
REVISTA INVESTIGACION OPERACIONAL                  Vol. 25, No. 1, 2004 
 
 
 
 
SETTING OPTIMAL BOUNDS ON RISK  
IN ASSET ALLOCATION – A CONVEX PROGRAM 
Ekaterina M. Gratcheva, Investment Management Department, The World Bank, Washington DC 20433 
James E. Falk, School of Engineering and Applied Science, The George Washington University 
Washington DC 20052 
 

ABSTRACT 
The ‘Portfolio Selection Problem’ is traditionally viewed as selecting a mix of investment opportunities 
that maximizes the expected return subject to a bound on risk. However, in reality, portfolios are made 
up of a few ‘asset classes’ that consist of similar opportunities. The asset classes are managed by 
individual `sub-managers’, under guidelines set by an overall portfolio manager. Once a benchmark (the 
`strategic’ allocation) has been set, an overall manager may choose to allow the sub-managers some 
latitude in which opportunities make up the classes. He may choose some overall bound on risk (as 
measured by the variance) and wish to set bounds that constrain the submanagers. Mathematically we 
show that the problem is equivalent to finding a hyper-rectangle of maximal volume within an ellipsoid. It 
is a convex program, albeit with potentially a large number of constraints. We suggest a cutting plane 
algorithm to solve the problem and include computational results on a set of randomly generated 
problems as well as a real-world problem taken from the literature. 
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RESUMEN 
El problema de la selección del portafolio es visto tradicionalmente como hacer una selección 
combinada de oportunidades de  inversiones las que maximizan el retorno esperado sujeto a cotas del 
riesgo. Sin embargo, en realidad, los portafolios están formados por unas pocas ‘clases de acciones’ 
consistentes en oportunidades similares. Las clases de acciones son manejadas por  ‘sub-gerentes’  
individuales bajo un conjunto de instrucciones establecidas por un gerente global del portafolio. Una 
vez un ‘inicio’  (afijación estratégica) ha sido fijado, un gerente global puede seleccionar el permitir a los 
sub-gerentes alguna libertad sobre  cuales clases de oportunidades componer. Él puede seleccionar 
alguna cota global del riesgo (como la medida por la varianza) y desear fijar clases de cotas que 
restrinjan a los sub-gerentes. Matemáticamente nosotros mostramos que el problema es equivalente a 
hallar un hiper-rectángulo de  volumen máximo dentro de un elipsoide.  Este es un programa convexo 
dotado con potencialidades y con un gran numero de restricciones.  Nosotros sugerimos un algoritmo 
de planos cortantes para resolver el problema e incluimos resultados computacionales sobre un gran 
conjunto de problemas generados aleatoriamente así como un problema del mundo real tomado de la 
literatura. 
 

INTRODUCTION 
 
 The “Portfolio Selection Model” formulated by Markowitz (1952) involves the maximization of expected 
returns of a collection of equities (a portfolio) subject to a bound on the variance. The underlying assumption 
is that there is a single ’portfolio manager’ who is in charge of setting the investment levels of all assets. Such 
an allocation will be termed a ’strategic allocation’. 
 
 In practice however, portfolios are composed of a collection of ’sub portfolios’ where each sub portfolio is 
composed of similar assets and controlled by (possibly external) a manager with specific expertise in this 
class. The entire portfolio is controlled by a single overall manager who sets limits and guidelines on the sub 
managers but otherwise does not determine the exact mix of the sub portfolios. For example, the huge TIAA-
CREF fund is composed of 4 asset classes as described in Anonymous (2001). 
 
 In this paper we assume that the entire portfolio has been set at some `benchmark’  (perhaps by some 
variant of the Markowitz model) and the overall manager wishes to allow the sub-managers to vary from their 
benchmarks (take advantage of `tactical opportunities’) while still insuring that the variance is within some 
given bound. Such an allocation off the benchmark (the strategic allocation) will be termed a ‘tactical 
allocation’.  
 
 Mathematically we show that the model is equivalent to the geometric problem of finding the largest (as 
measured by volume) hyper-rectangle inscribed within an ellipsoid.  
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 We will show that this is a convex program with potentially a large number of constraints. A ’cutting plane’ 
method for its solution is proposed. This is initiated by choosing a single constraint and solving the problem 
subject only to this constraint. We propose a method to judiciously chose this initial constraint.  
 
 In the final section we present some computational results based on randomly generated problems. 
 
2. THE MODEL 
 
 Let nRx∈ be the strategic allocation for the overall portfolio, where ix  is the fraction of the portfolio invested 

in asset class i, for  i = 1,...,n and .1xeT =  Further assume that a portfolio manager is allowed to deviate from 
the strategic mix within certain limits xl ≤ x ≤ xu. An active allocation x over all asset classes is an allocation 
that is within the active bounds xl ≤ x ≤ xu at any given time and the constraint xeT = 1 is relaxed. In practice 
this means that if xeT < 1, the portfolio is under-invested with respect to its benchmark and if xeT  > 1 the 
portfolio is over-invested. Under-investment of the portfolio results in the remainder of the funds being kept in 
cash instruments. Over-investment can be financed through borrowing cash from the market or other types of 
financing. 
  
 Note that once the benchmark is established for a portfolio, it becomes the risk reference point. Since the 
performance of the portfolio is reported as the difference between the actual portfolio returns and its 
benchmark return (i.e. excess return), any deviation from the benchmark produces volatility of excess returns 
and therefore, creates risk. 
 
 There are a number of measures for portfolio risk. In this paper we define portfolio's risk as the volatility of 
its return as measured by its standard deviation. If x = (x1,……,xn) is a portfolio invested in n different classes 

and Σ is their covariance matrix, then the portfolio's risk is defined as its standard deviation .xxTΣ  Due to 
the properties of financial returns, if variances and covariances are estimated over the same time period for 
all asset classes considered in the analysis, then the corresponding matrix Σ will be positive definite  
(see, e.g., Korn and Korn (1968)).  
 
 For a given number σSAA  (SAA stands for ’strategic asset allocation’), the set  
 
 

SSAA = { }2
SAA

T xx:x σ≤Σ  
  
is an ellipsoid in Rn when  is positive definite and is symmetric about the origin in the sense that if x ∈ SΣ SAA 
the so is –x. Likewise the set 
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is an ellipsoid symmetric about the point x  in the sense that if )x(AS)xx( ∈−  the so is - ).xx( −  
 
 Let 
 

R = {x: xl ≤ x ≤ xu} 
  
denote a hyper-rectangle in Rn with sides perpendicular to the coordinate axes defined by the vertices xl and 
xu. These two points will represent upper and lower bounds set by the overall portfolio manager on deviations 
off of the benchmark .x  We are interested in finding an “optimal” pair of vectors (xl, xu) where the definition of 
optimality will now be given. In order to keep the risk within the value , we will require 2

Aσ ).x(SR A⊂  
 
 There are several optimality measures that could be used here. Since we are concerned in optimizing our 
opportunities for the entire portfolio, we will seek to find the ’largest’ rectangle R such that ).x(SR A⊂  where 

’largest’ is measured by volume. Since the volume of R is  our problem becomes ( ,xx
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Problem P1: s.t. R ⊂ SA )x(  

                  u ≤ v 
 
 Translating this last problem to center the ellipsoid )x(SA  to the origin, the point xl becomes the point 

,xxu l −=  the point xu becomes the point xxv u −=  and the problem becomes 
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Problem P2: s.t. R ⊂ S 

                       u ≤ v 
 
where now R = {x: u ≤ x ≤ v} (this is a change of notation) and S = SA(0). Also below we will use the symbol σ 
instead of σA. 
 
3. PROPERTIES OF THE OPTIMIZATION PROBLEM 
 
 The hyperplane R = {x: u ≤ x ≤ v}  has 2n vertices (including u and v). Its center is  
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 Let P = diag{±1}  denote an n by n diagonal matrix whose diagonal entries are either +1 or –1. There are 2n 
such matrices, and each vertex z of R has the representation  
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opposite to r in the sense that r and s are endpoints of an interval which is a diagonal of R and passes 
through the center w. 
 
 In Problem 2 above, note that the constraint R ⊂ S is satisfied if and only if all vertices of R are in S, i.e., 
zTΣz ≤ σ2 for all vertices z of R.  This translates into the condition that 
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for all diagonal matrices P. Using the notation 1±
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this condition can be written more succinctly as 
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[w+ + Pw-]TΣ[w+ + Pw-] ≤ σ2

 
and our problem can be expressed as: 
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Problem P3: [w+ + Pw-]TΣ[w+ + Pw-] ≤ σ2   for all P. 

 
w- ≥ 0 

 
 
 Using the Weierstrass Theorem (see, e.g., Bazarra and Shetty (1993), page 41), the first result that can be 
proven is: 
 
Theorem 3.1: Problem P3 has an optimal solution for every positive real number σ , and the optimal value is 
positive. 
 
 An argument using the symmetry and convexity of S implies the next result: 
 
Theorem 3.2: There is a hyper-rectangle of maximum volume in S that  is symmetric about the origin of Rn. 
 
 Actually the solution of our problem is unique, but this fact is not needed here. 
 
 Finally, with some (slight) abuse of the notation, our problem is equivalent to the problem: 
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Problem P4:    for all P = diag{±1}. 2T )Pu()Pu( σ≤Σ

 
u ≥ 0 

 
 This is equivalent to a convex problem (the log of the objective function is convex). 
 
 Using the symmetry of this problem, together with the Karush-Kuhn-Tucker conditions, we can show: 
 
Theorem 3.3: Let  solve this problem foru& .σ=σ & Then for anyτ > 0, the solution of this problem for στ=σ &&& is 

 .uu &&& τ=
  
 The implication here is that if we solve problem P4 for one value of σ, we have solved it for all values of σ. 
 
 The main apparent difficulty in solving this problem is that the number of constraints is potentially huge (2n). 
If we knew which constraint(s) were binding, the problem would be trivial. In general, one could use a cutting 
plane procedure (see, e.g. Blankenship and Falk (1976)). This involves: 
 

• For n = 0, select a constraint P, set S(0) = {P}, and solve the problem with only this constraint applied.  
Let uS(0) denote the optimal solution. 

 
• Given a solution uS(n) with constraints in the set S(n) imposed, check all other constraints for 

feasibility. If feasible, you are done. Otherwise choose that constraint which is most violated, add it to 
the set S(n) to form the set S(n + 1) and continue.   

 
 Unfortunately, the ’checking problem’ here is a non-convex problem!  As such, one would generally need to 
implement some type of implicit enumeration scheme such as the Falk/Soland (1969) algorithm. 
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 Fortunately, the number n of asset classes is small in practice. Indeed the huge TIAA-CREF annuity 
accounts are made up of but 4 asset classes (see, e.g., Anonymous (2001)). We did solve problems of up to 
15 classes (a huge number for asset classes) using complete enumeration with no numerical difficulties. The 
maximum number of constraints that needed to be added was 6, and the average number was 3. 
 
In order to start the cutting plane approach, we would like to have a reasonable prediction of a good `starting 
constraint’. Recall that we are trying to find the enclosed hyper-rectangle of maximum volume. If instead, we 
solve the problem 
 
                   min         uTu 

 
       s.t.  uTΣu = σ2

 
we get the largest hyper-sphere (instead of the largest hyper-rectangle) within the feasible region. It is easy to 
show that the optimal solution u* is an eigenvector of the matrix Σ and corresponds to the largest eigenvalue.  
It turns out that this equals 1/λ* where λ* is the optimal KKT multiplier of the problem. The ±1 diagonal matrix 
P1 whose signs agree with u* is used to initial the cutting plane procedure.  
 
4. COMPUTATIONAL RESULTS 
  
 A Numerical Example with Two Asset Classes: 
  
 In this example a fund manager is performing a strategic asset allocation (SAA) between two asset classes: 
global fixed income and the US equity market. The fund's analyst uses the following expected returns, 
variances and covariances for these two asset classes: 
 

Table 1. Risk/Return Parameters for US Equity and Fixed Incomc. 
 

 Expected Return Covariance 
US Equity 9 %   240.25     65.62 
Fixed Income 6.5 %     65.62     80 

 
The next step involves a decision on the measure of risk of the portfolio. We assume that this fund's risk is 
measured by the volatility (standard deviation) of its portfolio's returns. 
  
With the above data and using Markowitz's model, the mathematical program which determines the SAA of 
the portfolio is  
 
       max         9x1 + 6.5 x2 

 

s.t.   (x1, x2)Σ(x1, x2)T 2
Sσ≤  

 
     x1 + x2 = 1 

 
      x1, x2 ≥ 0 

  
where σS is the desired level of the strategic portfolio’s risk and Σ  is the covariance matrix of Table 1. 
 
 Table 2 shows various solutions for the above problem for different levels of  σS. 
 
 Assume that the portfolio's strategist allows an extra 5 % in the volatility of the portfolio return for active 
deviations σA. We then need to find the maximum allowable tactical deviations within this specified risk, i.e., 
we need to find the largest rectangle contained in the ellipse defined by the new sigma, centered at the 
strategic asset allocation point. 
  
 The mathematical model describing the problem is:  
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 Substituting y1 = x1 -   y,x0

1 2 = x2 -   the problem then becomes: ,x0
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           max                          y1y2
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 Table 2 presents the results of the above problem for various 
levels of strategic risk. 
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( 58.75%, 41.25% ) ( 91.37%, 60.07% )

( 26.13%,22.43%)

 Figure 1. Optimal Deviations for US Equit  
                    and Fixed Income. 

 
 We have filled out the table by solving the problem for each 
level of σA = 3, 4, 5.  (We could have used Theorem 3.3 instead). 
 
Table 2. Strategic Asset Allocation for US Equity and Fixed Income. 
 

Portfolio’s Risk 
 (σS) 

Fixed Income US Equity 

10 58.75 % 41.25 % 

12 33.58 % 66.42 % 

14 13.63 % 86.37 % 

  
 Figure 1 illustrates the solutions graphically for σS = 10 and 
σA = 5. 
 
Randomly Generated Problems: 
 
 We applied our algorithm to a range of randomly generated problems with positive definite matrices and 
with a number of variables (asset classes) ranging from 5 to 15. Table 3 summarizes the average number of 
constraints added to the optimization problem, the standard deviation of that number, its maximum and 
running times for both optimization problems (finding a candidate solution and testing it for feasibility). The 
algorithm was implemented in MATLAB 5.3 and was run on a Pentium 166 MH PC. Statistical information is 
compiled for 25 runs for each number of variables (N). 
 

Table 3. Algorithm Summary – Randomly Generated Problems 
 

 Number of Constraints Running Times 

No. Var. Average STD Max # Opt. Solver Opt. Check 

  N = 5 1.8 0.9 3 3 0 

  N = 10 2.4 1.4 5 9           0.5 

  N = 15 2.8 1.4 6 19 50 
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 The algorithm converged to the optimal solution on average between 2 and 3 iterations, and with 95 % of 
the problems all added constraints were binding. Note that the original number of constraints would have 
been 32, 1024 and 32768 for N = 5, 10 and 15 respectively. The algorithm found the optimal solution in one 
iteration in 44 %, 36 % and 24 % of the problems respectively. 
 
 The solution of a real-world problem can be found in Gratcheva’s doctoral dissertation (2000). 
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