the convex hull of the arc of the parabola   between the points  

(-2,2) and (-2,-2), that is, . Let σ be the support function of D, i.e., 
. As D is a compact convex set, σ is positively homogeneous, convex and finite on 

IR

)1x(4y2 +−=

}1t1:)t2,1t{(coD 2 ≤≤−−−=
{ Dd :v d,Max=)v( ∈〉〈σ }

 2
. We have that 

 

⎪
⎩

⎪
⎨

⎧

<−≤−−
≥≥+−
<<−−

σ
0 yx,yif2y2x

0 yx,yif2y2x
xyxif)/xx(y

  =)y,x(

22

 

 

 Let ϕ: IR
  
→ IR

 
 given by 

⎩
⎨
⎧ ≤α≤−α

αϕ
otherwise,1

31if2
=)(  

 
 
W = {(x,y) ∈ IR

 2
: x2 ≤ y ≤ 3x2} \ {(0,0)}  

 
 

and g: IR
 2 
 → IR

  
 given by  

⎩
⎨
⎧

∈σϕ
∉σ

W)y,x(if)y,x()x/y(
W)y,x(if)y,x(

 =)y,x(g 2

 
 Clearly , for all v ∈ IR)v()v,x(Dg 0 σ=

 2
, being )0,0(x0 = . 

 
 The feasible set is G = {(x, y): g(x,y) ≤ 0} = A ∪ {(x, y): y = 2x2, x < 0}, where A = {(x, y): -x ≤ y ≤ x},             
C0(G) = {v: Dg(x0, v) < 0} = int A and C(G) = {v: Dg(x0, v) ≤ 0} = A. 
 
 But T(G, x0) = A ∪ {(x, 0): x ≤ 0} and, consequently, )G(C )x,G(T 0 ⊄ . 
 
 Next we are going to analyze under what conditions it is verified that )S(C)x,S(T)S(C cl 00 == . Of course it 
depends on the kind of the involved functions. If there are some equality constraints, these functions should 
be Fréchet differentiable. Proof of the next previous result is immediate. 
 
Proposition 3.4. If there is no equality constraints, S = G, and the functions , are Dini differentiable 

at , then . 
0j Jj,g ∈

0x  )x,G(T  )x,G(A )G(C 000 ⊂⊂
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Theorem 3.5. Assume that each , is Dini-quasiconvex or Hadamard differentiable at  in both 

cases with convex derivative at . If  then 
0j Jj,g ∈ ,x0

0x ∅≠)G(C0

 
 (i) . )G(C=)x,G(T=)G(C cl 00

 

(ii) . ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈
U

0Jj
0jD0 )x(g  co cone=)x,G(N

 
Proof. 
 
 (i) From Propositions 3.4 and  3.2, we have that  and, as the derivatives are convex, 

the conclusion follows from Lemma 3.1. 
)G(C)x,G(T)G(C 00 ⊂⊂

 
(ii) As 

 
C(G) = {v ∈ IR

 n
: Dgj(x0, v) ≤ 0 ∀j ∈ J0} = 

 
                       = {v ∈ IR

 n
: 〈ξj, v〉 ≤ 0, ∀ξj ∈ ∂D gj(x0), ∀j ∈ J0}  

 
 
using (Rockafellar 1970, page 122), the polar of C(G) is the closure of the convex cone generated by all the 

, i.e., ξ j

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈

∗ U
0Jj

0jD )x(g  co conecl=)G(C . 

 
 By hypothesis, there exists v ∈ IR

n
 such that 00j Jj,0)v,x(Dg ∈∀< . By Proposition 2.6 (with r = 0), 

 and, as  is compact (Hiriart-Urruty, Lemaréchal 1996, Theorem 

1.4.3, Chap. 3), it follows that the set  is closed, (Hiriart-Urruty, Lemaréchal 1996, 

Proposition 1.4.7, Chap. 3), consequently . 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂∉

∈
U

0Jj
0jD )x(g  co 0 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈
U

0Jj
0jD )x(g  co 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈
U

0Jj
0jD )x(g  co cone

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈

∗ U
0Jj

0jD )x(g  co cone=)G(C

 
 The result follows taking into account that . ∗∗ )G(C=)x,G(T=)x,G(N 00

 
 This theorem generalizes some results of the Convex Analysis, for example, Corollary 23.7.1 of Rockafellar 
(1970) and Theorems 1.3.4 and 1.3.5 (Hiriat-Urruty, Lemaréchal 1996, Chap. 6). 
 
Theorem 3.6.  Suppose that the following conditions are true. 
 
(a) For each ,  is Hadamard differentiable at x0Jj∈ jg 0 with convex derivative. 
 
(b)  has maximal rank.  )x(h 0∇
 
(c) . ∅≠)S(C0

 
 Then: 
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 (i) . )S(C)x,S(T)x,S(A)S(C cl 000 ===
 

(ii) . { }Kk :)x(hLin   )x(g co cone = )x,H(N  )x,G(N=)x,S(N 0k
Jj

0jD000
0

∈∇+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂+

∈
U

 
Proof. 
 
 
 (i) If we prove that , by Proposition 3.2 and Lemma 3.1 we have the conclusion. 

The second inclusion is a well known result. Let us proof the first one. 
)x,S(T)x,S(A)S(C 000 ⊂⊂

 
 By hypothesis,  are lin. indep. (we suppose  r,...,2,1k),x(h 0k =∇ ).n<r
 
 Given a vector v, by (Hestenes 1981, Theorem 5.3, Chap. 3), the system 
 

r,...,2,1k,v)x(ht)x(h)x(h 0k0kk =∇+=  
 
has a solution δ≤≤δ−γ= t ),t(x  such that 0x)0( =γ  and γ´(0) = v. 
 
 Now, let . We have that )S(Cv 0∈ r,...,2,1k,0v)x(h 0k ==∇ and, as Sx0 ∈ , it follows that 0))t((hk =γ , 

and therefore, [ ] r,...,2,1k , ,t =δδ−∈∀ [ ]δδ−∈∀∈γ  ,t H)t( . 
 
 Let us see that G)t( ∈γ  for  small enough. 0t >
 
 Since γ is differentiable at t = 0, γ is Hadamard differentiable at t = 0, and we have that v1)0()1,0(d =γ∇=γ . 
 
 On the other hand, since the Hadamard derivative verifies the chain rule (Demyanov, Rubinov 1995, 
Theorem 3.3, Chap. 1), if we put , it follows that  γψ ojg=
 

)v,x(dg=))1,0(d ),0((dg=)1,0(d 0jj γγψ . 
 

 Consequently, .0 
t

))t((g
lim

t
)0()t0(lim)1,0(D)1,0(d j

0t0t
<

γ
=

ψ−+ψ
=ψ=ψ

++ →→
 

 
 Therefore, for t small enough 0j Jj ,0))t((g ∈∀<γ . For , by the continuity of g0J\Jj∈ j at x0  and the 
continuity of γ at t = 0, we have  for t small enough. 0))t((g j <γ

 
 So, S)t( ∈γ  for t small enough and, consequently, )x,S(Av 0∈ , completing the proof. 
 
(ii) [ ] [ ] [ ] [ ]0 ),H(KN+0 ),G(CN0 ),H(K  )G(CN)H(K  )G(C)S(C)x,S(N 0 =∩=∩== ∗∗ . 
 
 The last equality holds by (Rockafellar 1970, Corollary 23.8.1) because K(H) is polyhedral  
and   is verified. To see the latter, we note that, by hypothesis, , so there exists 
v such that  and 

( ) ∅≠∩ )H(K  )G(C ri ∅≠)S(C0

00j Jj,0)v,x(Dg ∈∀< 0v)x(h 0 =∇ . By continuity of  it follows that 

. Finally  by Theorem 3.5 (ii). 

.),,x(Dg 0j

( ) )H(K  )G(C intv ∩∈ [ ] ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂

∈

∗ U
0Jj

0jD )x(g co cone=)G(C=0),G(CN

 
 In this theorem it is only required h to be differentiable at  and not on a neighborhood of the point and, 
far from it, to be C

0x
1. That are the conditions in which Hestenes's Theorem is valid. On the other hand, this 
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theorem generalizes and improves Theorem 3.3 of Di (1996) who suppose that g is Fréchet differentiable at 
x0 and obtains that . )S(C)x,S(T 0 =
 
 If the functions gj  are only Dini differentiable, then the proof of Theorem 3.6 is not valid, because the chain 
rule is not verified. However, we can still have the same conclusions with extra hypothesis. 
 
Theorem 3.7. Suppose the following: 
 
(a) For each  is either Dini-quasiconvex and continuous on a neighborhood of xj0 g,Jj∈ 0 with convex  
     derivative or Fréchet differentiable at x0.  
 
(b)  has maximal rank.  )x(h 0∇
 
(c) . ∅≠ )S(C0

 
 Then 
 
 (i) . )S(C )x,S(T  )S(Ccl 00 ==
 
(ii)  { }.Kk:)x(hLin)x(gcone)x,S(N 0k

Jj
0jD0

0

∈∇+∂= ∑
∈

 
 Firstly, we need next Lemma 3.8. We consider the following sets: 

 
  is Dini-quasiconvex on a neighborhood of , j001 g:Jj{=J ∈ }x0

 
  is Fréchet differentiable at , j01002 g :J\Jj{=J ∈ }x0

 
 G1 = {x ∈ IR

n
: gj(x) ≤ 0, ∀j ∈ J01}  and S2 = {x ∈ IR

n
: gj(x) ≤ 0, ∀j ∈ J \ J01, h(x) = 0}.  

 
 Notice that . 21 SGS ∩=
 
Lemma 3.8.  has maximal rank and )x(h 0∇ ∅≠ )S(C0  if and only if ∅≠ )G(C 10  and the following constraint 
qualification (CQ) holds at : 0x
 
 (CQ)  there exists no (λ, µ) ∈ IR

J02 × IR
r
  such that 

 
 1) ,  2)   and  3) 0≥λ 0),( ≠µλ )x,G(N)x(h)x(g 01

Kk
0kk

Jj
0jj

02

−∈∇µ+∇λ ∑∑
∈∈

 

 
Proof. 
  
( ) It is obvious that . Conditions ⇒ ∅≠ )G(C 10 ∅≠ )S(C0  and { }Kk :)x(h 0k ∈∇  lin. indep. are just statement 
(c) in Proposition 2.6 applied to the convex functions 010j Jj ),,x(Dg ∈⋅ , 020j Jj )(·),x(g ∈∇  and the linear 

functions . Such statement is equivalent to (a) of that proposition. Kk )(·),x(h 0k ∈∇
 
 If we suppose that (CQ) is not true, then there exist ∈µ∈≥λ k02j ,Jj ,0 IR, k ∈ K not all zero such 

that . )x,G(N)x(h)x(g 01
Kk

0kk
Jj

0jj
02

−∈∇µ+∇λ ∑∑
∈∈

 Now, by Theorem 3.5(ii), , thus there exist 

 such that 

)x(gcone)x(gcocone )x,G(N 0jD
JjJj

0jD01
0101

∂=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∂= ∑

∈∈
U

01jjj Jj),0(g ,0 ∈∀∂∈ξ≥λ

 42



0)x(h)x(g
Kk

0kk
Jj Jj

0jjjj
01 02

=∇µ+∇λ+ξλ ∑∑ ∑
∈∈ ∈

, 

 
contradicting statement (a) in Proposition 2.6. 
 
( ) We shall prove that (a) of Proposition 2.6 is verified. ⇐
 
 Let  with 0)x(h

Kk
0kk

Jj
jj

0

=∇µ+ξλ ∑∑
∈∈

00jDjj Jj),x(g ,0 ∈∀∂∈ξ≥λ . 

 
 For each  is Fréchet differentiable at xj02 g,Jj∈ 0, and so ∂Dgj(x0) = {∇gj(x0)}. Thus: 
 

0)x(h)x(g
Kk

0kk
Jj Jj

0jjjj
01 02

=∇µ+∇λ+ξλ ∑∑ ∑
∈∈ ∈

, 

 
and because  we have that ∑

∈

∂=
01Jj

0jD01 )x(g)x,G(N

 
)x,G(N)x(h)x(g 01

Kk
0kk

Jj
0jj

02

−∈∇µ+∇λ ∑∑
∈∈

. 

 
 By hypothesis (CQ), , and consequently, 0,Jj,0 02j =µ∈∀=λ 0

01Jj
jj =ξλ∑

∈

. 

 
 Now,  since , by Proposition 2.6 (with r = 0), we deduce that ∅≠ )G(C 10 ,0j =λ  01Jj∈∀ , and the proof of 
the lemma is completed. 
 
Proof of Theorem 3.7. 
 
 Let us prove that 
 
                 )x,S(T  )x,G(T)x,S  G(T 0201021 ∩=∩           (7) 
 
 By hypothesis (a), taking a closed neighborhood of x0, ),x(B 0 δ , with δ small enough, we can assume that 
on this neighborhood all the functions , are continuous and quasiconvex (Proposition 2.5(c)). Hence, 01j Jj ,g ∈

),x(B  G=G 010 δ∩  is convex (Proposition 2.5(a)) and closed. We have that , and 
therefore, the constraint qualification (CQ) holds at x

)x,G(N)x,G(N 0100 =

0 for G0 instead of G1. From Theorem 4.1 of Di (1996), 
we obtain 
 

)x,S(T  )x,G(T)x,S  G(T 0200020 ∩=∩  
 

and, because the tangent cone is a local concept, )x,G(T)x,G(T 0100 =  and T(G0 ∩ S2, x0) = T(G1 ∩ S2, x0),  
completing the proof of (7). 
 
 Now, let us see that 
 
                     (8) )S(C )x,S(T  )S(C 00 ⊂⊂
 
 The second inclusion follows from Proposition 3.2. By Theorem 3.6, , by Proposition 3.4, 

, and using (7) we have that 
)x,S(T  )S(C 0220 ⊂

)x,G(T  )G(C 0110 ⊂
 

)x,S(T)x,S  G(T)x,S(T  )x,G(T  )S(C  )G(C)S(C 0021020120100 =∩=∩⊂∩= . 
 

 43



 Finally, let us prove parts (i) and (ii). By (8), , and by Proposition 3.2, . 
Then, by Lemma 3.1, . The proof of part (ii) is analogous to that of Theorem 3.6(ii). 

)x,S(T  )S(C 00 ⊂ )S(C )x,S(T 0 ⊂
)S(C )x,S(T  )S(Ccl 00 ==

 
 In the next example a problem is proposed in which the results obtained here can be applied. Note that 
neither the results of the Convex Analysis nor the ones of the Theory of Generalized Gradients of Clarke are 
applicable though. 
 
Example 3.9. First, we define a real function with real variable, quasiconvex, Dini differentiable and not locally 
Lipschitzian and from it, we will construct other function with two variables, keeping these properties. 
 
 Let  be a decreasing sequence of positive numbers converging to 0 such that nδ 1/ n1n →δδ +  and let cn be 
such that . We define ϕ: IR → IR such that is odd (n,c nn1n ∀δ<<δ + )t()t( ϕ−=−ϕ ), t)t( =ϕ  if , 1>t δ 0)0( =ϕ  
and for  is given by 1t0 δ≤<
 

⎩
⎨
⎧

=δ≤≤

=<<δδ
=ϕ ++

2,... 1,n ,tc  if   )t(l
2,... 1,n ,ct if   

  )t(
nnn

n1n1n  

 
where  is the affine function through the points )t(ln ),c(C ),,(A 1nnnnnn +δ=δδ= . Its expression is 

, where . nnnn )t(m)t(l δ+δ−= )c/()(m nn1nnn −δδ−δ= +

 
 Let  and . Then the function so defined is continuous on IR and it is not Lipschitz 
near 0 (the sequence of the slopes of l

n/1n =δ n
n 4/1n/1c −=

n tends to +∞). 
 
 It can easily be proved that ϕ  is Dini differentiable at 0. As a matter of fact, it is differentiable with 1)0( =ϕ′ . 
In fact, 
 

    1
t

)t(suplim
t

)0()t(suplim)0(
),0(t00t

=
ϕ

=
ϕ−ϕ

=ϕ
ε∈→ε→

+
++

. 

 

    

.1
c

inflim
c

)c(l
inflim

t
)t(infinflim

t
)t(inflim

t
)t(inflim

t
)0()t(inflim)0(

k

1k
1nknk

kk
1nkn),[t1nkn

),0(tn),0(t00t

1kk

n

=
δ

==
ϕ

=

=
ϕ

=
ϕ

=
ϕ−ϕ

=ϕ

+

+≥∞→+≥∞→δδ∈+≥∞→

δ∈∞→ε∈→ε→

−

−

++

 

 
ϕ is quasiconvex on IR, since it is increasing, but it is not convex.  
 
 From ϕ we define ψ: IR→ IR, given by 
 

⎩
⎨
⎧

<ϕ
≥ϕ

ψ  
.0tif)t(

0tif)t(2
 =)t(  

 
 ψ has the same properties than ϕ (continuity, not Lipschitz near 0, quasiconvexity) except that it is not 
differentiable at 0, but it is Dini differentiable, with convex derivative 
 

⎩
⎨
⎧

<
≥

=ψ
0tift
0tift2

  )t,0(D  

 
 And, from ψ  we define g: IR

2 
→ IR  given by 
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

<ψ
≥<ψ

≥≥⎟
⎠
⎞⎜

⎝
⎛ +ψ

=
x<y 0,y if  )x(
xy 0,x if     )y(

0y 0,x ifyx

  )y,x(g

22

 

It is a continuous and quasiconvex function on IR
2
, but it is neither Lipschitz near x0 = (0,0) nor convex. Its 

Dini derivative has the expression: 
 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<>

<≤

≥<

≥<

≥≥+

=

0y 0,xifx2

xy 0,xifx

xy 0,ysiy

0y 0,xify2

0y 0,xifyx2

  )) y,x( ,x(Dg

22

0  

 
which is convex on IR

2
. Its Dini subdifferential is 

 
).0y,0x,4yx:)y,x()1,0(),0,1(co(=)x(g 22

0D }≥≥=+{∪}{∂  
 
 If we consider g as a constraint function, let { }0)y,x(g:)y,x(G ≤= . In order to obtain , Corollary 
23.7.1 or Theorem 23.7 of Rockafellar (1970) cannot be applied, because g is not convex. Neither Theorem 
2.4.7 (or Corollary 1) of Clarke (1983) can be applied  because g is not Lipschitz near . However, from 
Theorem 3.5, it follows that 

)x,G(N 0

0x
}≥≥{=∂= 0y,0x:)y,x()x(gcone)x,G(N 0D0 . 

 
 We can add an equality constraint. Let 
 

⎪⎩

⎪
⎨
⎧

−+−

≥++−
=

0<yif xyyx

0yifxyyx
  )y,x(h  

 
 This function is differentiable at x0, but it is not differentiable on any of its neighborhoods. Let 

 and . Theorem 3.7 can be used since  
C

}={= 0)y,x(h:)y,x(H H  G=S ∩

0(S) = {(x,y):y = x,x < 0} ≠ ∅.  Thus, 
 

}≥+{=}∇{+∂= 0yx:)y,x()x(hLin)x(gcone)x,S(N 0k0D0  
 
and . }≥−−{= 0t:)1,1(t)x,S(T 0

 
 As an application of previous results, we can formulate necessary optimality conditions both Fritz John and 
Kuhn-Tucker type for a multiobjective optimization problem. 
 

Theorem 3.10. Consider the problem (MP) where S = {x ∈ IR
n
: g(x) ≤ 0, h(x) = 0},f is Hadamard 

differentiable at  with convex derivative, and assume that conditions (a) and (b) of Theorem 3.6  

or Theorem 3.7 hold. If x

Sx0 ∈

0 is a weak local Pareto minimum for (MP), then there exist (λ, µ, ν) ∈ IR
p
 × IR

J0 × IR
r
, 

(λ, µ) ≥ 0, (λ, µ) ≠ 0 such that 
 

                                 (9) ∑ ∑∑
∈ ==

∇ν+∂µ+∂λ∈
0Jj

r

1k
0kk0jDj0i

p

1i
Di ).x(h)x(g)x(f0

 
If, moreover, , then . ∅≠ )S(C0 0≠λ
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Proof. 
 
 It is known that if x0 is a weak local minimum of a Hadamard differentiable function f on S, then 

, where C∅=∩ )f(C)x,S(T 00 0(f) = {u ∈ IR
n
: dfi(x0, u) < 0, i = 1,2,…,p}. 

 
 If , from Theorem 3.6 or from Theorem 3.7 it follows that ∅≠ )S(C0 ∅=∩ )f(C)S(C 0 . 
 
 Hence, 
 
            ∅=∩ )f(C)S(C 00          (10) 
 
 If , then (10) is obviously satisfied. ∅= )S(C0

 
 Consequently, the following system has no solution u ∈ IR

n
: 

 
0u)x(h,Jj0)ux(Dg,0)u,x(df 00'0j0 =∇∈∀<< . 

 
 Using Proposition 2.6,  there exist 
 
(λ, µ, ν) ∈ IR

p
 × IR

J0 × IR
r
, (λ, µ) ≥ 0, (λ, µ) ≠ 0 such that (9) holds and 

 

         IR∈∀≥∇ν+µ+λ ∑ ∑∑
∈ ==

u0u)x(h)u,x(Dg)u,x(fd
0Jj

r

1k
0kk0jj0i

p

1i
i

n
.      (11) 

 
 For the second part, assume that ∅≠ )S(C0 . If were , as there exists 0=λ )H(K)G(Cw 0 ∩∈  and 0≠µ , 
we have that 
 

0w)x(h)w,x(Dg
0Jj

r

1k
0kk0jj <∇ν+µ∑ ∑

∈ =

, 

 
which is a contradiction with what is obtained choosing u = w in (11). 
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