PSEUDOCONVEXITY IN SET-VALUED OPTIMIZATION

Luis Rodríguez-Marín¹ and María Alonso²

Dpto. de Matemática Aplicada I. E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia, Madrid, Spain

ABSTRACT

The notion of contingent epiderivative and its properties are studied. A Lagrange multiplier rule is obtained for K-pseudoconvex and generalized K-convexlike multifunctions with contingent epiderivative. Convexity of the domain is replaced with conditions on a certain cone which will be asymptotically compact.

RESUMEN

En este trabajo se obtiene una regla de multiplicadores de Lagrange para multifunciones K-pseudoconvexas y K-convexlike generalizadas que poseen epiderivada contingente. Por otra parte se estudia esta noción de epiderivada contingente y sus propiedades. La convexidad del dominio se reemplaza por condiciones en un cierto cono que deberá ser asintóticamente compacto.

MSC: 49K27

1. INTRODUCTION AND NOTATION

Set valued optimization problems have been investigated by many authors in recent years. In some cases: Aubin (1981), Aubin-Frankowska (1990), Burwein (1977), Corley (1987) and (1988), Jahn-Rauh (1997), Jahn-Götz (2000) and Luc (1991), they have established necessary and sufficient conditions under certain hypothesis.

In this paper we consider the following standard assumptions:

Let X be a real normed space. Let Y, Z be real normed spaces partially ordered by convex pointed cones $K_Y \subset Y$ and $K_Z \subset Z$ respectively. Let F: $X \to 2^Y$, G: $X \to 2^Z$ be set-valued maps and let M be a nonempty subset of X, M \subset Dom(F), M \subset Dom(G).

Under these assumptions we consider the constrained set-valued optimization problem

(1) $\begin{cases} \min F(x) \\ \text{subject to the constraint s :} \\ G(x) \cap (-K_Z) \neq \phi \\ x \in M \end{cases}$

The aim of this paper is to study some optimization conditions for the problem (1).

In section 2 we introduce the concepts of contingent epiderative and K-pseudoconvexity of a set-valued map at a point. Several properties of K-pseudoconvex multifunctions are provided. Section 3 deals with a necessary condition. We establish a mutiplier rule for the problem (1), in the case of a set-valued map F x G, K-pseudoconvex and with contingent epiderivative. The notion of minimizer used is the one of weak minimizer. In set-valued optimization there are different optimality concepts in use. We recall two standard optimality notions (see for example Jahn-Rauh (1997) and Luc (1991).

Definition 1.1.Let $F(M) = \bigcup_{x \in M} F(x)$ denote the image set of M by F.

Key words: Set-valued functions, optimality conditions, convex and set-valued analysis, vector optimization.

Email: ¹lromarin@ind.uned.es ²malonso@eco.uc3m.es

a) A point $(x_0,y_0) \in graph(F)$ is called a minimizer of the problem (1), if y_0 is a minimal element of the set F(M),

i.e.:

$$y \in F(M), y_0 - y \in K_Y \Rightarrow y = y_0$$

or in other words

$$(\{y_0\} - K_Y) \cap F(M) = \{y_0\}$$

b) Let K_Y have a nonempty interior int(K_Y). A point (x₀, y₀) ∈ graph(F), is called a weak minimizer of the problem (1) if y₀ is a weakly minimal element of the set F(M), i.e.:

$$(\{y_0\} - int(K_Y)) \cap F(M) = \emptyset$$

The following notions of set-valued maps will be used throughout this work. Let E_1 , E_2 be real normed spaces. Let E_2 be partially ordered by a pointed convex cone $K \subset E_2$. Let $F:M \to 2^{E_2}$ be a set-valued map and let $M \neq \emptyset$ be a nonempty subset of E_1 .

The epigraph of F is the set

$$epi(F) = \{(x,y) \in E_1 \ x \ E_2 : x \in M, \ y \in F(x) + K\}$$

the epirange of F is the set

epiran(F) = {
$$y \in E_2$$
: there exists $x \in M$, $y \in F(x) + K$ }

Let $(x_0, y_0) \in \text{graph}(F)$. The contingent cone $T(\text{graph}(F); (x_0, y_0))$ consists of all tangent vectors $(h,k) = \lim_{n \to \infty} \mu_n(x_n - x_0, y_n - y_0)$ with $\lim_{n \to \infty} (x_n, y_n) = (x_0, y_0), (x_n, y_n) \subset \text{graph}(F)$ and $(\mu_n) \subset IR, \mu_n > 0$ for all $n \in N$. Or equivalently, there exists a sequence of real numbers $(t_n) \to 0, t_n > 0$, and a sequence of vectors $(h_n, k_n) \to (h, k)$ such that $(x_0 + t_n h_n, y_0 + t_n k_n) \in \text{epi}(F)$.

The contingent derivative of F at (x_0, y_0) is the set-valued map $D_CF(x_0, y_0)$: $X \rightarrow 2^Y$ whose graph equals the contingent cone to the graph of F at (x_0, y_0) , i.e.:

$$graph(D_{C}F(x_{0},y_{0})) = T(graph(F); (x_{0}, y_{0}))$$

The dual cone of K is the set

$$K^* = \{y^* \in E_2^*: y^*(y) \ge 0 \text{ for all } y \in K\}$$

The cone generated by a nonempty subset L of E₂ is the set

$$cone(L) = \{\lambda y \in E_2 : \lambda \ge 0, y \in S\}$$

Definition 1.2 a) The set-valued map F is called K-convexlike if the set $epiran(F) = {F(M) + K}$ is convex.

b) F is called generalized K-convexlike if the set {cone (F(M)) + K} is convex.

2. K-PSEUDOCONVEXITY AND CONTINGENT EPIDERIVATIVE

From the basic idea of J. Aubin and H. Frankowska (1990), J. Jahn and R. Rauh (1997) develope the concept of contingent epiderivative for a multifunction defined between two arbitrary real normed spaces. Next we recall the definition of this epiderivative. Let Π_1 denote the projection map of $E_1 \times E_2$ onto E_1 .

Definition 2.1. Let $(x_0, y_0) \in \text{graph}(F)$. Let $A = \prod_1(T(epi(F); (x_0, y_0)))$. The contingent epiderivative of F at (x_0, y_0) is the single-valued map $DF(x_0, y_0)$, from A to E_2 which verifies

$$epi(DF(x_0,y_0)) = T(epi(F); (x_0,y_0))$$

Compare the previous definition with the one given in Janh-Rauh (1997). In that definition it is supposed that $Dom(DF(x_0, y_0)) = E_1$. It considerably limits the class of set-valued maps which have contingent epiderivative. It is obvious that

$$cl(Dom(DF(x_0, y_0)) \subset T(Dom(F); x_0))$$

because

$$\Pi_1(\mathsf{T}(\mathsf{epi}(\mathsf{F});(x_0, y_0)) \subset \Pi_1(\mathsf{T}(\mathsf{Dom}(\mathsf{F}) \times (\mathsf{epiran}(\mathsf{F}) + \mathsf{K}); (x_0, y_0))$$
$$\subset \Pi_1(\mathsf{T}(\mathsf{Dom}(\mathsf{F}); x_0) \times \mathsf{T}(\mathsf{epirang}(\mathsf{F}) + \mathsf{K}; y_0))$$
$$= \mathsf{T}(\mathsf{Dom}(\mathsf{F}); x_0)$$

If the contingent epiderivative exists, it is an unique and positively homogeneous function. It has been proved in Janh-Rauh (1997). Moreover in that work it has been noted about the difficulty of the calculus of this epiderivative. In this sense we establish the following result.

Theorem 2.2. DF(x_0, y_0) exists if and only if for every $\overline{x} \in A$, the set

$$L(\overline{x}) = \{y \in E_2 \mid (\overline{x}, y) \in T(epi(F); (x_0, y_0))\}$$

has a minimum. Then $DF(x_0, y_0)(\overline{x}) = \min L(\overline{x})$.

Proof. Let us suppose that $DF(x_0, y_0)$ exists. Let $\overline{y} = DF(x_0, y_0)(\overline{x})$. Since

 $epi(DF(x_0,y_0)) = T(epi(F); (x_0, y_0))$

we have

$$(\overline{x},\overline{y}) + (\{0\} \times K) = \{\overline{x}\} \times L(\overline{x})$$

Therefore $y \in \overline{y} + K$ for all $y \in L(\overline{x})$ and \overline{y} is the minimum of $L(\overline{x})$.

Let us now assume that, for every $\overline{x} \in A$, minL(\overline{x}) exist. We define the function f(\overline{x}) = min L(\overline{x}). We will show that f verifies

and then $f = DF(x_0, y_0)$.

In fact, if $(\overline{x}, y) \in T(epi(F); (x_0, y_0))$, we get that $y \in L(\overline{x})$, so $y \in f(\overline{x}) + K$ and $(\overline{x}, y) \in epi(f)$. On the other hand, if $(\overline{x}, \overline{y}) \in epi(f)$, then there exists $k \in K$ such that $y = f(\overline{x}) + k$. Since $f(\overline{x}) \in L(\overline{x})$ we obtain that $(\overline{x}, f(\overline{x})) \in T(epi(F); (x_0, y_0))$. Therefore there exist sequences (x_n) , (y_n) , with $y_n \in F(x_n) + K$, that converge to x_0 and y_0 respectively and a sequence (I_n) of real positive numbers such that $\lim_{n \to \infty} I_n(x_n - x_0, y_n - y) = (\overline{x}, f(\overline{x}))$. If

$$(x'_n) = (x_n), (y'_n) = \left(y_n + \frac{k}{l_n}\right), \text{as} \qquad (l_n) \rightarrow \qquad \infty \qquad \text{it} \qquad \text{follows} \qquad \text{that} \\ \lim_{n \to \infty} l_n (x'_n - x_0, y'_n - y_0) = (\overline{x}, f(\overline{x}) + k) \in T(\text{epi}(F); (x_0, y_0)).$$

The K-pseudoconvexity concept which will be used here is the generalization of the one of J.P. Aubin and H. Frankowska (1990). The contingent epiderivative of K-pseudoconvex set-valued maps verifies some interesting properties. We prove them in propositions 2.4-2.6.

Definition 2.3. F is said K-pseudoconvex at $(x_0, y_0) \in graph(F)$ if epi(F) is a pseudoconvex set at (x_0, y_0) , i.e.

 $Epi(F) \subset \{(x_0, y_0)\} + T(epi(F); (x_0, y_0))$ Proposition 2.4. If F is K-pseudoconvex at (x_0, y_0) then

$$cl(Dom(DF(x_0, y_0))) = T(Dom(F); x_0)$$

Proof. Let $\tilde{F}: M \to 2^{E_2}$ be defined by $\tilde{F}(x) = F(x) + K$ and let $D_C \tilde{F}(x_0, y_0)$ be its contingent derivative. Since \tilde{F} is K-pseudoconvex at (x_0, y_0) and

$$Dom(DF(x_0, y_0)) = Dom(D_c \widetilde{F}(x_0, y_0))$$

we obtain

$$cl(Dom(DF(x_{0}, y_{0}))) = cl(Dom(D_{C}\widetilde{F}(x_{0}, y_{0}))) = cl(\Pi_{1}(graph(D_{C}\widetilde{F}(x_{0}, y_{0})))) = cl(\Pi_{1}(T(graph(\widetilde{F}); (x_{0}, y_{0}))))) = cl(T(\Pi_{1}(graph\widetilde{F})); x_{0})) = T(Dom(\widetilde{F}); x_{0}) = T(Dom(\widetilde{F}); x_{0})$$

Proposition 2.5. Let E_1 , E_2 be real normed semi-reflexive spaces. Let $F:M \rightarrow 2^{E_2}$ be K-pseudoconvex at (x_0, y_0) . If $T(epi(F); (x_0, y_0))$ is a convex set and

$$(T(Dom(F); x_0) \times \{0_{E_2}\}) \cap T(epi(F); (x_0, y_0)) = \{(0_{E_1}\}, 0_{E_2})\}$$

then

$$Dom(DF(x_0, y_0)) = T(Dom(F); x_0)$$

Proof. Since F is K-pseudoconvex at (x_0, y_0) , by proposition 2.4 we have $cl(Dom(DF(x_0, y_0))) = T(Dom(F); x_0)$.

Let $u \in cl(Dom(DF(x_0,y_0))) \setminus Dom(DF(x_0,y_0))$. There exists a sequence $(u_n) \subset \Pi_1(T(epi(F); (x_0,y_0)))$, such that $\lim_{n\to\infty} u_n = u$. Therefore there exists a sequence (v_n) such that $(u_n, v_n) \subset T(epi(F); (x_0,y_0))$. Since $u \neq 0$ because

 $0 \in Dom(DF(x_0, y_0))$, we can suppose that $||u_n|| > k_1$. On the other hand, (v_n) doesn't converge to 0 because in other case

$$(u,0) \in T(epi(F); (x_0, y_0)) \cap (T(Dom(F); x_0) \times \{0_{E_n}\})$$

which contradicts the hypothesis. So we can assume that $||v_n|| > k_2$. Let $k = \min\{k_1, k_2\} > 0$. Let us consider

$$\mu_n = \inf\{\mu > 0 \mid \mu u_n \notin B(0, \frac{k}{2}), \mu v_n \notin B(0, \frac{k}{2}), \mu u_n \in B(0,k), \mu v_n \in B(0,k)\}$$

The sequence $\mu_n(x_n, y_n) \in T(epi(F); (x_0, y_0)) \cap B((0_{E_1}, 0_{E_2}), k)$. This set is weakly relatively compact because E_1 and E_2 are semi-reflexive sets. And from $0 \le \mu_n \le 1$, by the compacity of [0, 1], we deduce that there exist subsequences of $(\mu_n u_n, \mu_n v_n)$ and (μ_n) , (which we will denote in the same way) such that $(\mu_n u_n, \mu_n v_n)$ converges to $(u',v') \in E_1 \times E_2$ weakly and $(\mu_n) \to \mu_0 \ge 0$. As $T(epi(F); (x_0, y_0))$ is a closed and convex set, it is weakly closed and $(u',v') \in T(epi(F); (x_0,y_0))$. On the other hand $\mu_0 \ne 0$. In other case $(\mu_n u_n) \to 0_{E_1}$ but it is impossible because the definition of μ_n implies that $u' \notin B(0, \frac{k}{2})$. So $\mu_0 > 0$ and we can define $u = \frac{1}{\mu_0}u'$ and $v = \frac{1}{\mu_0}v'$ which verify $(u,v) = \frac{1}{\mu_0}(u',v') \in T(epi(F); (x_0,y_0))$. In consequence $u \in Dom(DF(x_0,y_0))$.

The next proposition relates the contingent epiderivative to the contingent derivative.

Proposition 2.6. Let us suppose that there exist $D_{C}F(x_{0}, y_{0})$ and $DF(x_{0}, y_{0})$. It verifies

a) $epi(D_CF(x_0,y_0)) \subset epi(DF(x_0,y_0))$

b) If F is pseudoconvex or K-pseudoconvex at (x_0, y_0) then $cl(epi(D_CF(x_0, y_0))) = epi(DF(x_0, y_0))$.

Proof. a) Let $(x,y) \in epi(D_CF(x_0,y_0))$. There exists $\overline{y} \in D_CF(x_0,y_0)(x)$, $k \in K$ such that $y = \overline{y} + k$. From $(x,\overline{y}) \in T(graph(F);(x_0,y_0))$ we have

$$(x,y) = (x,\overline{y}) + (0, k) \in T(graph(F); (x_0,y_0)) + (\{0_{E_4}\} \times K) \subset T(epi(F); (x_0,y_0)) + (\{0_{E_4}\} \times K)$$

 $= T(epi(F); (x_{0,y_0}))$

 $= epi(DF(x_{0},y_{0}))$

b) From a) we obtain that $cl(epi(D_CF(x_{0,}y_0))) \subset epi(DF(x_{0,}y_0))$. Let us show that $epi(DF(x_{0,}y_0)) \subset cl(epi(D_CF(x_{0,}y_0)))$.

Let $(x, y + k) \in epi(DF(x_0, y_0)) = T(epi(F); (x_0, y_0))$. There exists $(x_n) \rightarrow x_0$, $(y_n) \rightarrow y_0$, with $y_n = \overline{y}_n + k_n$, $\overline{y}_n \in F(x_n)$, and $(\lambda_n) \subset IR$, with $\lambda_n > 0$ such that $(\lambda_n(x_n - x_0, \overline{y}_n + k_n - y_0)) \rightarrow (x, y + k)$. As F is pseudoconvex

$$\lambda_{n}(x_{n} - x_{0}, \overline{y}_{n} + k_{n} - y_{0}) = \lambda(x_{n} - x_{0}, y_{n} - y_{0}) + (\{0_{E_{4}}\} \times K) \in T(graph(F); (x_{n}, y_{0})) + (\{0_{E_{4}}\} \times K)$$

and in consequence

$$(\mathbf{x}, \mathbf{y} + \mathbf{k}) = \lim_{n \to \infty} \left(\lambda_n (\mathbf{x}_n - \mathbf{x}_0, \ \overline{\mathbf{y}}_n + \mathbf{k}_n - \mathbf{y}_0) \right) \in \mathsf{cl}\big(\mathsf{T}(\mathsf{graph}(\mathsf{F}); \ (\mathbf{x}_0, \ \mathbf{y}_0)) + (\{\mathbf{0}_{\mathsf{E}_1}\} \times \mathsf{K})\big)$$

 $= cl(epi(D_CF(x_0,y_0)))$

3. A NECESSARY CONDITION FOR WEAK MINIMIZER

We will establish a Lagrange multiplier rule for the problem (1) at a point $(x_0, y_0) \in graph(F)$, weak minimizer of F. With this purpose we will first prove some properties about the images of the contingent epiderivative. We will consider the set L = cone(M - $\{x_0\}$) and we will use the concept of asymptotically compact set. Let us recall this concept.

Definition 3.1. A subset L of X is called asymptotically compact if there exist $\varepsilon_0 > 0$ and an open ball B(0, r) such that ([0, ε_0]) \cap B(0, r) is a relatively compact set.

To simplify the notation, let us consider in the problem (1): $E = Y \times Z$, $H = F \times G$, $K = K_Y \times K_z$. Let us suppose that the next conditions are satisfied

$$\begin{cases} Let (x_0, u_0) \in graph(H) \\ Let the set L = cone(M - \{x_0\}) be closed and asymptotically compact \\ (L \times \{O_E\}) \cap (epi(H); (x_0, u_0)) = \{O_X \times O_E\} \end{cases}$$
(2)

Proposition 3.2. Let us assume conditions (2). Let us suppose that H is a K-pseudoconvex at (x_0, u_0) function. Let the contingent epiderivative DH(x_0, u_0) exists. Then the set

cone{
$$\bigcup_{x \in M} DH(x_0, u_0)(x - x_0)$$
} + K

is closed.

Proof. Let ψ : $X \to 2^E$ be defined by $\psi(x) = DH(x_0, u_0)(x) + K$. We will first prove that $\psi(L)$ is a closed set. Let (u_n) be a sequence of elements of $\psi(L)$, $(u_n) \to b \in E$. Let us prove that $b \in \psi(L)$. We will consider a sequence $(x_n) \subset L$ such that $u_n \in \psi(x_n)$ for all $n \in N$. We can suppose that there exists $\gamma > 0$ such that $||x_n|| > \gamma$ for all $n \in N$. In other case there exists a subsequence $(x_{n_i}) \to 0$ such that $(x_{n_i}, u_{n_i}) \in (\psi)$. But graph (ψ) is a closed set because graph(Ψ) = {(x,y) \in X × Y: x \in X, y \in DH(x_o, u₀)(x) + K}

 $= T(epi(H),(x_0,u_0))$

So $(0, b) \in graph(\Psi)$ and $b \in \psi(0) \subset \psi(L)$. In this way, given γ such that $||x_n|| > \gamma$, we consider B(0, γ). For every n let

$$\mu_n = \inf\{\mu > 0: \ \mu x_n \in \mathsf{B}(0, \ \gamma), \ \mu x_n \notin \mathsf{B}(0, \ \gamma/2)\}$$

The sequence $(\mu_n x_n) \in L \cap B(0, \gamma)$ which is a relatively compact set. From this fact and from the compacity of [0,1] we deduce that there exist subsequences of $(\mu_n x_n)$ and (μ_n) , (which we will denote in the same way) such that $(\mu_n x_n)$ converges to a' $\in X$ and $(\mu_n) \to \mu_0 \ge 0$. Furthermore a' $\in L$, because L is a closed set.

If $\mu_0 > 0$, then $(x_n) \to a = 1/\mu_0 a^{\epsilon} \in L$. As we showed before, graph(Ψ) is a closed set, then from $(x_n, u_n) \in$ graph (ψ) we deduce that $(a,b) \in$ graph(Ψ) and $b \in \Psi$ $(a) \subset \Psi$ (L). Moreover $\mu_0 \neq 0$. In other case on the one hand there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $\mu_n x_n \notin B(0, \gamma/2)$. On the other hand from $a^{\epsilon} \in L$ we get that the sequence $(\mu_n x_n, \mu_n u_n) \to (a^{\epsilon}, 0) \in L \times \{0_E\}$. Furthermore

$$(\mu_n x_n, \mu_n u_n) = \mu_n(x_n, u_n) \in \mu_n \operatorname{graph}(\Psi) = \operatorname{graph}(\Psi)$$

So $(a',0) \in graph(\psi)$. By virtue of the hypothesis $(L \times \{0_E\}) \cap graph(\Psi) = \{0_X \times 0_E\}$ and we obtain a' = 0. But this is impossible because $\mu_n x_n \notin B(0, \gamma/2)$. In consequence the set $\Psi(L)$ is closed. Taking into account that the set-valued map DH(x_0, u_0) is positively homogeneus, if $\lambda > 0$ it follows that

$$\begin{split} \Psi(\mathsf{L}) &= \cup_{\mathsf{x} \in \mathsf{M}} \mathsf{DH}(\mathsf{x}_0, \mathsf{u}_0)(\lambda(\mathsf{x} - \mathsf{x}_0)) + \mathsf{K} \\ &= \mathsf{cone}\{\cup_{\mathsf{x} \in \mathsf{M}} \mathsf{DH}(\mathsf{x}_0, \mathsf{u}_0) \ (\ \mathsf{x} \text{-} \mathsf{x}_0)\} + \mathsf{K} \end{split}$$

Proposition 3.3. Let us suppose that the assumption (2) is satisfied. Let the multifunction H be generalized K-convexlike and K-pseudoconvex at (x_0, u_0) and let us assume that the contingent epiderivative DH (x_0, u_0) exists. Then the set

$$C = cone\{ \cup_{x \in M} DH(x_0, u_0)(x - x_0)\} + K$$

is convex.

Proof. a) We will first suppose that $u_0 = (0_Y, 0_Z)$. Let us prove that if $\alpha_i h_i \in C$, i = 1, 2, with $\alpha_i \ge 0$, $h_i \in \bigcup_{x \in M} DH(x_0, u_0)(x - x_0)$ and $\lambda \in [0, 1]$, then $\lambda \alpha_1 h_1(1 - \lambda) \alpha_2 h_2 \in C$.

Given the previous elements, there exist $x_1, x_2 \in M$ such that

 $((x_i - x_0)), h_i) \in T(epi(H), (x_0, u_0))$

therefore

$$\alpha_i h_i \in T(epirang(H), u_o) \subset T(cone(H(M)) + K, u_0)$$

Since the multifunction H is generalized K-convexlike, then the sets {cone(H(M)) + K} and T(cone(H(M)) + K,u_0) are convex. So $\lambda \alpha_1 h_1(1 - \lambda) \alpha_2 h_2 \in T(cone(H(M)) + K,u_0)$ and there exist sequences $(t_n)_{n \in N}$, such that $t_n > 0$, $\lim_{n \to \infty} t_n = 0$, $\lim_{n \to \infty} w_n = \lambda \alpha_1 h_1 + (1 - \lambda) \alpha_2 h_2$, with $t_n w_n \in cone(H(M)) + K$.

We will suppose that $t_n w_n \notin K$. In other case it is obvious that $w_n \in C$ and $\lim_{n \to \infty} w_n \in C$ because the set C is closed. In this way there exist sequences $(\alpha_n) \subset IR$ with $\alpha_n > 0$ and $(x_n) \subset M$ such that $\left(x_n, \frac{t_n w_n}{\alpha_n}\right) \in epi(H)$. Since the multivalued function H is K-pseudoconvex at (x_0, u_0) we get that

$$\left(x_{n}-x_{0},\frac{t_{n}w_{n}}{\alpha_{n}}-u_{0}\right)\in T(epi(H),(x_{o},u_{0}))$$

hence $\frac{t_n w_n}{\alpha_n} - u_0 = \frac{t_n w_n}{\alpha_n} \in DH(x_0, u_0)(x_n - x_0) + K$ and $w_n \in C$. By proposition 3.2, C is a closed set and it

follows that

$$\lambda \alpha_1 h_1 + (1 - \lambda) \alpha_2 h_2 = \lim_{n \to \infty} w_n \in C$$

b) If $u_0 \neq (0_Y, 0_Z)$ we define $G = H - u_0$. It verifies that $DG(x_0, 0) = DH(x_0, u_0)$ and the result is consequence of a).

From now on we will consider the assumptions (2). We will suppose that $u_0 = (y_0, z_0)$ where $y_0 \in F(x_0)$ and $z_0 \in G(x_0) \cap (-K_Z)$.

Theorem 3.4. Let us assume conditions (2). Let the cones K_Y , K_Z have nonempty interiors $int(K_Y)$, $int(K_Z)$. Assume that $(x_0, y_0) \in graph(F)$ is a weak minimizer of the problem (1). Let the contingent epiderivative $D(F \times G)(x_0,(y_0, z_0))$ exists. If the set-valued map $F \times G$ is generalized $K_Y \times K_Z$ -convexlike and $K_Y \times K_Z$ -pseudo-convex at $(x_0, (y_0, z_0))$ then there exist $u \in K_{Y^*}$ and $v \in K_{Z^*}$, $(u,v) \neq (0,0)$ such that $v(z_0) = 0$ and

$$u(y) + v(z) \ge 0$$

for all $(y, z) = D(F \times G)(x_0, (y_0, z_0))(x-x_0)$ with $x \in M$.

Proof. a) By the proposition 3.3, the set

$$S = cone\{\bigcup_{x \in M} D(F \times G)(x_0, (y_0, z_0))(x - x_0)\} + (K_Y \times (K_Z + \{z_0\}))$$

is convex.

Let us show that

(1)
$$S \cap [(-int(K_Y)) \times (-int(K_Z))] = \phi$$

In fact, let us suppose that there exists $(y, z) \in Y \times Z$ such that

(2)
$$(y,z + z_0) \in S \cap [(-int(K_Y)) \times (-int(K_Z))]$$

therefore there exist

(3)
$$x \in M; \lambda > 0; y^1 \in Y, y^2 \in K_Y; z^1 \in Z, z^2 \in K_Z;$$

such that $y = \lambda y^1 + y^2$, $z = \lambda z^1 + z^2$ and it verifies

(4)
$$(x - x_0, (y^1, z^1)) \in T(epi(F \times G), (x_0, (y_0, z_0)))$$

hence there exists a sequence $(x_n, (y_n, z_n)) \in epi(F \times G)$ and a sequence (μ_n) of real positive numbers such that $(x - x_0, (y_0, z_0)) = \lim_{n \to \infty} (x_n, (y_n, z_n))$ and

(5) $(x-x_0,(y^1,z^1)) = \mu_n \lim_{n \to \infty} (x_n - x_0,(y_n - y_0, z_n - z_0))$

From (2) and (3) we deduce that for a sufficiently large n

$$\begin{split} \lambda \mu_n(y_n - y_0) + y^2 &\in -int(K_Y) \\ \lambda \mu_n(z_n - z_0) + z^2 + z_0 &\in -int(K_Z) \end{split}$$

therefore

$$\begin{split} \lambda \mu_n(y_n \text{ - } y_0) \, \in \, \text{-int}(K_Y) \\ \lambda \mu_n(z_n \text{ - } z_0) \, + \, z_0 \in \, \text{-int}(K_Z) \end{split}$$

and hence

(6) $y_n \in y_0 \operatorname{-int}(K_Y)$

(7)
$$z_n \in z_0 \left(1 - \frac{1}{\lambda \mu_n}\right) - int(K_Z)$$

On the other hand, there exist sequences $(y_n^{\bullet})_{n\in N}$, $(z_n^{\bullet})_{n\in N}$, with $y_n^{\bullet} \in F(x_n)$, $z_n^{\bullet} \in G(x_n)$, such that

$$y_n \in y_n^{\bullet} + K_Y, z_n \in z_n^{\bullet} + K_Z$$

and from this, taking into account (6) and (7) we get

(8)
$$y_n^{\bullet} \in y_n - K_Y \subset y_0 - int(K_Y) - K_Y = y_0 - int(K_Y)$$

(9)
$$Z_n^{\bullet} \in Z_n - K_Z \subset Z_0 \left(1 - \frac{1}{\lambda \mu_n}\right) - \operatorname{int}(K_Z) - K_Z = Z_0 \left(1 - \frac{1}{\lambda \mu_n}\right) - \operatorname{int}(K_Z)$$

Then on the one hand from (8) we have that

(10)
$$F(x_n) \cap (y_0 - int(K_Y)) \neq \phi$$

On the other hand from (2) we deduce that $y = \lambda y^1 + y^2 \neq 0$. Furthermore $y^1 \neq 0$, because in other case $y = y^2 \in K_Y \cap (-int(K_Y))$. So $\mu_n \to \infty$ and for a sufficiently large n we obtain that $\lambda \mu_n > 1$. As by hypothesis $z_0 \in -K_Z$, then $z_0 \left(1 - \frac{1}{\lambda \mu_n}\right) \in -K_Z$. From (9) we deduce that $z_n^{\bullet} \in (-int(K_Z))$, and in consequence

(11)
$$Z_n^{\bullet} \in G(x_n) \cap (-int(K_Z))$$

From (10) and (11) we conclude that (x_0, y_0) isn't a weak minimizer so (1) is proved.

Then S is convex and equality (1) holds. By Hahn-Banach's theorem there exist $u \in Y^*$, $v \in Z^*$ such that

$$u(y') + v(z') \le u(y) + v(z)$$

for all $(y', z') \in (-int(K_Y)) \times (-int(K_Z))$, $(y,z) \in S$. Taking into account the continuity of u and v and that $0_Y \in cl(-int(K_Y))$ and $0_Z \in cl(-int(K_Z))$ we have that

$$u(y) + v(z) \ge 0$$
 for all $(y,z) \in S$

Furthermore since $(0_Y, z_0) \in S$ for all $y' \in (-int(K_Y))$ and for all $z' \in (-int(K_Z))$ we get

$$u(y') + v(z') \le u(0_Y) + v(z_0) = v(z_0)$$

As $0_Y \in cl(-int(K_Y))$ and u is continuous it follows that

 $v(z') \leq v(z_0)$

for all $z \in (-int (K_Z))$. Moreover $v(z') \le 0$, for all $z \in -int(K_Z)$, because in other case there exists $z \in -int(K_Z)$ such that v(z')>0. Then we have $v(\alpha z') = \alpha v(z') \le v(z_0)$ for all $\alpha > 0$, which does not make sense. From $K_Z \subset cl(int(K_Z))$, we obtain $v \in K_{Z^*}$. With a similar reasoning for 0_Z we deduce that

$$u(y') \le v(z_0)$$
 for all $y' \in -int(K_Y)$

since by hypothesis $z_0 \in -K_z$, we have $v(z_0) \le 0$, and $u(y') \le 0$. Therefore $u \in K_{Y^*}$. Furthermore from $v(z') \le v(z_0)$ for $z' = 0_Y$ we obtain that $0 \le v(z_0)$ and in consequence $v(z_0) = 0$. From this fact we arrive to

 $u(y) + v(z) \ge 0$ for all $(y,z) \in \bigcup_{x \in M} D(F \times G)(x_0,(y_0,z_0))(x - x_0)$ because $(y,z + z_0) \in S$.

Example 3.5. Let $f,g:[-1, 1] \rightarrow \mathbb{R}$ be functions where

$$f(x) = \begin{cases} 2/3x + 1/(3 \cdot 2^{3n}) & \text{if} \quad 1/2^{2+3n} \le x \le 1/2^{3n} \\ 3x - 1/2^{2+3n} & \text{if} \quad 1/2^{3+3n} \le x \le 1/2^{2+3n} \\ -2/3x + 1/(3 \cdot 2^{3n}) & \text{if} \quad -1/2^{3n} \le x \le -1/2^{2+3n} \\ -3x + 1/2^{2+3n} & \text{if} \quad -1/2^{2+3n} \le x \le -1/2^{3+3n} \\ 0 & \text{if} & x = 0 \\ n = 0, 1, 2, \dots \end{cases}$$

Let $F:[-1,1] \rightarrow 2^{\mathbb{R}^2}$ be a set-valued map defined by

$$F(x) = \{(x,y) \mid f(x) \le y \le g(x)\}$$

Let G:[-1,1] $\rightarrow 2^{\mathbb{R}}$ be the multifunction given by G(x) = {-|x|}. We consider the cones $K_Y = IR_+^2 \subset IR^2$, $K_Z = IR_+ \subset IR$. The contingent epiderivative of F × G at (0,((0,0),0)), is

$$\mathsf{D}(\mathsf{F} \times \mathsf{G}) \ (0, ((0,0),0))(x) = \begin{cases} (x, x, -x) & \text{if } x \ge 0\\ (x, -x, x) & \text{if } x < 0 \end{cases}$$

The problem

min F(IR)
subject to
$$x \in [-1,1]$$

is a particular case of the problem (1). It is easy to see that (0,(0,0)) is a weak minimizer of this problem.

The set-valued map $F \times G$ is not $K_Y \times K_Z$ -convex at (0,(0,0)), therefore the results of Aubin (1981) can not be applied. Nevertheless it is not difficult to verify that $F \times G$ is generalized $K_Y \times K_Z$ -convexlike and $K_Y \times K_Z$ -pseudoconvex at (0,((0,0),0)). Consequently, by the previous theorem we obtain the functions $u \in K_Y^*$, $v \in K_Z^*$ with $(u,v) \neq (0,0)$.

We note that for instance the functions u(x,y) = 2x + 2y, v(x) = x belong to K_Y^* and K_Z^* respectively and comprise a pair of multipliers for this problem.

REFERENCES

- AUBIN, J.P. (1981): "Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions", **Mathematical Analysis and Applications**, part A, 7A, 160-229.
 - ____ and H. FRANKOWSKA (1990): "Set valued analysis", Birkhäuser, Boston.

- BORWEIN, J.M. (1977): "Multivalued convexity and optimization. A unified approach to inequality and equality constraints", **Mathematical Programming**, 13, 183-189.
- CORLEY, H.W. (1987): "Existence and Lagrangian duality for maximizations of set-valued functions", Journal of Optimization Theory and Applications, 54, 489-501.
- CORLEY, H.W. (1988): "Optimality conditions for maximizations of set-valued functions", **Journal** of Optimization Theory and Applications, 58, 1-10.
- JAHN, J. and R. RAUH (1997): "Contingent epiderivatives and set-valued optimization", **Mathematical Methods of Operations Research**, 46, 193-211.

____ and A. GÖTZ (2000): "The Lagrange multiplier rule in set-valued optimization", **SIAM J. Optimization**, 10(2), 331-344.

LUC, D.T. (1991): "Contingent derivatives of set-valued maps and applications to vector optimization", **Mathematical Programming**, 50, 99-111.

_____ and C. MALIVERT (1992): "Invex Optimization problems", Bulletin of Australian Mathematical Society, 46, 47-66.

ROCKAFELLAR, R.T. (1988): "First-and second-order epi-differentiability in nonlinear programming", **Transactions of the American Mathematical Society**, 307, 75-108.

_____ (1970): "Convex Analysis", Princeton University Press, Princeton.

SCHAEFER, H.H. (1971): "Topological vector spaces", Springer Verlag, New York.

- URSESCU, C. (1982): "Tangent sets, calculus and necessary conditions for extremality", **SIAM** Journal on Control and Optimization, 20, 563-574.
- WARD, D.E. and J. BORWEIN (1987): "Nonsmooth calculus in finite dimensions", **SIAM Journal** on Control and Optimization, 25, 1312-1340.