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ABSTRACT 

In this paper we study some properties concerning the Hal and Lah numbers  which are 
those that arise in the theory of combinatorics in association with the “upward and downward factorial 
polynomials” [x]
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n and [x]n. By using generating function techniques and simple binomial expansions we 

establish some nive results for the Hal number  like the recurrence formula, the generating funcion 
and the direct (closed) formula, among others properties. Finally we compare these results with the 

corresponding formulas for the Lah numbers  We establish the corresponding recurrence formulas, 
the generating functions and the closed formulas for this family of numbers, among others properties. 
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RESUMEN 
En este trabajo se estudian algunas propiedades relativas a los números de Hal  y de Lah  
que son aquellos números que surgen en combinatoria asociados con los polinomios factoriales hacia 
arriba y hacia abajo. Se establecen las fórmulas por recurrencia, las funciones generadoras y las 
fórmulas cerradas para esta familia de números, entre otras propiedades. 
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1. THE HAL NUMBERS  
 
 For any real number x and any natural number n we define the upward factorial polynomial [x]n to be 
 

[x]n: = x(x + 1)…(x + n – 1). 
 

 In association with these polynomials we have the Hal numbers  whose definition are those numbers 
that satisfy the relation 
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and we extend this definition stipulating that = 0 when k > n, or k = 0, or n = 0. k

nH
 
 The terminology employed here (´Hal´ numbers) has been chosen to emphasize the analogy between this 
numerical family with the more familiar Lah numbers for the downward factorial polynomials [x])L( k

n n (´hal´ is 
´lah´ backwards), as we see later. See also [2, 3]. 
 
 Notice that by substitution of x by – x in the relation (1) we obtain the equivalent relation 
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 As a consequence from the First Inversion Formula (see appendix, or [1]) we inmediately deduce that 
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 Then, the square matrix H =  with n,k ∈{1,…,N} is inverse of itself, for all N ∈ IN*.  Furthermore, also 
as a consequence of the same First Inversion Formula we deduce that any one of the equations 
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implies the other. Let´s see how to get a recurrence formula and a direct (closed) formula for these Hal 
numbers  ).H( k
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2. RECURRENCE FOR THE HAL NUMBERS 
 
Theorem 1 
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Proof: Consider the following polynomials of degree n + 1: 
 

A(x) =  ,[x]HH)kn( k1k
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 We will prove that these polynomials are equal, obtaining the result by comparing the corresponding 
coefficients. In fact, we have: 
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 But [x]k+1 = [x]k(x + k), and so we can simplify the last expression: 
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 The last recurrence makes it easy to do fast 
calculations of Hal numbers, whose first terms are 
illustrated in the Table 1. It can be observed that even 
columns have only positive numbers, while odd columns 
have only negative numbers (below the principal 
diagonal). Besides, all the rows have alternating 
numbers, beginning by – n!. These facts will be easily 
proved with the help of the direct formula H  which we 
will deduce later. 
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3. GENERATING FUNCTION FOR HAL NUMBER 
 
 Following a similar approach to that used by Riordan in (195
Hal number. 
 
Theorem 2. For all  k ∈ IN, the exponential generating function 
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Proof: From the identity 
 

[-x]n = (-x)(-x + 1)…(-x +
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and using the binomial expansion (1 + u)β = valid for,u
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 The exchange between sum symbols is justified just becaus
for k > n. The result is obtained by comparing the corresponding
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Table 1. First terms of the Hal numbers  ).(Hk
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 - 1   
 - 2 1   
 - 6 6 - 1  
 - 24 36 - 12 1 
 - 120 240 - 120 20 - 1

. .   
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4. CLOSED FORMULA FOR THE HAL NUMBERS 
 
 Although the recurrence (3) for the Hal numbers is a linear and first degree formula in both n and k, this 
recurrence is not easy to resolve in order to derive a direct formula for the Hal numbers  In fact, we use 
a different approach to reach the closed formula. 
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Theorem 3. For n ≥ k: 
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Proof: Making the binomial expansion of {-t/(1 – t)}k, we obtain: 
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 When comparing the corresponding coefficients in the formulas (4) and (6) we obtain the result. g 
 
 From this closed formula for Hal numbers we can deduce, among other things, that the numbers  
are always positive (for k ∈ {1,…,n}): the rows of the table of Hal numbers have alternating entries, beginning 
by the negative factorials Also note that the parity of Hal number  depends only on index k and 
does not depend on index n. 
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5. THE LAH NUMBERS 
 
 For any real number x and for any natural number n we define the downward factorial polynomial [x]n to be 
   

[x]n:= x(x – 1)…(x – n + 1). 
 
 The Lah numbers are defined as the coefficients that satisfy the identity k
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 We also extend the definition for other indexes, stipulating that  when k > n, or n = 0, or k = 0. By 
similar methods used for the Hal numbers, we can deduce that the Lah numbers also form square matrices 
which are inverse of itself: 
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 The complete analogy between Lah and Hal numbers will be stated in the following result. 
 
Theorem 4. The Lah numbers satisfy the following recurrence and direct formula: )L( k
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Proof: First we find the connection between the polynomials [-x]n and [x]n: 
 

[-x]k = (-x)(-x – 1)…(-x – k +1) 
 

= (-1)kx(x + 1)…(x + k -1) 
 
= (-1)k[x]k, 

 
that is, [x]k = (-1)k[-x]k. Applying this in formula (1) we obtain 
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 Therefore, the recurrence (8) and the direct formula (9) are a consequence of theorems (1) and (3) and the 
last identity (10). g 
 

APPENDIX: First Inversion Formula 
 
 The following is a well known result in combinatorics. 
 
Theorem 5. Let ϕn(x) and ψn(x) be families of polynomials of degree n and let (with 0 ≤ k ≤ n) be any 
collection of real numbers. Suppose that the following relations are satisfied : 
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Prof: May be looked up in the books of Berge (1971) or Piza (2002). g 
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