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ABSTRACT

In  this  work,  a  novel  method,  based  upon  Hopfield  neural  networks,  is  proposed  for  parameter 

estimation in the context of system identification. This subject is a very active field of research, because 

even when a model  of  a physical  system is available,  some parameters  may be uncertain or  time 

varying. In our methodology, identification is formulated as an optimization problem, profiting from the 

applicability of Hopfield networks to this kind of problems. In order to compare the novel technique and 

the classical gradient method, simulations have been carried out for a linearly parameterized system, 

and results show that the Hopfield network is more efficient than the gradient estimator, obtaining lower 

error and less oscillations. Also, the neural technique is applied with encouraging results to non-linearly 

parameterized systems, for which few methods have been proposed.
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RESUMEN

En este  trabajo  se  propone un método  novedoso,  basado en redes  neuronales  de  Hopfield,  para 

estimación de parámetros en el contexto de identificación de sistemas dinámicos. Es este un tema 

sujeto a gran actividad investigadora, ya que incluso cuando se dispone de un modelo de un sistema 

físico,  puede haber parámetros inciertos o variables.  Con nuestra metodología,  la  identificación  se 

formula  como un  problema  de  optimización,  sacando  partido  de  la  aplicabilidad  de  las  redes  de 

Hopfield a este tipo de problemas. Para comparar la nueva técnica con el clásico método de gradiente, 

se han realizado simulaciones de un sistema linealmente parametrizado, y los resultados muestran que 

la red de Hopfield es más eficiente que el estimador de gradiente, obteniendo un error más bajo y 

menores oscilaciones. Asimismo, la técnica neuronal se ha aplicado, con resultados alentadores, a 

sistemas parametrizados no linealmente, para los que actualmente hay pocos métodos propuestos.

1. INTRODUCTION

System identification  can  be  defined  as  the  characterization  of  a  dynamical  system,  by  observing  its 
measurable behaviour. Identification has been studied since decades (see Abe (1989)) for a recent review) 
from a variety of viewpoints and research communities, such as statistical regression -estimation-, signal 
processing -filtering-, and control engineering  -adaptive control-. When a priori information about the rules 
that govern a system either do not exist or are too complex, e.g. in electrocardiographic signals, identification 
techniques are used to build a model by only observing input-output data. Then, the system is called a "black 
box" since the internal behaviour is unknown. On the contrary, in many physical systems, our knowledge of 
mechanical, chemical or electrical laws enables us to formulate a model, which is the fundamental tool for 
studying the system, either analytically or through simulations. However, no matter how deep is our physical 
insight, the parameters of any model present inaccuracies. For instance, measurement devices involve some 
error,  transmission systems produce noise,  a robot  can take a stone with unknown mass or the friction 
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coefficient  of  some material  can only  be approximately known. Due to these perturbations,  although the 
model is still valid, the numerical value of its parameters must be confronted with observed data, and the 
system is called a "gray box" since identification must be applied to validate or adapt the a priori formulated 
model, which is regarded as a parametric model  (Unbehauen (1996)).

This paper is focused in on-line identification for gray-box models, i.e. continuously obtaining an estimation 
of the system parameters. This subject has received increased attention after the successful development of 
adaptive control methods (Marino (1997)) that consist of an identification module and a controller that would 
achieve optimal control, should the actual system match the identified one.

The mathematical formulation of a dynamical system is a -possibly vectorial- ordinary differential equation
1 

(ODE) ( )θ= ,u,xfx  where x(t) is the state vector, u(t) is the input vector, which can be regarded as a control 
signal, and the parameter vector ( t )  may be uncertain and/or time-varying. From this formulation, gray box 
identification is achieved by parameter estimation, i.e. by calculating at each time instant a value  θ̂  that 
approaches  the  actual  value   as  much  as  possible,  thus  minimizing  the  estimation  error  θ−θ=θ ˆ~ . 
Therefore, the continuous estimation evolves together with the observation of the dynamical system, so the 
estimation is a dynamical system itself given by an ODE ).u,x,ˆ(gˆ θ=θ

In the above paragraph, we have formulated identification as minimization of the estimation error  θ~ . In 

doing  so,  we  emphasize  that  the  appropriate  framework  for  identification  is  optimization.  Indeed,  most 

proposed  techniques  for  identification  are  somehow based  on  optimization  methods.  On one  hand,  the 

simplest method for on-line identification is the gradient method, which is supported by the same rationale as 

gradient descent optimization: the estimation should evolve in the direction that best minimizes the error, 

which is the -negative- gradient of the error function. However, the actual parameter value θ  is unknown and 

so it is the estimation error θ~ . Thus, the norm of the output prediction error ,x),u,x(fe −θ= or equivalently 

its square  ,e
2

 is  instead used as the target  function,  and the gradient  method leads to the estimator 

dynamics .)ˆ(ekˆ 2
θ∇−=θ  The tuning of the estimation gain k is a key aspect of the estimator design and 

must be repeated for each particular system. If k is small, the convergence to the actual parameter is slow. If 

k is too large, oscillations may appear that cause not only larger error but also high frequency noise, which 

may excite unmodelled dynamics if the estimation is a part of a closed loop controller. On the other hand, 

several methods have been proposed for batch estimation, i.e. for identification that is performed only once, 

after the observation of the complete evolution of the system. Most classical batch estimators are based upon 

minimization of  least  square  error,  while  heuristic  techniques  have recently  been proposed  based upon 

genetic algorithms  (Pedroso (2002)), which are known to be global optimizers. It is remarkable that most 

identification techniques have been applied to the simpler “linear in the parameters” (LIP) systems, with the 

form f(x, u, θ) = A(x, u) θ, while identification of nonlinearly parameterized systems is still almost unexplored.

In this contribution, we apply the optimization methodology of Tank and Hopfield (1985) to the identification 

problem,  by designing a  Hopfield  neural  network  whose Lyapunov function is  made coincident  with  the 

prediction error, so that the network evolution approaches a minimum of the error. When compared to the 

gradient method, the proposed technique is shown to alleviate the problematic tuning of gain, achieving fast 

convergence of estimations to the actual values of parameters, as well as less oscillations. With respect to 

batch estimators, the ability of the Hopfield estimator to track time varying parameters is shown. Besides, a 

method to deal with non-LIP models, based upon the higher order Hopfield neural network (Samad-Harper 

(1990)), is presented with promising results. The only requisite of the proposed methods is the knowledge of 

a bounded region where the actual values of parameters remain.

1Along the paper, we adhere to the notation x for the time derivative.
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The organization of this paper is as follows: the well known gradient method is briefly reviewed in Section 2, 

together with its usual application to linear in the parameters systems. In Section 3, after  describing the 

application  of  Hopfield  neural  networks  to  optimization,  parameter  estimation  with  Hopfield  networks  is 

presented.  Section  4  is  dedicated  to  the  application  of  higher  order  Hopfield  networks  to  nonlinearly 

parameterized systems. The efficiency of these methods is assessed by simulations in Section 5. Finally, 

conclusions are summarized in Section 6. 

2. GRADIENT ESTIMATION

In gray box identification, a system model is known but it includes some unknown, uncertain and/or time 

varying parameters. In the simplest and most usual case, the model is in the LIP form ( ) θ= u,xAx . It will be 

useful for our purposes to consider the “expected” or “nominal” –known- values of the parameter vector θn, so 

that the system model results in:

                   ( ) ( )( )ttAxy n θ+θ==   

where y is the output, θ is the unknown -possibly time dependant- deviation from the nominal values and A is 

a matrix that depends on the input u and the state x. Both y and A are assumed to be physically measurable. 

Identification is accomplished by producing an estimation )t(θ̂  that is intended to continuously minimize the 

estimation error θ−θ=θ ˆ~ . An additional important objective is to reduce the output prediction error that, in the 

linear in the parameters form, reduces to ( ) .ˆAyˆAe n θ=−θ+θ=  Equivalently, the square of the norm of the 

prediction error can be chosen as the target function:

                       ( ) ( ) θθ=θθ== ~AA~~A~Aeee TTTT2
     

A common technique for on-line estimation is the gradient method that, due to its simplicity, presents some 

advantages over least mean squares algorithms in estimation of time varying parameters. In the gradient 

method, the estimation is continuously modified in the direction that best minimizes the prediction error, i.e. 

the direction of the gradient of  ||e||
2
 as a function of the estimation vector  θ̂ , thus leading to the dynamical 

equation of the estimator:

[ ]y)ˆ(AAk2eAk2)ee(kˆ
n

TTT −θ+θ−=−=∇−=θ

)yA(Ak2ˆ)AAk2( n
TT −θ−θ−=      

where the fact  A~/eˆ/e =θ∂∂=θ∂∂  has been used, and k is a design parameter, which must be critically 

chosen as a trade-off  between small  values -slow convergence- and large values -oscillations-.  The last 

equality emphasizes the fact that the gradient method leads to a linear differential equation, when applied to a 

LIP system.  This simplification is not  preserved in more complex models,  and that  is a reason why the 

gradient estimation is not usually used for non-LIP models. The asymptotical convergence to zero of the 

prediction error can be proved if A and y are constant, but the result is also valid as long as A and y change 

slowly  (Slotine-Li (1991)), which we assume in the sequel. However, for the estimation to converge to the 

actual values, some condition of “persistent excitation” must hold. This is due to the possible existence of 

several estimation values that annihilate Eq. , apart from the obvious actual value ,ˆ θ=θ  whereas if the input 

signal is rich enough then A and y are so complex that the only value of θ̂  that leads to 0ˆ =θ  is the actual 
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parameter. This richness of the input signal, called persistent excitation in the control literature, will also be 

assumed.

3. ESTIMATION WITH HOPFIELD AND TANK NETWORKS

The  neural  network  paradigm  comprises  a  variety  of  computational  models,  among  which  Hopfield 

networks (1982 and 1984) are feedback systems for which a Lyapunov function has been found. This feature 

guarantees the stability of the network, which can then be useful for the solution of two important problems: 

associative memory and optimization. In the Abe (1989) formulation, the evolution of a continuous Hopfield 

network is governed by the following system of differential equations:

                                   );s(net=µ    s = tanh(µ/β)      

where β  is a parameter that controls the slope of the hyperbolic tangent function and the net term depends 

linearly on every state  si,  so that in the general high-order form Samad-Harper (1990), it  is a multilinear 

function of the state vector:
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The computational ability of Hopfield networks stems from the fact that they are stable dynamical systems, 

which is proved by the existence of a Lyapunov function:
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Note that the definitions are chosen so that the identity ∂V/∂si = - neti holds, which leads to 
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  and  the  other  conditions  for  V  being  a  Lyapunov 

function are trivially satisfied (see Joya et al. (2002)) for a discussion on Hopfield dynamics). The parameters 

w and I are called weights and biases, respectively. A remarkable property of Hopfield dynamics, is that 

states remain in a bounded region, namely the hypercube si ∈ [-1, 1], due to the presence of the bounded 

function tanh. Therefore, the intended solution should belong to this hypercube, otherwise it will never be 

attained.

The application of the Hopfield model to optimization is a consequence of its stability: since the network 

seeks a minimum of its Lyapunov function, it can be regarded as a minimization method, as long as the target 

function can be identified with the Lyapunov function. The parameters w, I are then obtained from the numeric 

values in the target function  (Tank-Hopfield (1985)). In order to perform system identification, the squared 

norm of the prediction error, as defined in Eq. , is chosen as the target function. Consider the Lyapunov 

function candidate V = ½e
T 
that, after some algebra, results in:

        1
T

n
TTTT V)yAAA(ˆˆAAˆ

2
1

V +−θθ+θθ=      (7)
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where  V1 does not depend on  θ̂  so it can be neglected without changing the position of the minima of V. 

Therefore,  this  equation is identical  to the standard Lyapunov function of  a first  order  Hopfield network  

-Eq. (6) with q = 2- whose states represent the estimation, as long as the weight matrix and the bias vector 

are appropriately defined:

W = - A
T
A; I = A

T
Aθn - A

T
y      (8)

It is remarkable that the only difference between the obtained Hopfield dynamics and the already known 
gradient method given by Eq.  is the presence of the nonlinear sigmoid-like function tanh. A requirement for 
the application of this methodology is the knowledge of a bounded region around θn, because the network 
states can not abandon the hypercube si  ∈ [-1, 1]. However, this region is not required to coincide with the 
hypercube, since it could be mapped into the hypercube by an appropriate scaling. The proposed method is 
simulated and its performance is compared to the gradient method in Section 5.

4. NON LINEARLY PARAMETERIZED SYSTEMS

The physical insight about some systems suggest that parameters enter nonlinearly into the model, i.e. the 
model is not in the LIP form. Some methods have been proposed to deal with non linearly parameterized 
models, mainly based on their reduction to the LIP form, or in the context of adaptive control (Marino-Tomei 
(1993)). However, no general technique has been shown to be effective for a wide range of systems. Our aim 
is to develop an extension of  the Hopfield estimator,  presented in the previous section,  which is able to 
perform parameter estimation in non-LIP models. As observed in Eq. (6), the Lyapunov function of a high-
order Hopfield network is not limited to the quadratic case, but any multilinear function matches this structure. 
Thus minimization may be performed on multilinear functions by the already known procedure of identifying 
the target  function and the Lyapunov function.  Although this remark extends the applicability  of  Hopfield 
optimization  networks,  it  does  not  completely  solve  the  problem of  non  linearly  parameterized  models. 
However, it is well known that any function can be approximated to any desired degree of exactness by a 
multilinear function, which is simply the Taylor series of the original function.

Let a general system model be defined by the ODE  ).,u,x(fx θ=  The proposed method for parameter 

estimation consists in, first, approximating f  by its Taylor polynomial at θ = 0, regarding f as a function of θ:

+θθ
θ∂θ∂
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i 0i
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)0,u,x(f),u,x(f        (9)

The choice θ  = 0 for the point of expansion is a reasonable assumption, because the “expected” value of θ is 
zero, as long as the “expected” value of the parameter is θn. Once the expansion of f has been performed, the 
approximation is a multilinear function, and so it is the prediction error e = f(x,u,θ) – y. Then, the target function 
V = e

T
e is identified with the Lyapunov function in Eq. (6), so obtaining the values of the weights and biases. In 

order to apply this method, bounds of parameters must be known in advance, as in the previous section.

5. SIMULATION RESULTS

5.1. A linear in the parameters model

We  will  show  the  efficiency  of  the  proposed  method  by 

simulating  an  idealized  single  link  manipulator  (Figure  1), 

modelled by the following equation:

58 Figure 1. Single link manipulator.
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Figure 2. Estimation error for θ1.
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where  x  is  the  angle  between  the  manipulator  and  the 

vertical,
x  is its angular velocity, g is the gravity, l is the manipulator 

arm length, v is the friction coefficient, m is the mass that is 

being transported at  the arm extreme and u is the torque 

produced by a motor, which can be regarded as the input or 

control signal. If the gravity is assumed constant, this model 

can be converted into the "linear in the parameters" form by 

the transformation  ),ml/1,ml/v,l/g()( 22T
n −−=θ+θ  A = (sin x, ,x u) so that equation (1) holds. The control 

signal u is defined as a sum of three sinusoids displaced according to the Schroeder phase Ljung (1995), to 

achieve persistent excitation without excessive amplitude.

The setting of the simulated experiment is as follows: At the beginning, the estimator vector θ̂  is null, but 

the actual parameters differ from the nominal values so that  θ(t  = 0) = (0.89  0.25 –0.29)
T
.  Besides, the 

system is subject to a variable load, the transported mass abruptly changing at t = 15 sec. The gains k = 10 

and k = 100 have been chosen for the gradient estimator, while no special attention has been paid to the 

selection of an optimal value for the parameter β of the Hopfield network. The performance of the Hopfield 

network is graphically compared to the gradient method. In particular, the error in the first component  θ1 is 

plotted in Figure 2, where we observe a short transient during which all three estimators oscillate. Then, the 

Hopfield network suddenly converges to the actual value, the gradient estimator with k = 100 oscillates wildly 

and the gradient with k = 10 also converges, but its convergence is so slow that it has not reached the actual 

value when the parameter change at t = 15 sec occurs. After the load change, both gradient estimations are 

distorted, while the network is practically unaffected, which is logical as θ1 does not depend on the mass. It is 

clear  the  problematic  trade-off  of  the  gradient  method  between  oscillatory  answer  (k  =  100)  and  slow 

convergence  (k  =  10),  while  the neural  network  converges  quickly  and  its  oscillations  are  appropriately 

damped. We also compare the integral of the prediction error of the Hopfield estimator to that of the gradient 

method  in  Figure  3.  The  Hopfield  network  and  the 

gradient  with  k  =  100  both  produce  an  accurate 

prediction,  but  the  gradient  with  k  =  10  accumulates 

significant error, mainly after the load change at t = 15 

sec .
5.2.  A non linearly parameterized model

As an illustrative example of the application of high-
order  Hopfield  network  to  parameter  estimation, 
consider the following non-LIP system:

 
x

1
2exu),u,x(fxy θθ+=θ==                  (11)

whose Taylor approximation is

59

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Gradient (k=10)
Gradient (k=100)
Hopfield

Figure 3. Integral of prediction error.



0 5 10 15 20 25 30 35 40
-4

-3

-2

-1

0

1

2

3

4
Predicted output
Prediction error

Figure 6. Predicted and actual output.

f(x,u,θ) ≈ u + xθ1 + ½ x
2
θ1θ2 + ½ x

2
θ1θ2. In order to apply the Hopfield and Tank optimization methodology, the 

prediction error is identified to the Lyapunov function:

                      

                      V ≡ ||e||
2
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which results in the following weights and biases (null parameters have been omitted):
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     The identification performance of the high-order Hopfield estimator, based upon the Taylor approximation, 

has been tested on this system. The simulation comprises an initial parameter error, as well as a sudden 

parameter change at t = 20 sec . In Figures 4 and 5, the ability of the estimator to track parameter variations 

is  shown.  The  estimation  of  θ1,  which  appears  linearly  in  the  model,  is  quite  accurate.  However,  the 

estimation of θ2 suffers from a degradation when this parameter moves far from the nominal value, although 

finally the estimation converges to the actual value. This behaviour is due to θ2 entering nonlinearly into the 

model, which produces a smaller influence of θ2 in the Taylor expansion, as is observed in Eq. (12) and the 

fact

I2  = w22  = 0. In order to deal with this problem, further research is being developed, trying to determine the 

optimal selection of the parameter β as well as the appropriate order of the Taylor series. On the other hand, 

the ability of the neural estimator to predict the output is excellent: In Figure 6 predicted and actual output are 

not  distinguishable,  as  can  be  realized  by  the  almost 

constantly null  prediction error. This is a consequence of 

using  output  prediction  error  as  target  function  for 

optimization.

6. CONCLUSIONS

In  this  work,  the  optimization  methodology  of  Hopfield 

and Tank is applied to parameter estimation, in the context 

of  system identification.  When  restricting  to  linear  in  the 

parameters  systems,  simulation  results  show  that  this 

technique  presents  faster  convergence  as  well  as 

oscillation reduction when compared to the known gradient 
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method. For nonlinearly parameterized systems, the gradient method would lead to a nonlinear dynamical 

equation, and few other methods have been proposed. However, the high-order Hopfield network can be 

applied to general systems, with essentially the same methodology as in the linearly parameterized model. 

The needed adaptation is the approximation of the model function by its Taylor series so that it can be cast 

into  the  multilinear  form  of  the  Lyapunov  function.  Despite  this  approximation,  the  high-order  Hopfield 

estimator  presents  reduced  error  and  fast  convergence  in  the  estimation  of  time  varying  parameters. 

Simulations have been performed for simplified examples with promising results. Current research is directed 

towards the study of an optimal choice of the parameter β, the determination of the appropriate order of the 

Taylor expansion, the inclusion of the estimator into an adaptive control system and the application of neural 

estimators to real-size problems.
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