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ABSTRACT 
The phenomenon consisting in all the feasible region of a multiple objective linear programming problem 
being weakly efficient, may be less unlikely than has been believed, particularly for problems whose 
feasible regions have no interior. To deal with such possibility of complete weak efficiency, we would 
want to have at our disposal proficient methods to check this situation. So, in this paper we give a few 
characterizations of that kind. The provided tests are easily put into practice and can lead us to 
important procedural simplifications and computational savings, specially if vector maximum or 
interactive approaches are going to be used in the resolution of a multiple objective linear program. 
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RESUMEN 
El fenómeno consistente en que toda la región factible de un problema de programación lineal 
multiobjetivo sea débilmente eficiente quizás el estimado más probable de lo que podría pensarse a 
priori, especialmente en aquellos problemas cuyas regiones factibles tienen interior vacío. Para tratar la 
eventualidad de la eficiencia débil completa sería deseable la disposición de herramientas adecuadas 
que comprueben esta situación. Por ello, en este artículo damos algunas caracterizaciones de este tipo. 
Los tests obtenidos son fácilmente aplicables y pueden proporcionar importantes simplificaciones 
procedimentales y ahorros de cómputo, especialmente cuando se utilizan los enfoques de maximización 
vectorial o interactivos en la resolución de un programa lineal multiobjetivo. 
 

1. INTRODUCTION 

 One of the more practical models used in multiple criteria decision making is that which involves the 
simultaneous maximization of k ≥ 2 objective functions over a feasible region given in an implicit way (see, for 
instance, Steuer (1986). 

 Let X ⊆ Rn be a nonempty set of feasible solutions given in an implicit way and let z: Rn → Rk be the vector-
valued criterion function defined for each x ∈ X. Then, the multiple objective programming problem (MOP) 
may be written as: 

       max{z(x) / x ∈ X}           (1) 

 When all the objective functions that appear in (1) are linear and X is a polyhedron, we have a multiple 
objective linear programming problem (MOLP). Without loss of generality, we can assume that the 
formulation of a MOLP is as follows: 

        max{Cx / x ∈ X}           (2) 

where X = {z ∈ Rn / Ax = b, x ≥ 0}, being A ∈ Rm×n, b ∈ Rm×1 and C ∈ Rk×n, fixed real matrices. 

 Throughout the paper we will employ the following notation: Let x, y ∈ Rn, then: 

 1. x ≤ y  ⇔ xj ≤ yj, ∀ j ∈ {1,…,n}. 

 2. x ≤ y  ⇔ x ≤ y, x ≠ y. 

 3. x < y  ⇔ xj < yj, ∀ j ∈ {1,…,n}. 

 4.   ⇔ {x ∈ RnR+
n / x ≥ 0}. 

 5.  ⇔ {x ∈ RnR ++
n / x > 0}. 

 6. e  ⇔ Vector whose components are each equal to one. 
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 Let  P be a MOP. Several strategies for solving problem (1) have been suggested. Many of these involve 
generating efficient or weakly efficient solutions which are defined in the following sense: 
 
Definition 1.1. Xx∈  is said to be an efficient solution of P if, and only if, X  x ∈∃/ such that z(x)  ≥ )x(z . 
 
Definition 1.2. We say that Xx∈  is a weakly efficient solution of P if, and only if, such that  
z(x) ≥

X  x ∈∃/
)x(z . 

 Let  WEP denote the set of all weakly efficient solutions for problem P. 

 The following definition plays a key role in this paper. 

Definition 1.3. P is said to be completely (weakly) efficient if, and only if, every feasible solution is also 
(weakly) efficient, i.e., WEP = X. 

 It is clear that if X = ∅, or z(x) is a null vector objective function, or z(X) contains only one point, then P is, 
trivially, completely weak efficient. Therefore, without loss of generality, we can assume that X = ∅ and that 
z(x) is a not null function. 

 The research made in this work provides us with a few tests to check the complete weak efficiency in  a 
MOLP and seeks a better understanding of the mathematical underlying structure of this problem. 

 To the best of our knowledge, the issue of complete weak efficiency has not been previously treated in the 
literature. The only studies found closely to the subject of which we are aware are certain communications 
related with complete efficiency. 

 The first one was presented by M. Benveniste in 1977 (see Benveniste (1977)). In that work, she examines 
the case in which the objective functions are linear and the feasible region is a convex set with a nonempty 
interior. Later, in 1991, H. Benson (Benson (1991)) carried out a new study, with special attention to the linear 
case, achieving a useful test (based on the resolution of a linear scalar program) that does not require X to 
have a nonempty interior. Recently, in 2001, J. Jorge (Jorge (2001)) has analyzed again the linear case 
finding new tests nearly related to, but different from, that proposed by Benson. 

 This paper was thought as a natural extension to the previous work of Jorge on complete efficiency and is 
organized as follows: 

 Section 2 illustrates the notion of complete weak efficiency and states a theorem of the alternative that will 
be used latter. 

 In Section 3 we give the mathematical framework that allows us to obtain some necessary and sufficient 
conditions that characterize the complete weak efficiency of a linear problem.  

 Some conclusions are given in the final section. 

2. PRELIMINARIES FOR THE MOLP 

 At this point we will discuss about how graphical detection of weakly efficient solutions in the linear case is 
achieved. This will allow us to illustrate the notion of completely weak efficient problem. At last, an useful 
theorem of the alternative is stated. 

Definition 2.1. The weak preference cone associated with matrix C is the positive polar cone of the cone 
generated by the rows of C, that is, the set  .00Cd/RdC n }{∪}>∈{=>

 The next result is an extension of another one well-known (see Steuer (1986), Theorem 6.16). 

Theorem 2.2. PWEx∈  if, and only if, .x =  X)Cx( }{+ > I  

 The following example shows us a completely weak efficient MOLP. 

Example 2.3. Let us consider the problem P given by  
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Figure 1. 

whose feasible region and weak preference cone are represented 
in Figure 1. Note that the graphical representation of the weak 
preference cone, analytically 
 

described by has been 

truncated by the plane  for the sake of clarity. Now,  
it can be verified that . 
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 Now, a theorem of the alternative, which will be proved useful 
in the next section. 
  
 Let us consider an arbitrary constant α ∈ Rk. 
 
Theorem 2.4. (Jorge (2002), Corollary 2.4) If X = {x ∈ R / Ax = b} ≠ ∅ the the system Ax = b, x ≥ 0, Cx > α, 
has no solution if, and only if, u´A - λ´C ≥ 0´, λ´α ≥ u´b, λ ≥ 0, has a solution. 

n

 
3. TESTS FOR DETECTING COMPLETE WEAK EFFICIENCY IN A MOLP 

 Our goal in this section shall be concerned with establishing some necessary and sufficient conditions, 
easily put into practice, which allow us to detect the possibility of complete weak efficiency in a MOLP before 
its resolution. 

 First we start with a key result that can be applied to the general case. 

Theorem 3.1. If P is a MOP, then the following are equivalent: 

  (i) P is completely weakly efficient. 

(ii) The system 

      z(x) – z(y) > 0, x, y ∈ X,           (3) 
 
     has no solution. (See an analogous result for the efficient case in Benveniste (1977), Theorem 1). 
 
(iii) The scalar program 

    max{s / z(x) – z(y) – es ≥ 0, x, y ∈ X, s ≥ 0}          (4) 
 
has optimal objective value equal to 0. 
 
Proof. Straightforward 
  
 In spite of its simplicity, the above theorem is decisive in the development that we have done below. 

 Note that the scalar program specified in (4) constitutes a very practical tool in the analysis of complete  
weak efficiency since, generally, it is easier to solve (4) than to check the infeasibility of (3). 

 However, when we deal with a MOLP, we also have at our disposal the theorem of the alternative stated in 
the previous section. So, if we suppose that P is a MOLP. 

 
Theorem 3.2. Let u, v ∈ Rn and λ ∈ Rk. P is completely weakly efficient if, and only if, the system 
 

                 (5) 
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Proof. By hypothesis P is completely weak efficient. Applying Theorem 3.1, system (5) has a solution if, and 

only if, has no solution. Since this system can be rewritten as:  and 

applying Theorem 2.4 it is equivalent to the following system  having a 

solution. Now the proof is done.                
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 Theorem 3.2 has two corollaries. First, due to the homogeneity of system (5) it is possible to write: 
 
Corollary 3.3. P is completely weakly efficient if, and only if, the system 
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has a solution.    
 
 Note that the inequality utb + vtb ≤ 0 is actually an implicit equality. Indeed, multiplying both sides of  
utA + vtA ≥ 0 by any x ∈ X yields utb + vtb ≥ 0. Thus we obtain: 
 
Corollary 3.4. P is completely weakly efficient if, and only if, the system 
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 Here is another important result: 

Theorem 3.5. P is completely weakly efficient if, and only if, the problem 
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has optimal objective value equal to 0. 
 
 The utility of the above test is due to the fact that it allows us to analyze the complete weak efficiency in a 
MOLP through the resolution of an easy scalar linear program. 
 
 Actually, Theorem 3.1 gives us another similar possibility by means of problem (4). Since, the linear 
formulation of (4) is written as: 
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                                                    (9) 
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we have: 

Theorem 3.6. P is completely weakly efficient if, and only if, the scalar linear program (9) has optimal objective 
value 0. 

 A question might be asked about what relationship is established, if any, between programs (8) and (9). 
The answer comes immediately. 

Proposition 3.7. The problems (8) and (9) are a primal-dual pair of linear scalar programs. 

Proof.  

 Problem (9) can be written as .  Now, by scalar linear duality, we obtain   
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and the proof is concluded. 

 
 
4. CONCLUSIONS 
  
 In this work we provide a few tests for detecting complete weak efficiency in a MOLP before its resolution. 
Some of them are stated in terms of feasibility of certain linear systems of inequalities and others are 
formulated through the resolution of some scalar linear programs. Anyway, all of them enjoy the remarkable 
advantages of their simplicity and ease of application. 
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 The theory developed in section 3 is based on the combination of system (3) under linear hypothesis 
together with the theorem of the alternative stated in Section 2. 

 We would like to mention that the possibility of complete weak efficiency is greater than the existing for 
complete efficiency. Not in vain, the weakly efficient set of solutions contains all the efficient set. In addition, 
we think, together with Benson (see Benson (1991), p. 482), that complete efficiency may happen with certain 
frequency for problems whose feasible regions have no interior, although up to the present time this remains 
to be seen. 

 Finally, it is worthy of remark that the complete weak efficiency tests also yield practical tools for checking 
weak efficiency of an arbitrary face in a MOLP. This easily comes from the fact that every face of a 
polyhedron can be seen also as a polyhedron. 

APPENDIX 

 Let us consider an arbitrary α∈ Rk. In order to prove Theorem 2.4 we need a more general result. 

Theorem 1. The system 

                 Ax = b,  x  ≥ 0,   Cx > α          (1) 

has a solution if, and only if, the system 

       utA - λtC ≥ Ot, λtα - δ = utb, (λt, δ) ≥ 0         (2) 

has no solution. 

Proof. Clearly, system (1) having a solution is equivalent to system – Ax + by = 0, y > 0, x ≥ 0, Cx - αy > 0, 
having a solution. Since this system can be rewritten as: 

     (-A, b) ⎟⎟ = 0, > 0, (I, 0)  ≥ 0,        (3) 
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applying Motzkin´s theorem of the alternative (see the book “Mangasarian, 1969, Nonlinear Programming, 

McGraw-Hill” p. 28), system (3) has a solution if, and only if, system (λt, δ)  + s⎟⎟
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t(I, 0) + ut(-A, b) = 0,  

s ≥ 0, (λt, δ) ≥ 0, has no solution, which is equivalent to system (2) having no solution.             
  
 The above result can be improved under the assumption that X = {x ∈ / Ax = b} is not empty. Thus we 
obtain: 

nR+

  
Theorem 2.4. If X ≠ ∅ then system (1) has no solution if, and only if, the system 

      utA - λtC ≥ 0t, λtα ≥ utb, λ ≥ 0          (4) 

has a solution. 

Proof. By Theorem 1, system (1) has no solution if, and only if, utA - λtC ≥ 0t, λt α - δ = utb, (λt, δ) ≥ 0, has a 
solution. Now, suppose by contradiction that λ = 0, δ > 0. Thus utA ≥ 0t and utb < 0. On the other hand, taking 
an arbitrary x ∈ X we obtain utAx = utb ≥ 0, which is a contradiction. Therefore, system (4) has a solution.     
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