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ABSTRACT 
The notion of contingent epiderivative and its properties are studied. A Lagrange multiplier rule is 
obtained for K-pseudoconvex and generalized K-convexlike multifunctions with contingent epiderivative. 
Convexity of the domain is replaced with conditions on a certain cone which will be asymptotically 
compact. 
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RESUMEN 
En este trabajo se obtiene una regla de multiplicadores de Lagrange para multifunciones K-pseudo-
convexas y K-convexlike generalizadas que poseen epiderivada contingente. Por otra parte se estudia 
esta noción de epiderivada contingente y sus propiedades. La convexidad del dominio se reemplaza por 
condiciones en un cierto cono que deberá ser asintóticamente compacto. 
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1. INTRODUCTION AND NOTATION  
 
 Set valued optimization problems have been investigated by many authors in recent years. In some cases: 
Aubin (1981), Aubin-Frankowska (1990), Burwein (1977), Corley (1987) and (1988), Jahn-Rauh (1997),  
Jahn-Götz (2000) and Luc (1991), they have established necessary and sufficient conditions under certain 
hypothesis. 
 
 In this paper we consider the following standard assumptions: 
 
 Let X be a real normed space. Let Y, Z be real normed spaces partially ordered by convex pointed cones  
KY ⊂ Y and KZ ⊂ Z respectively. Let F: X → 2Y, G: X → 2Z be set-valued maps and let M be a nonempty 
subset of X, M ⊂ Dom(F), M ⊂ Dom(G). 
 
 Under these assumptions we consider the constrained set-valued optimization problem 
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 The aim of this paper is to study some optimization conditions for the problem (1). 
 
 In section 2 we introduce the concepts of contingent epiderative and K-pseudoconvexity of a set-valued 
map at a point. Several properties of K-pseudoconvex multifunctions are provided. Section 3 deals with a 
necessary condition. We establish a mutiplier rule for the problem (1), in the case of a set-valued map F x G,  
K-pseudoconvex and with contingent epiderivative. The notion of minimizer used is the one of weak minimizer. 
In set-valued optimization there are different optimality concepts in use. We recall two standard optimality 
notions (see for example Jahn-Rauh (1997) and Luc (1991). 
 
Definition 1.1.Let F(M) = ∪ x∈MF(x) denote the image set of M by F. 
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a) A point (x0,y0) ∈ graph(F) is called a minimizer of the problem (1), if y0 is a  minimal element of the set 
F(M),  
    i.e.: 

 
y∈ F(M), y0 – y ∈ KY ⇒ y = y0

 
or in other words 
 

({y0} – KY) ∩ F(M) = {y0} 
 
b) Let KY have a nonempty interior int(KY). A point (x0, y0) ∈ graph(F), is called a weak minimizer of the  
     problem (1) if y0 is a weakly minimal element of the set F(M), i.e.: 
 

({y0} - int(KY)) ∩ F(M) = ∅ 
 
 The following notions of set-valued maps will be used throughout this work. Let E1, E2 be real normed 
spaces. Let E2 be partially ordered by a pointed convex cone K ⊂ E2. Let F:M → 2

E2 be a set-valued map and 
let M ≠ ∅ be a nonempty subset of E1.  
 
 The epigraph of F is the set 
 

epi(F) = {(x,y) ∈ E1 x E2: x ∈ M, y ∈ F(x) + K} 
 
the epirange of F is the set 
 

epiran(F) = {y ∈ E2: there exists x ∈ M, y ∈ F(x) + K} 

 Let (x0, y0) ∈ graph(F). The contingent cone T(graph(F); (x0,y0)) consists of all tangent vectors  
(h,k) = µ

∞→n
lim limn(xn - x0, yn - y0) with (x

∞→n
n,yn) = (x0, y0), (xn, yn) ⊂ graph (F) and (µn) ⊂ IR, µn > 0 for all n ∈ N.  

Or equivalently, there exists a sequence of real numbers (tn) → 0, tn > 0,  and a sequence of vectors (hn, kn) → (h, 
k) such that (x0 + tnhn, y0 + tnkn) ∈ epi(F). 
 
 The contingent derivative of F at (x0, y0) is the set-valued map DCF (x0, y0): X → 2Y whose graph equals the 
contingent cone to the graph of F at (x0,y0), i.e.: 
 

graph(DCF(x0,y0)) =T(graph(F); (x0, y0)) 
 
 The dual cone of K is the set 
 

K* = {y*∈ E2*: y*(y) ≥ 0 for all y∈ K} 
 
 The cone generated by a nonempty subset L of E2 is the set 
 

cone(L) = {λy ∈ E2: λ ≥ 0, y ∈ S} 
 
Definition 1.2 a) The set-valued map F is called K-convexlike if the set epiran(F) = {F(M) + K} is convex. 
 
b) F is called generalized K-convexlike if the set {cone (F(M)) + K} is convex. 
 
2. K-PSEUDOCONVEXITY AND CONTINGENT EPIDERIVATIVE 
 
 From the basic idea of J. Aubin and H. Frankowska (1990), J. Jahn and R. Rauh (1997) develope the 
concept of contingent epiderivative for a multifunction defined between two arbitrary real normed spaces. 
Next we recall the definition of this epiderivative. Let Π1 denote the projection map of E1 × E2 onto E1. 
 
Definition 2.1. Let (x0, y0) ∈ graph(F). Let  A = Π1(T(epi(F); (x0,y0)). The contingent epiderivative of F at  
(x0, y0) is the single-valued map DF(x0, y0), from A to E2 which verifies 
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epi(DF(x0,y0)) =T(epi(F); (x0,y0)) 
 Compare the previous definition with the one given in Janh-Rauh (1997). In that definition it is supposed 
that Dom(DF(x0, y0)) = E1.  It considerably limits the class of set-valued maps which have contingent 
epiderivative. It is obvious that  
 

cl(Dom(DF(x0, y0)) ⊂ T(Dom(F); x0) 
 
because 
 

Π1(T(epi(F);( x0, y0)) ⊂ Π1(T(Dom(F) x (epiran(F) + K); (x0,y0)) 
 

⊂ Π1 (T(Dom(F); x0) x T(epirang(F) + K; y0))   
 
= T(Dom(F);x0) 

 
 If the contingent epiderivative exists, it is an unique and positively homogeneous function. It has been 
proved in Janh-Rauh (1997). Moreover in that work it has been noted about the difficulty of the calculus of 
this epiderivative. In this sense we establish the following result.  
 
Theorem 2.2. DF(x0, y0) exists if and only if for every ,Ax∈ the set 
 

)x(L = {y ∈ E2 | )y,x( ∈T(epi(F); (x0,y0))} 
 
has a minimum. Then DF(x0, y0) )x( = min )x(L . 
 
Proof. Let us suppose that DF(x0, y0) exists. Let y = DF(x0, y0) )x( . Since 
 

epi (DF(x0,y0)) =T(epi(F); (x0, y0)) 
 
we have 
 

+)y,x( ({0} × K) = }{x × )x(L  
 
 Therefore y ∈ y + K for all y ∈ L )x( and y  is the minimum of L )x( . 
 
 Let us now assume that, for every )x(Lmin,Ax∈ exist. We define the function f )x( = min L )x( . We will show 
that f verifies 
 

epi (f) =T(epi (F); (x0,y0)) 
 
and then f = DF (x0,y0). 
 
 In fact, if )y,x( ∈T(epi(F); (x0, y0)), we get that y ∈ L ),x(  so y ∈ f )x( + K and )y,x( ∈ epi(f). On the other 
hand, if )( y,x ∈ epi(f), then there exists k ∈ K such that y = f )x( + k. Since f )x( ∈ L )x(  we obtain that 

∈)( )x(f,x  T(epi(F); (x0, y0)). Therefore there exist sequences (xn), (yn), with yn ∈ F(xn) + K, that converge to x0 
and y0 respectively and a sequence (ln) of real positive numbers such that l

∞→n
lim n(xn – x0, yn – y) = .)x(f,x )( If 

,(,
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� 
 The K-pseudoconvexity concept which will be used here is the generalization of the one of J.P. Aubin and 
H. Frankowska (1990). The contingent epiderivative of K-pseudoconvex set-valued maps verifies some 
interesting properties. We prove them in propositions 2.4-2.6. 
 
Definition 2.3. F is said K-pseudoconvex at (x0, y0) ∈ graph(F) if epi(F) is a pseudoconvex set at (x0, y0),  i.e. 
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Epi(F) ⊂ {(x0, y0)} + T(epi(F); (x0, y0)) 

Proposition 2.4. If F is K-pseudoco

cl(Dom(DF(x0, y0))) = T(Dom(F); x0) 
 

roof. Let  :M → 2
E2 be defined by (x) = F(x) + K and let D (x0, y0) be its contingent derivative. Since 

Dom(DF(x0, y0)) = Dom(D (x0,y0)) 
 

e obtain 

     cl(Dom(DF(x0, y0))) = cl(Dom(D (x0,y0)))   = cl(Π1(graph(D (x0,y0)))) = 

  = cl(Π1(T(graph( ); (x0,y0))))) = cl(T(Π1(graph )); x0)) =  

           = T(Dom( ); x0)  = T(Dom(F); x0)          � 

roposition 2.5. Let E1, E2 be real normed semi-reflexive spaces. Let F:M → 2
E2 be K-pseudoconvex at  

(T(Dom(F); x0) × {0E }) ∩ T(epi(F); (x0,y0)) = {(0E }, 0E2
)} 

then 

Dom(DF(x0, y0)) =T(Dom(F); x0) 
 

roof. Since F is K-pseudoconvex at (x0, y0), by proposition 2.4 we have cl(Dom(DF(x0, y0))) = T(Dom(F); x0).  

Let u ∈ cl(Dom(DF(x0,y0))) \ Dom(DF(x0,y0)). There exists a sequence (un) ⊂ Π1(T(epi(F); (x0,y0))), such 

0, y0)), we can suppose that ||un|| > k1. On the other hand, (vn) doesn't converge to 0 because in 

(u,0) ∈ T(epi(F); (x0, y0)) ∩ (T(Dom(F); x0) × {0E2
}) 

 
hich contradicts the hypothesis. So we can assume that ||vn|| > k2. Let k = min{k1,k2} > 0. Let us consider 

µn = inf{µ > 0 | µun ∉ B(0,

nvex at (x0,y0) then 
 

P F~ F~ C F~ F~  
is K-pseudoconvex at (x ,y ) and 
 

0 0

c F~

w
 
  C F~ C F~

    
  F~ F~

   
   F~

 
P
(x , y ). If T(epi(F); (x , y )) is a convex set and  
 

0 0 0 0

2 1

 

P
 
 
that lim u

∞→n
n =u. Therefore there exists a sequence (vn) such that (un, vn) ⊂ T(epi(F);( x0,y0)). Since u ≠ 0 

because  
0 ∈ Dom(DF(x
other case 
  

w
 

),2
k µvn ∉ B(0, ),2

k µun ∈ B(0,k), µvn ∈ B(0,k)} 
 

The sequence µn(xn, yn) ∈ T(epi(F); (x0, y0)) ∩ B((0E1
, 0E2

), k). This set is weakly relativelly compact  
because  E1 and E2 are semi-reflexive sets. And from 0 ≤ µn ≤ 1, by the compacity of [0, 1], we deduce that 
there exist subsequences of (µnun, µnvn) and (µn), (which we  will denote in the same way) such that (µnun, 
µnvn) converges to (u',v') ∈ E1 × E2  weakly and (µn) → µ0 ≥ 0. As T(epi(F); (x0, y0)) is a closed and convex set, 
it is weakly closed and (u',v') ∈ T(epi(F); (x0,y0)). On the other hand µ0 ≠ 0. In other case (µnun) → 0E1

 but it is 

impossible because the definition of µn implies that u' ∉ B(0, ).k So µ2 0 > 0 and we can define u = u1 ′
µ  and  

v = 
0

v1 ′  which verify (u,v) =
0µ

)v,u(1 ′′ ∈T(epi(F); (x y )). In con quence u∈ Dom(DF(x y )). 
0µ

0, 0 se 0, 0

� 
 The next proposition relates the contingent epiderivative to the contingent derivative. 

roposition 2.6. Let us suppose that there exist DCF(x0, y0) and DF(x0, y0). It verifies 
 
P
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a) epi(DCF(x0,y0)) ⊂ epi(DF(x0,y0)) 

) If F is pseudoconvex or K-pseudoconvex at (x0, y ) then cl(epi(DCF(x0,y0))) = epi(DF(x y )).  
 
b 0 0, 0

Proof. a) Let (x,y) ∈ epi(DCF(x0,y0)). There exists y∈DCF(x0, y0)(x), k ∈ K such that .kyy +=  From )y,x(  ∈  

(x,y) = (x

                T(graph(F);(x0, y0)) we have 
   

, )y + (0, k) ∈ T(graph(F); (x ,y0)) + ({0E1
} × K) ⊂ T(epi(F); (x0,y0)) + ({0E } × K) 

 
   = T(epi(F); (x0,y0)) 

   = epi(DF(x0,y0)) 

 b) From a) we obtain that cl(epi(DCF(x0,y0))) ⊂ epi(DF(x0,y0)). Let us show that epi(DF(x0, y0)) ⊂  

Let (x,y + k) ∈ epi(DF(x0, y0)) =T(epi(F); (x0,y0)). There exists (xn) → x , (yn) → y , with yn = 

0 1

 
 
 
 
 
                  cl(epi(DCF(x0,y0)). 
 
 0 0 ny + kn,  

ny  ∈ F(xn), and (λn ) ⊂ IR, with λn > 0 such that (λn(xn - x0, ny  + kn - y0)) → (x, y + k). As F is  pseudoconvex 
 

λn(xn - x0, ny  + kn - y0) = λ(x n - x0,yn -y ) + ({0E1
} × K) ∈T(graph(F); (x ,y0)) + ({0E1

} × K) 
 
nd in consequence 

(x, y + k) = λn(x n - x0

0 n 

a
 

∞→n
lim ( , ny + kn - y0)) ∈ cl(T(graph(F); (x0, y0)) + ({0E1

} × K) 

     
     = cl(epi(DCF(x 0,y0))) 

. A NECESSARY CONDITION FOR WEAK MINIMIZER 

We will establish a Lagrange multiplier rule for the problem (1) at a point (x 0, y0) ∈ graph(F), weak minimizer  
f

efinition 3.1. A subset L of X is called asymptotically compact if there exist ε0 > 0 and an open ball B(0, r) 

To simplify the notation, let us consider in the problem (1):  E = Y × Z, H = F × G, K = KY × K . Let us 

            (2) 

 
roposition 3.2. Let us assume conditions (2). Let us suppose that H is a K-pseudoconvex at (x0, u0) function. 

cone{∪x∈M DH(x 0, u0)(x   -x0)} + K  
is closed. 

roof. Let ψ: X → 2E be defined by ψ(x) = DH(x0, u0) (x) + K. We will first prove that ψ(L) is a closed set.  

is a closed set because  

  
 
3
 
 
o  F. With this purpose we will first prove some properties about the images of the contingent epiderivative. 
We will consider the set L = cone(M - {x0}) and we will use the concept of asymptotically compact set. Let us 
recall this concept. 
 
D
such that ([0, ε0]) ∩ B(0, r) is a relativelly compact set. 
 
 z
suppose that the next conditions are satisfied 
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P
Let the contingent epiderivative DH(x 0, u0) exists. Then the set  
 

 
P
Let (u ) be a sequence of elements of ψ(L), (u ) → b ∈ E. Let us prove that b ∈ ψ(L). We will consider a 
sequence (x ) ⊂ L such that u ∈ ψ(x ) for all n ∈ N. We can suppose that there exists γ > 0 such that 
||x || > γ for all n∈ N. In other case there exists a subsequence (x ) → 0 such that (x , u ) ∈ (ψ). But graph(ψ) 

n n

n n n

n ni ni ni
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graph(Ψ) = {(x,y) ∈ X × Y: x ∈ X, y ∈ DH(xo, u0)(x) + K} 

So (0, b) ∈ graph(Ψ) and b  (0)  (L). In this way, given  such that ||xn|| > γ, we consider B(0, γ). For 
every n let  

n n n

 The sequence (µnxn) ∈ L ∩ B(0, is fact and from the compacity of 
,1] we deduce that there exist su sequences o  ( nxn) and ( n), (which we  will denote in the same way)   

 graph 
u Ψ ∈  (a) ⊂ µ0 

aph( ) = graph( ) 

 So (a´,0) ∈ graph(ψ). By virtue of  0E}  and we obtain a’ = 0. But 
is is impossible because µnxn ∉ B(0, the set (L) is closed. Taking into account that 

       K 
� 

e multifunction H be generalize
-convexlike and K-pseudoconvex at (x0, u0) and let us assume that the contingent epiderivative DH(x0, u0

x∈M 0 0 0

We will first suppose that uo = (0Y,0Z). Let us prove that if αihi ∈ C, i = 1,2, with αi ≥ 0,  
i  x∈MDH(x0,u0)(x - x0) and λ ∈ [0,1], then λα1h1(1 − λ)α2h2 ∈ C. 

x0, u0)) 

αihi∈T(epirang(H), uo) ⊂ T(cone(H(M)) + K, u0) 

 Since the multifunction H is ge + K} and T(cone(H(M)) + K,u0) 
re convex. So λα1h1(1 − λ)α2h2 ∈T(cone(H(M)) + K,u0) and there exist sequences (tn) ,(wn) , such that tn > 0, 

 We will suppose that tnwn ∉ K. In othe  C and 

 
        = T(epi(H),(x0,u0)) 

∈ ψ ⊂ ψ γ 

 
µ = inf{µ > 0: µx ∈ B(0, γ), µx  ∉ B(0, γ/2)} 

 
 γ) which  is a  relatively compact set. From th

b f µ µ[0
such that (µnxn}) converges  to a´ ∈ X and (µn) → µ0 ≥ 0. Furthermore a´∈ L, because L is a closed set. 
      
 If µ0 > 0, then (xn) → a = 1/µ0a´ ∈ L. As we showed before, graph(Ψ) is a closed set, then from (xn, un) ∈

e ded ce that (a,b) ∈ graph( ) and b  Ψ  Ψ (L). Moreover ≠ 0. In other case on the one hand (ψ) w
there exists n0 ∈ IN such that for all n > n0 we have µnxn ∉ B(0, γ/2). On the other hand from a´∈ L we get that 
the sequence (µnxn, µnun) → (a´, 0) ∈ L ×{0E}.  Furthermore 
 

(µnxn, µnun) = µn(xn,un) ∈ µngr Ψ Ψ
 

the hypothesis (L × {0E}) ∩ graph(Ψ) = {0X ×
γ/2). In consequence Ψth

the set-valued map DH(x0, u0) is positively homogeneus, if λ > 0 it follows that  
 

Ψ(L) = ∪x∈M DH(x0, u0)(λ(x - x0)) + K 
 

 = cone{∪x∈M DH(x0,u0) ( x-x0)} + 

 
Proposition 3.3. Let us suppose that the assumption (2) is satisfied. Let th d  

) K
exists. Then the set  
 

C = cone{∪ DH(x , u )(x - x )} + K 
 
is convex. 
 
Proof. a) 
∈ ∪h

 
 Given the previous elements, there exist x1, x2 ∈M such that 
 

((xi - x0}),hi) ∈ T(epi(H),(
 
therefore 
 

 
neralized K-convexlike, then the sets {cone(H(M)) 

a
n∈N n∈N

,h)1(hwlim,0tl m 2211nnnn
αλ−+λα==

∞→∞→
with ti nwn ∈ cone(H(M)) + K. 

 
r case it is obvious that wn ∈ Cwlim nn

∈
∞→

 M such that 

 because the set C is 

closed. In this way there exist sequences (αn) ⊂ IR with αn > 0 and (xn) ⊂ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αn

nn
n

wt,x ∈ epi(H). 

Since the multivalued function H is K-pseudoconvex at (x0, u0) we get that 
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n

0n u,xx ∈T⎟
⎞

⎜
⎛ nnwt (epi(H),(x

ence 

o,u0)) 

 

h K)xx)(u,x(DHwtwt nnnn u 0n00
n

0
n

+−∈
α

=−
α

and wn ∈ C. By proposition 3.2, C is a closed set and it 

follows that 
 

λα1h1 + (1 − λ)α2h2 = Cwlim nn
∈

∞→
 

 
b) If u  ≠ (0 , 0Z) we define G = H - u0. It verifies that DG(x0, 0) = DH(x0, u0) and the result is consequence  

 From now on we will consider the assumptions (2). We will suppose that u0 = (y0, z0) where y0 ∈ F(x0) and  
z0 ∈ G(x0) ∩ (- KZ).               � 

that (x0, y0) ∈ graph(F) is a weak minimizer of the problem (1). Let the contingent epiderivative  
c

S = cone{∪x∈MD(F × G) 0)} + (KY ×(KZ + {z0})) 

(1) S ∩ [(- int(KY)) ×

t us suppose that there exists (y, z)∈Y × Z such that 

∩  [(- int(KY)) × (-int(KZ))] 

) ∈T(epi(F × G),(x0,(y0,z0))) 

 × G) and a sequence (µn) of real positive numbers such 

) 

λµn(yn - y0) + y2 ∈ -int(KY) 

 z2 + z0 ∈ -int(KZ) 

0 Y
     of a). 
 

 
Theorem 3.4. Let us assume conditions (2). Let the cones KY, KZ have nonempty interiors int(KY), int(KZ). 

ssume A
D(F × G)(x0,(y0, z0)) exists. If the set-valued map F × G is generalized KY × KZ- onvexlike and KY × KZ-pseudo-
convex at (x0,( y0,z0)) then there exist u ∈ KY* and v ∈ KZ*, (u,v) ≠ (0,0) such that v(z0) = 0 and 

u(y) + v(z) ≥ 0 

for all (y, z) = D(F × G)(x0,(y0, z0))(x-x0) with x ∈ M. 

Proof. a) By the proposition 3.3, the set 

(x0,(y0, z0))(x - x

is convex. 

 Let us show that 

 (- int(KZ))] =φ 

 In fact, le

(2) (y,z + z0) ∈ S 

therefore there exist 

(3) x ∈ M; λ > 0; y1∈Y, y2 ∈ KY; z1∈Z, z2
 ∈ KZ; 

such that y = λy1 + y2, z =λz1+z2  and it verifies 

(4) (x - x0,(y1, z1)

hence there exists a sequence (xn,(yn, zn)) ∈ epi(F
that (x - x0,(y0,z0)) =

∞→n
lim (xn,( yn,zn)) and 

(5) (x-x0,(y1,z1)) = µn
∞→n

lim (xn - x0,(yn – y0, zn-z0)

 From (2) and (3) we deduce that for a sufficiently large n 

λµn(zn - z0) +
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therefore 

λµn(yn - y0) ∈ -int(KY) 

λµn(zn - z0) + z0 ∈ -int(KZ) 

and hence 
 

(6)  yn ∈ y0 -int(KY) 
 

 z0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λµ

−
n

11(7)  zn ∈ - int(KZ) 

 h ere exist sequences with ∈ F(xn), ∈ G(xn), such that  
 

yn + KY, zn ∈ + KZ 

n  we get 

(8)  ∈ yn - KY ⊂ y0 - int(KY) - KY = y0 - int(KY) 
 

 
On t e other hand, th  ,)y( Nnn ∈

•  ,)z( Nnn ∈
• •

ny •
nz

∈ •
ny •

nz
 
a d from this, taking into account (6) and (7)
 

•
ny

(9)  •
nz ∈ zn - KZ ⊂ z0 ⎟⎟

⎞
⎜⎜
⎛

λµ
−

11
⎠⎝ n

- int(KZ) - KZ = z0 ⎜⎜
⎛

⎟⎟
⎠

⎞

⎝ λµ
−

n

11 - int(KZ) 

 
 
 
(1 F(x Y)) ≠ φ 
 

On the other hand from (2) we deduce that y = λy1 + y2 ≠ 0. Furthermore y1 ≠ 0, because in other case  
sufficiently large n we obtain that  λµn > 1. As by hypothesis  

Z

Then on the one hand from (8) we have that 

0)  n) ∩ (y0 - int(K

 
y = y2∈ KY ∩ (-int(KY)). So µn  → ∞ and for a 

z0 ∈ -K , then z0 ⎟⎟
⎠

⎜⎜
⎝ λµ
−

n
1

⎞⎛ 1 ∈ (-int(KZ)), and in consequence  

 

 
Then S is convex and equality (1) holds. By Hahn-Banach's theorem there exist u ∈ Y*, v ∈ Z* such that 

u(y´) + v(z´) ≤  u(y) + v(z) 

Y Z that  
Y

u(  

≤ u(0Y) + v(z0) = v(z0) 

As 0Y ∈ cl(-int(KY)) and u is continuous it follows that  

0

∈ - KZ. From (9) we deduce that •
nz

 
(11)  •

nz ∈ G(xn) ∩ (-int(KZ)) 

 From (10) and (11) we conclude that (x0, y0) isn't a weak minimizer so (1) is proved. 

 
 

 
r all (y´, z´) ∈ (-int(K )) × (-int(K )), (y,z) ∈ S. Taking into account the continuity of u and v and fo

0  ∈ cl(-int(KY)) and 0Z ∈ cl(-int(KZ)) we have that  
 

y) + v(z) ≥ 0 for all (y,z) ∈ S
 
 Furthermore since (0Y, z0) ∈ S for all y' ∈ (-int(KY)) and for all z'∈(-int(KZ)) we get  
 

u(y') + v(z') 
 
 
 

v(z') ≤  v(z ) 
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for all z´∈(-int (KZ)). Moreover v(z´) ≤ 0, for all z´∈ -int(KZ), because in other case there exists z´∈ -int(KZ) 
uch that v(z´)>0. Then we have v(αz´) = αv(z´) ≤ v(z0) for all α > 0, which does not make sense. From  

KZ ⊂ cl(int(KZ)), we obtain v ∈ KZ*. With a similar reasoning for 0Z we deduce that  

. Furthermore from v(z') ≤ 
(z0) for z´= 0Y we obtain that  0 ≤ v(z0) and in consequence v(z ) = 0. From this fact we arrive to  

 
u(y) + v(z) ≥ 0  for all (y,z) ∈ ∪ D(F × G)(x ,(y  ,z ))(x  x ) because (y,z + z ) ∈ S. 

xample 3.5. Let  f,g:[-1, 1] → IR  be functions where 

f(x) = 

⎪

⎨

⎧

=
=

−≤≤−+−
−≤≤−⋅+−
≤≤
≤≤⋅+

+++

+

+++

+

,...2,1,0n
0xif0

2/1x2/1if2/1x3
2/1x2/1if)23/(1x3/2

2/1x2/1if
2/1x2/1if)23/(1x3/2

n33n32n32

n32n3

n32n33

n3n32n3

 

 
 Let F:[-1,1] → 2IR2 be a set-valued map defined by  
 

F(x) = {(x,y) | f(x) ≤ y ≤ g(x)} 

(x) = {-|x|}. We consider the cones KY ⊂ IR2,  

Z = IR +   ⊂ IR.The contingent epiderivative

The problem 
 

 
is a particular case of the problem (1). It is easy to see that ( ) is a weak minimizer of this problem. 
 
 The set-valued map F × G is not KY × KZ-convex at (0,(0,0)), therefore the results of Aubin (1981) can not 
e applied. Nevertheless it is not difficult to verify that F × G is generalized K  × K -convexlike and  

ions  
 

ris ir o  pr blem. 
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