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ABSTRACT 
Data collected on the physical, biological or man-made world are often highly correlated with one another, 
posing the question of whether fewer variables would contain almost as much information. A crude solution 
is simply to look at the Pearson correlation matrix and omit one of a pair of highly correlated variables. In 
contrast to this, we develop a systematic method of conditioning on one or more variables, and observing 
the resulting partial covariance matrix. If the variables have little variance after the conditioning, then the 
conditioning variables contain most of the information of all the original variables. Paralleling the usual tests 
applied in judging how many principal components are sufficient to represent all the data, we use the 
amount of variance explained by the conditioning variable(s), as a measure of information content. The 
paper explains the computation and includes examples using published data sets.  The approach is found 
to be highly competitive with using principal components, and has the obvious advantage over principal 
components of simply omitting some of the original variables from further consideration. The method has 
been coded in Visual-Basic add-ins to an Excel spreadsheet. 
 
RESUMEN 
Los datos  coleccionados del mundo físico, biológico o  producto de la actividad humana usualmente 
están altamente correlacionados entre ellos, estableciéndose el cuestionamiento de si menos variables 
pueden contener casi la misma información. Una solución cruda es mirar simplemente a la matriz de 
correlación de Pearson y omitir uno de un  par de  variables altamente correlacionadas. En contraste 
con esto, nosotros desarrollamos un método sistemático de condicionar una o más variables, y 
observar la  resultante matriz de  covarianzas. Si las variables tienen una pequeña varianza después de 
condicionar, entonces las  variables condicionantes contienen la mayor parte de la información de todas 
variables originales. Paralelamente a los usuales tests aplicados en juzgar cuantos componentes 
principales son suficientes para  representar toda la  data, usamos la cantidad de varianza explicada 
por la(s) variable(s) condicionante(s), como una medida de la información contenida. El trabajo  explica 
la computación e incluye ejemplos usando conjuntos de datos publicados.  El enfoque está  basado en 
la alta ganancia respecto al  uso de componentes principales, y posee  la obvia ventaja respecto a ellos  
de omitir simplemente algunas de las variables originales a partir de otras  consideraciones. El método 
ha sido codificado en Visual-Basic añadido a una hoja de cálculo  Excel. 
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1.  INTRODUCTION 
 
 In studying physical and social phenomena, it often happens that two observed variables are highly 
correlated with one another.  This immediately opens up the question of whether there is any need to observe 
the values of both variables, or is it sufficient to collect data on just one or other. Indeed, often several 
variables are observed and found to be correlated, and it is useful to know whether collecting data on a 
smaller number would be sufficient. 
  
 When we are interested in a single dependent variable, and all other variables are examined as predictors 
of the dependent variable, well-known statistical techniques such as analysis of variance or step-wise multiple 
regression can be applied (Neter et al., 1996). On the other hand, if we seek a general understanding of the 
data without an immediate differentiation into dependent and independent variables, the applicable statistical 
techniques are less well known. A common approach is to use the multivariate method of principal 
components, or the extension of this into factor analysis. Unfortunately this technique does not address 
directly the basic question of whether all the original variables yields much more information than just some 
sub-set of them. 
 
 In this paper we present a statistical method that measures the amount of information lost by omitting one 
or more variables from a set of correlated observations, and thereby identifies which variables are best 
retained. This is primarily an ex-post analysis when we are simply interested in reducing the total number of 
variables to allow the underlying phenomena to be understood more easily. However, the method can also be 
used ex-ante on a preliminary sample of observations to assess the loss in information if data on all variables 
is not collected for the main analysis. 
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 In the next section we introduce basic notation and definitions that are used later.  Section 3 explains our 
method that uses partial covariance to identify which variables are most significant.  Section 4 explains the 
computation and Section 5 describes tests that can be applied to decide how many variables sufficiently 
represent the information in all the data. Section 6 summarizes the contrasting approach of principal 
components analysis.  Sample results are given in Section 7. 
 
2.  NOTATION AND PREPARATION 
 
 Consider a number of variables i = 1 .. m that are observed on a number of cases j = 1 .. n, with datum xij 
assumed to have an unique scalar value.  The observations may be represented by matrix X |xij , i = 1 ..m, j = 
1 .. n| or column vector variables Xi , i = 1 .. m. Working simply from the value of X, we are interested in 
inferring whether one or more of the variables i = 1 .. m are so closely correlated to the others that using only 
a subset and ignoring the rest of the variables would result in little or no loss of information. For convenience 
of notation, we allow an arbitrary reordering of the variables, and will write about omitting variables i = 1 .. p, 
and retaining variables i = p+1 .. m. 
 
 Since the measurement scale of variable i does not enter into our consideration, each variable can be 
conveniently normalized to have mean 0, simply by subtracting the mean of the observations from each 
observed value.  Similarly we can normalize the variance and standard deviation to 1 by dividing each xij by 
the standard deviation of Xi.  That is, x'ij = (xij - µi) / σi where µi and σi represent the mean and standard 
deviation respectively of the observed Xi. To simplify notation, we will assume that this transformation has 
been carried out on all the data, and from now on will use xij to denote the normalized variables. 
 
 With all variables now standardized, there is essentially no distinction between them.  The only special case 
that could arise would be if all elements of some original Xi had the same value.  In this case the variance 
would be 0, and our normalization would be mathematically undefined.  But if some vector Xi has all elements 
identical, then it contains no information.  Then, after omitting any such uninformative variables, the variance 
can be used as a measure of information.  With all variables initially standardized to a variance of 1, each has 
the same information content.  Then the variance of the i = 1 .. m variables sums to numeric value m, and this 
total variance can be used as a measure of the information content in any subset of the m variables. 
 
  This total variance as a measure of information content is exploited in the procedure below. We use the 
approach of conditioning the observed value of one variable on the observed value of another.  That is, a 
value xi'j observed jointly with a value for xij is adjusted to a value calculated as if xij were at the mean value of 
Xi.  If such an adjustment for every xi'j , j = 1 .. n, adjusts xi'j to the mean value of Xi', then the partial variance 
of Xi' conditioned on Xi is zero.  Since by this process all the information (variance) of Xi' is removed, it means 
that all the information is already contained in Xi , so variable Xi' is redundant. 
 
3.  SELECTING VARIABLES BASED ON PARTIAL COVARIANCE 
 
 We now outline the procedure used to select variables i = p+1 .. m to retain as representing most of the 
information in all m variables, and identify those variables i = 1 .. p that contain little additional information.  It 
should be emphasized that if two variables Xi and Xi' are perfectly correlated, then whichever we choose first 
makes the second redundant.  In other words, it is not intended to say that some variables are inherently 
more informative than others.  We are simply trying to identify some sub-set i = p+1 .. m of a set of inter-
related variables that contains as much information as possible. Some completely different sub-set of m-p 
variables may contain almost as much information.  
 
 The partial variance of a variable, denoted σii.i'' is the variance remaining in variable i when the effect of 
variable i'' is removed.  This is equivalent to calculating the value that each xij would have if xi"j were at the 
mean value of Xi''. If variable i is perfectly correlated with i'', then conditioning variable i on i'' will leave σii.i'' 
with a value of 0.  (Similarly, σi''i''.i will be zero.)  Conditioning on two or more variables is a simple extension of 
the process. Thus if, in an arbitrarily ordered set of variables X1 .. Xm, conditioning on Xm-1 and Xm leaves zero 
partial variance in X1 to Xm-2, then the information contained in all the variables X1 .. Xm is contained in Xm-1 
and Xm.   
 
 If all m variables are normalized to have unit variance, then the sum of their variances is simply m. Thus if 
i = p+1 .. m are the variables retained as representing most of the information of all m variables, and i = 1 .. p 
are omitted, ideally the variance explained by variables p+1 .. m will be m, and the partial variance of 
variables 1 .. p will be zero. Since perfect correlation is unlikely in any real data, a residual partial variance 
that is small, rather than 0, is an acceptable goal.  We use the proportion of variance explained by the 
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selected p+1 .. m variables, or alternately the residual partial variance in the remaining p variables, to decide 
how many variables reasonably represent all the information. 
 
4.  COMPUTATION 
 
 The covariance between two vector variables Xi , Xi' is given by the joint moment 
 

Cov (Xi , Xi') = E{[Xi - E(Xi)] [Xi' - E(Xi')]} = E (Xi  Xi') - E (Xi) E (Xi') = σii'
 
 The partial covariance between two variables i and i' partialing out a third variable i'' is given by  
σii'.i'' = (σii' - σii'' σi'i''). Now represent the variance-covariance matrix derived from the m columns of data matrix 
X as 
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 Consider partitioning the m variables into two sets, with appropriate relabelling as necessary, so that  
i = p+1 .. m are  the variables retained as representing most of the information of all m variables, and i = 1 .. p 
variables are to be omitted. The variance-covariance matrix V can be partitioned as 
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where V11 represents the variance-covariance matrix of variables i = p+1 .. m and V22 the variance-covariance 
matrix of variables i = 1 .. p. Then the partial variance-covariance matrix of (relabelled) X1 , X2 , .. Xp  given 
Xp+1 .. Xm is V11.2 = V11 - V12 V-1

22 V21 (Morrison, 1976 p.92). The trace of V11.2 represents the remaining 
variance of variables i = 1 .. p after conditioning on the selected variables i = p+1 .. m. If the trace of V11.2  is 
small, then variables i = p+1 .. m retain sufficient of the information (measured by variance) to represent all 
the original variables i = 1 .. m.  
 
 Once the variance-covariance matrix V has been computed initially for X, all subsequent calculations  
are manipulations on V. Since, in fact, we have an initial step of normalizing all variables to mean 0 and 
variance 1, there is no difference between the initial variance-covariance matrix V and a standard Pearson 
correlation matrix, which therefore forms a convenient starting point for our procedure. 
 
 Having discussed how to compute the partial covariance matrix and how to monitor the amount of variance 
explained by the selected conditioning variables, we still need to consider how the conditioning variables will 
be selected.  (It is worth pointing out that the procedure can be controlled by the analyst's knowledge of what 
the variables represent, and can serve as a diagnostic of how much information is retained or lost by 
including or omitting specific variables.  However, here we are concerned only with a mechanistic procedure 
having the goal of retaining most information with the least number of variables). 
 
 We have experimented with two approaches, the simpler one referred to as a “myopic” or "greedy" 
procedure, while the second is comprehensive.  In the myopic procedure, we start by taking each of the m 
variables as the conditioning variable, and find which one has the maximum information content (as 
computed by the trace of V11.2).  With this first variable now selected, we try all the remaining m-1 variables to 
find which best represents the residual information content.  This can be continued until there is only one 
residual variable, and all the other m-1 are conditioning variables. 
 
 While this myopic procedure is computationally simple, unfortunately if conditioning is to be on 2 variables, 
we cannot be sure that the first variable selected will be one of the best two variables, that the best 2 will be a 
subset of the best 3, and so on (Jenkins and Anderson, 2000). The alternative is to try conditioning on all 
combinations of 2 variables, all combinations of 3 variables etc. When the total number of variables m is 
small, it will be worthwhile trying all mCm-p combinations  for all values of p, to find which m-p variables best 
represent all the data.  

 63



 Section 6 includes illustrative results using both the myopic and the comprehensive approach to selecting 
the subset of conditioning variables.  Murray Anderson has coded each procedure as a Visual Basic add-in to 
an Excel spreadsheet (Roman, 1999) that uses a correlation matrix as initial input. The two procedures, both 
of which include in the output measures of the variance explained by the selected variables, can be 
downloaded from an appendix to this paper on Larry Jenkins’ website (Anderson and Jenkins, 2002). The first 
add-in is named Myopic, and selects all m variables sequentially in a single run. The second add-in, named 
PickBest, asks the user how many m-p variables to use to explain the variance. Output consists of results 
with m-p explanatory variables on a new Excel worksheet. The output lists all possible m-p combinations of 
the original variables, in decreasing order of total variance explained. 
 
5.  HOW MANY VARIABLES SUFFICIENTLY REPRESENT ALL THE DATA? 
 
 We discuss in this section some heuristic and statistical rules to help decide how many variables might 
satisfactorily represent all the information contained in the original variables.  Without any special knowledge 
of what each variable measures, our guidelines depend strictly on statistical tests. The simplest approach 
focuses on the proportion of total variance m contained in the subset of variables. The other approach 
considers the residual (partial) variance in the variables omitted. The heuristics and statistical rules are all 
drawn from studies in principal components and factor analysis (see Section 6), but are equally applicable to 
our analysis. 
 
Rules based on the variance explained by each variable: 
 
1. Base the stopping rule on the percentage of total variance explained by p variables 
 

Our procedure identifies, for each value of p, the sub-set of variables that explains as much as possible of 
the total variance m.  Then we examine the percentage of total variance explained by m-p variables, and 
decide when the proportion is large enough that it is not worth retaining more than m-p variables. A graph 
plotting number of variables omitted against proportion of variance explained can easily suggest an 
appropriate stopping point. This was named the scree test (Cattell, 1966, cited in Bernstein, 1988 p.174) 

 
2. Base the stopping rule on the percentage of remaining variance explained by a variable 
 

In this case we include an additional variable as long as it explains a large proportion of the variance 
remaining. This is simply a variation on rule 1. 

 
3. A variable can be omitted if it explains less than 1 unit of the remaining variance 
 

The logic of this rule is simply that if adding another variable cannot bring to the analysis at least as much 
variance as it explained as a stand-alone variable (1 unit), then its contribution to total explanation is 
inadequate.  The heuristic is usually attributed to Kaiser (1958, cited in Dillon and Goldstein, 1984 p.48). 

 
Rule based on the partial correlation matrix:  
 
 There are statistical tests of significance that can be applied to the partial correlation matrix remaining after 
conditioning on the variables p+1 .. m.  They all test whether the matrix is significantly different from the 
identity matrix, for if there was 0 correlation remaining between the variables, the partial correlation matrix 
would have 1s on the principal diagonal, and 0s everywhere else.  The tests of significance depend both on 
the total number of variables m, and the total sample size n.  While m is implicit in the correlation matrix, n 
needs to be known independently as the size of the sample from which the original correlation matrix was 
calculated. Bartlett (1950, cited in Bernstein, 1988 p.175) developed a chi-square test of whether the partial 
correlation matrix is significantly different from 0 as follows:  
 
 Calculate χ2 = -[n - 1 - (2m +5)/6] ln|V|, where n is the number of cases, m is the number of variables and 
|V| is the determinant of the partial correlation matrix for the 1 .. p variables, conditioned on variables p+1 .. m. 
The degrees of freedom for this computed χ2 is m(m-1)/2. 
 
6.  PRINCIPAL COMPONENTS ANALYSIS 
 
 In contrast with our approach of omitting variables that do not bring significantly more information than is 
already contained in our selected p+1 .. m variables, principal components (PC) analysis retains all the 
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original variables and forms artificial variables that are linear combinations of them.  We mention it here briefly 
since the method is well known and its results provides a valuable benchmark against which to compare our 
approach. PC analysis was conceived as a method of trying to identify a few underlying factors that 
reasonably explained most of the variability in a set of related observations.  
 
 The first PC is a weighted sum of all the input variables, calculated so that as much as possible of  
the variance of all the raw variables is contained in that component. With variables Xi i = 1 .. m, then  
PC(1) = w(1)1X1 + w(1)2X2 + … w(1)iXi + … w(1)mXm where the weights w(1)1, w(1)2, .. w(1)i, … w(1)m have been 
chosen to maximize the variance of PC(1) - the first principal component - subject to the constraint that  
Σi=1

m w2
(1)i = 1 (Dillon and Goldstein, 1984). 

 
 After this first component is extracted, the raw variables have some residual variance. Then a second principal 
component, PC(2), is extracted to include as much as possible of this residual variance. To extract the maximum 
remaining variance, this second PC will be orthogonal to the first. The process can continue until m principal 
components are extracted, and these will always suffice to explain all the variance in the original data. However, 
since PC analysis maximizes the reduction in the variance at each step, often just the first few components 
contain most of the information in the original data. Technically, the PCs of matrix X are its eigenvectors, while 
the eigenvalue corresponding to each eigenvector is the amount of variance explained by that eigenvector.  Thus 
many common matrix manipulation programs can be used to calculate the principal components.  
 
7.  ILLUSTRATIVE RESULTS 
 

  
Case j  

1 
2 
3 
4 
5 
6 
7 
8 

 
Table 2. C

 
 

X1

X2

X3

 To illustrate our approach, we start with a small 
artificial example.  The data are listed in Table 1, with 
the correlation matrix in Table 2. 
 
 Though it is hardly obvious from the correlation matrix 
for this data, any two of the three variables contains all 
the information of the three variables. (X3 was 
calculated by X3 = 0.6 X1 - 0.7 X2 + 3.0). X2 alone can 
account for 57.07% of the variance of all three 
variables, X3 alone for 56.14%, and X1 alone for 
41.35%. Any two will account for all the variance. By 
comparison, the first principal component can account 
for 58.72% of the variance of all three variables, (which 
is barely more than 57.07% with the most informative 
variable) and of course two principal components 
account for all the variance. 
 
 For our second example, we start simply with a 
Pearson correlation matrix. The matrix is taken from an 
example in the SPSS manual related to smoking (SPSS, 
1999, p.318) but we simply label the variables 1 to 12. 
 

Table 3.  Correlation matrix of variables characterizing d
 

 Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8
Var1 1.00        
Var2 0.85 1.00       
Var3 0.81 0.78 1.00      
Var4 0.82 0.81 0.79 1.00     
Var5 0.06 0.12 0.14 0.12 1.00    
Var6 0.11 0.16 0.19 0.22 0.80 1.00   
Var7 0.10 0.17 0.24 0.24 0.74 0.70 1.00  
Var8 0.12 0.21 0.22 0.30 0.71 0.73 0.71 1.00
Var9 0.04 0.23 0.09 0.20 0.56 0.60 0.49 0.58

Var10 0.13 0.28 0.14 0.21 0.36 0.34 0.24 0.27
Var11 0.14 0.27 0.20 0.27 0.41 0.43 0.34 0.36
Var12 0.04 0.20 0.10 0.22 0.58 0.61 0.61 0.59
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Table 1.  Artificial data. 

X1 X2 X3

2.30 3.30 2.07 
1.50 0.50 3.55 
2.20 3.20 2.08 
1.80 2.30 2.47 
0.50 2.60 1.48 
1.30 2.80 1.82 
1.40 2.10 2.37 
0.30 1.80 1.92 

orrelation matrix for artificial data. 

X1 X2 X3

1.000   
0.366 1.000  
0.326 -0.760 1.000 
ifferent smokers. 

 Var9 Var10 Var11 Var12 
    
    
    
    
    
    
    

     
 1.00    
 0.46 1.00   
 0.51 0.80 1.00  
 0.80 0.61 0.70 1.00 



Table 4.  Comparison of most informative fewer variables with PC analysis for smokers. 
 

Variables selected % total variance explained 
by best m-p variables 

% total variance explained 
by same number of PCs 

V12 33.59% 45.19% 
V1, V12 59.14% 70.22% 
V1, V5, V12 70.82% 81.75% 
V1, V5, V10, V12 78.24% 86.33% 
V1, V6, V7, V9, V10 83.09% 89.27% 
V1, V5, V7, V8, V9, V11 86.50% 91.80% 
V1, V3, V5, V7, V8, V9, V11 89.51% 93.82% 
V1, V3, V5, V7, V8, V9, V10, V11 92.47% 95.48% 
V1, V3, V5, V6, V7, V8, V9, V10, V11 94.86% 96.88% 
V2, V3, V4, V5, V6, V7, V8, V9, V10, V11 97.01% 98.09% 
V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12 98.56% 99.16% 

 
 From the results in Table 4, we see that the “myopic” approach would be valid for up to 4 variables, but 
would not select the best 5 variables, and that V1, which forms part of the most informative sub-set of 2 
through 9 variables, is omitted if we use 10 or 11 variables. 
 
 As a third example we present results for a fairly large data set used to illustrate factor analysis in the 
recent release of the SPSS software for statistical analysis (SPSS, 1999, p.324), and consists of  
11 population-related variables for 74 countries.  Table 5 shows the initial correlation matrix. 
 

Table 5.  Correlation matrix of population-related data for 74 countries. 
 
 urban lifeexpf literacy pop_incr babymort birth_rt death_rt log_gdp b_to_d fertilty log_pop
urban 1.000 
lifeexpf 0.685 1.000 
literacy 0.526 0.867 1.000 

pop_incr -0.204 -0.507 -0.642 1.000

babymort -0.667 -0.975 -0.855 0.509 1.000
birth_rt -0.473 -0.801 -0.824 0.837 0.810 1.000
death_rt -0.319 -0.470 -0.298 -0.303 0.463 0.076 1.000
log_gdp 0.734 0.829 0.673 -0.499 -0.817 -0.725 -0.147 1.000
b_to_d -0.022 -0.186 -0.361 0.879 0.179 0.608 -0.598 -0.295 1.000 
fertilty -0.387 -0.751 -0.823 0.831 0.754 0.967 0.103 -0.599 0.595 1.000 
log_pop -0.315 -0.265 -0.185 -0.075 0.297 0.020 0.168 -0.288 -0.218 0.002 1.000 

 
Table 6.  Myopic importance of criteria in explaining variance in the population-related data. 

 
Order of 
selection Significant variable to remove Amount of additional 

variance explained 
Cumulative proportion  

of total variance explained 
1 Birth rate (birth_rt) 5.736 52.1 
2 Infant mortality (babymort) 2.212 72.2 
3 Death rate (death_rt) 0.849 79.9 
4 Log10 of population (log_pop) 0.734 86.6 
5 Percentage urban (urban) 0.613 92.2 
6 Ratio of birth rate to death rate (b_to_d) 0.283 94.8 
7 Percentage of people who read (literacy) 0.226 96.9 
8 Log10 of GDP per capita (log_gdp) 0.205 98.8 
9 Annual population increase (pop_incr) 0.072 99.4 

10 Average number of children (fertilty) 0.036 99.7 
11 Average female life expectancy (lifeexpf) 0.034                    100.0 

  Total      11.000  
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Table 7.  Amount of variance in population-related data explained by conditioning versus PCA. 
 

Number of variables/components 
extracted 

1 2 3 4 5 6 7 8 9 10 11 

Additional variance extracted by 
conditioning 
- myopic approach 

5.736 2.212 0.849 0.734 0.613 0.283 0.226 0.205 0.072 0.036 0.034

% additional variance extracted by 
conditioning 
- myopic approach 

52.1% 20.1% 7.7% 6.7% 5.6% 2.6% 2.1% 1.9% 0.6% 0.3% 0.3%

Additional variance extracted by 
conditioning  
- most informative variables 

5.736 2.581 0.919 0.618 0.391 0.259 0.249 0.118 0.071 0.035 0.023

% additional variance extracted by 
conditioning 
- most informative variables 

52.2% 23.5% 8.3% 5.6% 3.5% 2.4% 2.3% 1.1% 0.6% 0.3% 0.2%

Variance extracted by PCA 6.269 2.470 0.966 0.612 0.238 0.171 0.124 0.069 0.045 0.024 0.013

% of total variance extracted by PCA 57.0% 22.5% 8.8% 5.6% 2.2% 1.5% 1.1% 0.6% 0.4% 0.2% 0.1%

 
 This last analysis is offered only as an example of applying our technique, but in terms of just a few of the 
original variables representing most of the information the results are impressive.  Selecting myopically, two 
out of the original 11 variables contain 72.2% of the information in all the data, but the best combination of 
two variables (log_gdp and literacy) explains a combined variance of 8.533 (77.7%), whereas the first two 
PCs contain 79.5%.  With five variables chosen myopically the proportion of explained variance is 92.2%, and 
with the best five variables it is 93.1%, versus 96.1% with five PCs. 
 
 Since, with this population-related data, we know the sample size n = 74 countries, we can apply the 
Bartlett test for significance of the residual partial correlation matrix. We find that with conditioning on the  
best 9 variables (but not less) the residual partial correlation is not significant at the 95% level. This 
contradicts simpler heuristic rules such as the scree test, or ignoring variables (or PCs) that account for less 
than 1 unit of variance. 
 
8.  EXTENSIONS 
 
 The procedures described above have been coded to operate in a purely mechanical fashion to select the 
most informative variables. By treating the correlation matrix of the data as the starting point, “most 
informative” is implicitly evaluated on the basis of each variable having a variance normalized to 1.  There are 
two very simple modifications of the mechanical process that may be useful when working with specific data: 
 

1. The user selects specific variables of interest and uses the program to calculate the proportion of 
total variance that would be explained by just these selected variables; 

 
2. The user decides that, for the specific study, some variables should be weighted as more important 

than others. This could be achieved by inputting the relative weighting at the beginning of the routine 
Myopic or PickBest, as data additional to the original correlation matrix.  Thus if a study involves three 
variables, and the user decides that their relative importance is in the ratio 3:2:1, the information 
content selection step will weight the variables accordingly. 

 
9.  SUMMARY 
 
 We have described a method of multivariate statistics that selects a “most informative” subset of variables 
from a total set of observations where the variables are correlated with one another. The method is 
computationally simple to apply with modern software, and is much superior to attempting to guess which 
variables to retain simply by looking at the correlation matrix. Sample analyses with two moderately large sets 
of data (11 and 12 variables) illustrate that our approach is competitive with PC analysis, and has the obvious 
advantage of selecting fewer than all the original variables, while PC analysis uses all the original variables.  
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A statistical test of significance on a data set with 74 cases suggest a caveat for both our method and PC 
analysis on how many variables (or PCs) can be omitted with little loss of information if the sample size is 
reasonably large. 
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