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ABSTRACT 
For several decades quasi-Newton methods based on low-rank secant updates have been widely applied 
to many small to medium sized nonlinear equations and optimization problems. Their adaptation to large 
and structured problems has not always been successful. We review some convergence results for secant 
methods and some examples regarding the cost of derivative matrices, report some recent results from a 
parallel implementation of Broyden's method, and propose an unsymmetric rank-one Jacobian update 
based on direct and adjoint derivative information. It may be applied in particular to Jacobians in 
constrained optimization, either with full storage or in a limited memory version. We report some numerical 
results on a discretized second order ODE and conclude with an outlook on future developments. 
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RESUMEN 
Los métodos quasi-Newton basados en actualizaciones de la secante de bajo rango han sido 
ampliamente usados por varias décadas para resolver ecuaciones no lineales y problemas de 
optimización de pequeña o mediana dimensión. La adaptación de estos métodos a la solución de 
problemas extensos y estructurados no ha sido siempre exitosa. 
 

1. INTRODUCTION AND MOTIVATION 
 

 The Davidon-Fletcher-Powell (DFP) formula was proposed nearly fifty years ago [Davidson, (1959)] and 
stimulated a lot of research into related updating formulas during the following two decades. In practical 
implementations it was superseded by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula, which is still 
extensively used in computer codes for unconstrained and constrained optimization. DFP or BFGS and 
convex combinations of these rank-two formulas are useful for approximating symmetric positive definite 
Hessian matrices of moderate dimensions, say in the hundreds. For larger problems so-called limited memory 
variants haven been developed [NocedaI (1980)] which are currently widely considered the most effective 
general purpose technique for large-scale unconstrained minimization. For the solution of systems of 
nonlinear equations the unsymmetric rank-one update formula due to [Broyden (1965)] yields similar 
advantages, though its has not been quite as successful as BFGS in the symmetric positive definite case. 
One possible explanation is that the Broyden formula is strongly dependent problem scaling whereas the 
BFGS and DFP are in some sense invariant with respect to linear transformations on the variables, is also an 
advantage of Newton's method in the unsymmetric case. The same desirable property is achieved by the 
two-sided-rank-one formula (TR1) described in Section 4 of this paper. All these schemes are referred to as 
secant methods because they obtain information about. 
 
 In the past two decades the development of equation solvers and optimization algorithms has been 
primarily aimed at the treatment of large and very large problems. In either case, we face locally the problem 
of finding the root of a vector function F: IRn → IRn. Its Jacobian is square and in the optimization case also 
symmetric, i.e. a Hessian. At first thought the formulas mentioned above might seem unsuitable for large-
scale purposes because they immediately destroy sparsity, which is frequently considered a typical property 
of problems in very many variables. Also, to approximate a square Jacobian or Hessian of order n from a 
poor initial guess by a sequence of rank-one or rank-two corrections one must take in general n or n/2 update 
steps, respectively. However, especially on discretizations of operator equations one rarely wants to take 
more than a hundred steps even if n is in the thousands. For Newton's method one can establish under fairly 
general assumptions on the operator equation and its discretization [Allower et al. (1986)] that the number of 
steps needed to obtain a certain solution accuracy is completely independent of the mesh-size and thus the 
dimension n. In other words, the key properties of Newton's method and especially its Q-quadratic rate of 
convergence are mesh-invariant. This means that on all sufficiently fine grids the sequence of Newton iterates 
closely corresponds to the one theoretically generated by Newton's method on the underlying problem in 
function space.  
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 Like linear invariance this highly desirable property is not necessarily shared by the secant methods 
mentioned above. More specifically, the Q-superlinear rate of convergence established for a wide variety of 
low-rank updating methods by Broyden, Dennis and Morè (1973) in a finite dimensional setting does not 
automatically generalize even to separable Hilbert spaces. Counter examples in the space l2 of square 
summable real sequences were given in Stoer (1984) and Griewank (1987). The key difficulty is that the unit 
sphere of directions is no longer compact in l2 and all other infinite dimensional linear spaces. As a 
consequence the operator discrepancy between the approximating Jacobians or Hessians and their exact 
values need not become small, no matter how many updates haven been performed and even if they are 
applied in orthogonal, or more generally conjugate, directions. 
 
 To recover guaranteed Q-superlinear convergence one has to assume that already the initial operator 
discrepancy is relatively compact. More specifically, the singular values of the difference between the identity 
operator and the Jacobian or Hessian at the solution, premultiplied by the inverse of their initial 
approximations, must converge to zero. In other words, we must be able to precondition the given gradient or 
other vector function such that it is a compact perturbation of the identity. This situations arises for example in 
the Chandrasekhar equation 
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which we will use as a test problem. The same is true for much more interesting applications, for example in 
optimal control of PDEs [Hinze-Kunish (1999)]. The intimate connection between preconditioning and 
Jacobian or Hessian initialization is often not fully appreciated. 
 
 Let us suppose the compactness assumption is satisfied - what then are the advantages of secant updating 
methods? Probably the foremost motivation for the design of secant updating methods was the avoidance of 
derivative evaluations in the nonlinear case. However, besides this considerable increase in user-friendliness 
compared to Newton's method, there is another very significant gain, namely the reduction of the linear 
algebra effort per iteration from order n3 to order n2 in the dense case. For limited memory implementations 
the storage requirement and per step operations count drop down further to O(kn), where k is the number of 
iterations since the last reset. These very significant savings may be important even on linear problems, 
where the evaluation of the Hessian of Jacobian is usually no issue at all. To bolster our conclusion that low-
rank updates may be useful even on large-scale problems we discuss the costs of Newton's method in 
Section 2, review some classical results on secant methods in Section 3, introduce the new two-sided rank-
one update in Section 4 and consider possible further developments in the final Section 5. 
 
2. ON THE COST OF NEWTON'S METHOD 
 
 To decide whether and when updating methods are competitive, one has to consider the alternatives, 
namely Newton's method and its inexact variants. Exact Newton steps for a square system F(x) = 0 ∈ IRn are 
usually obtained by explicitly forming the Jacobian F'(x) ∈ IRn×n and then factoring it into the product of two 
triangular matrices. Inexact methods typically compute the Newton-step approximately by an inner iteration 
based on Jacobian-vector products and possibly vector-Jacobian products. The convergence properties of 
the popular Krylov subspace methods, especially CG for the symmetric positive definite and GMRES for the 
general case, are dependent on the eigenvalues or singular values of the discrepancy between the possibly 
preconditioned Jacobians and the identity. Convergence of the inner iteration in much fewer than n steps can 
again only be expected if the eigen -or singular- values are heavily clustered, usually at zero. This is exactly 
the situation where secant updating methods perform also well in terms of the number of (outer) iterations. If 
on the other hand, the number of inner iterations is a significant fraction of n, then one might as well use the 
exact variant of Newton's method to which we will restrict our attention from now on. 
 
 For general nonlinear problems the cost of forming and factoring a Jacobian or Hessian is still almost 
impossible to estimate a priori. There are obvious upper bounds, namely the derivative matrix F'(x) can be 
estimated at roughly n times the cost of evaluating the residual F(x) itself and a LU factorization involves n3/3 
fused multiply-adds. For large n these costs are likely to be prohibitive, so that one will wish to  
detect and exploit sparsity and other problem structure. Using well-known matrix-compression techniques 
[Griewank (2000)] one can reduce the cost factor for evaluating a sparse Jacobian by differencing or using 
the forward mode of automatic differentiation (AD) from n to the maximal number of nonzero elements per 
row of this matrix. In the so-called reverse, or adjoint, mode of AD the same compression technique can be 

,n̂
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applied column-wise, in which case the cost factor is roughly equal to m, the maximal number of nonzero 
entries per column. Hence we may summarize 
 

     5
)x(FOPS
)x´(FOPS
)(
)(
≤ min  ≤ 5 min(n,m)       (1) )m̂,n̂(

 
where we have also allowed for the rectangular case F´∈ IRm×n with m ≤ n. Of particular interest is the case  
m = 1, where F´ is a gradient. It is then obtained in the reverse mode of AD at essentially the same cost as 
the underlying scalar function F(x). 
 
 In general, the upper bound (1) is by no means a good estimate of the minimal cost for computing the 
Jacobian. For instance on square problems with some (nearly) dense rows and columns, as for example an 
arrowhead matrix, the right hand side is 5n but combinations of row and column compression yield the 
Jacobian at a much lower cost [Griewank (2000)]. As first demonstrated in Griewank (1993)] the relative cost 
of evaluating a Jacobian depends not only on its sparsity pattern, but on the internal structure of the given 
procedure for evaluating the underlying vector-function. The attempt to minimize the operations count for 
computing a Jacobian or Hessian leads to a hard combinatorial optimization problem [Griewank-Naumann 
(2002). It seems doubtful whether too much effort should be invested in solving this meta-problem, especially 
since exact Newton-steps can sometimes be computed more directly by factoring an extended system 
without forming the Jacobian at all [Griewank  (1990)]. Rather than trying to analyze the cost of Jacobians, 
Hessians and Newton-steps in general, we will just highlight the issues on an algebraically simple example. 
 
 Consider the following generalization of an example used by Speelpenning, which occurs similarly as 
Cobb-Douglas function [Douglas (1934)] in the economics literature  
 

f(x) =  .x j
j

n

1j
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 Assuming that all variables xj are nonzero one can express the gradient and Hessian of f as 
 

g(x) = ∇f(x) = f(x)  n
1jjj )x/( =γ

 
and  
 

H(x) = ∇2f(x) = g gT/ f  - D 
 
where D = f diag  is diagonal. By inspection one deduces the operations counts n

1j
2
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OPS(f) ~ 2n, OPS(g) ~ 4n, OPS(H) ~ ½ n2

 
 As the Hessian has in general n2/2 distinct entries, which all vary as a function of x, the last estimate must 
apply to any method for evaluating the Hessian, whatsoever. Hence we see that in agreement with (1) the 
gradient g has essentially the same complexity as the underlying function f but the Hessian is roughly n times 
as expensive. However, this is really only true if we insist on computing the Hessian as a symmetric n × n 
array of real numbers, which is in some sense a redundant and thus inappropriate representation. H instead 
we compute and store simply D in addition to f and g, then not only the application of H to any vector r  
can be computed with effort of order n, but the same is true for its inverse according to the Sherman-
Morrison-Formula 
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 The situation is slightly different if we consider a vector function F(x) = (Fi(X))i=1,...,m with the component 
functions 

Fi  ≡  for i = 1,…,m. ij
j
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 Then the Jacobian F'(x) is formed by the gradients of the Fi and we obtain the cost estimate 
 

OPS(F'(x)) =  ~ m n ~ OPS(F). ∑
=

∇
m

1i
i )F(OPS

  
 In other words the whole Jacobian F´(x) has about the same complexity as the underlying vector function 
F(x). In general this equivalence is by no means true, and even here it applies only under the tacit assumption 
that the exponents γij are largely distinct. If they are not certain common subexpressions can be evaluated 
only once for several components Fi(X), while the cost for evaluating the gradients ∇Fi need not go down 
accordingly. 
 
 To see this consider for example the square case with γij = ⏐i - j⏐. Than we have the identity Fi = Fi-1 (x1x2… 
Xi-1)/(xixi+2 ... xn) which obviously allows the evaluation of F in O(n) arithmetic operations. With a little care all 
divisions can be avoided so that no branching is A needed if one of the xj is zero or very small. The Jacobian 
on the other hand has still n2 distinct entries given by (∂Fi/∂xj = Fi ⎢i - j ⎢/ xj for 1 ≤ i, i ≤ n). Hence computing 
the Jacobian explicitly is one order of magnitude more expensive than evaluating the underlying vector 
function F(x). However, as in the symmetric case above we see that an explicit computation of F´(x)  
is  inappropriate for the following reason. F´(x) equals the Toeplitz matrix ( ⎢i – j ⎢)1≤j≤n pre- and post-multiplied 
by the matrices diag(Fi) and diag(1/xj), respectively. Using superfast solvers for Toeplitz systems 
[Bojanczyk, K. et al. (1995)] Newton steps can thus be computed at a cost of O(n log2 n) operations. 
Obviously it would be a rather formidable challenge to develop a general methodology for detecting and 
exploiting this kind of structure in a vector-function given by an evaluation procedure. 
 
 For general exponents γij and without the use of fast solvers of the Strassen type, the cost of factorizing the 
dense Jacobian F'(x) and thus the cost of computing an exact Newton step will be cubic in n and hence still 
an order of magnitude more expensive than evaluating that square matrix. Thus we conclude that it still 
makes plenty of sense to persue approaches that avoid forming and factoring Jacobians. 
 
3. SOME RESULTS ON BROYDEN'S METHOD 
 
 Throughout this section subscripts represent iteration counters rather than vector components. Provided full 
steps are taken, all Newton-like methods take the form 
 

xk+1 = xk + sk  with  -Ak sk = Fk ≡ F(xk) 
 
where 
 

Ak ≈ kF′ ≈ 
x

)x(F k

∂
∂  ∈ IRn×n

 
 After each step the approximation Ak is updated to a new version satisfying the so-called secant condition 
 

Ak+1 sk = yk ≡ Fk+1 - Fk ∈ IRn

 
 This linear equation is satisfied by an affine subspace of dimension n2 - n, from which Broyden (1965) 
suggested to select the matrix closest to the current Ak with respect to the Frobenius norm. As a result one 
obtains 
 
                       Ak+1 = Ak + rksk

T
ks ∈ IRn×n   with rk ≡ yk - Aksk = Fk+1      (2) 

 
which is clearly a rank-one correction, or update, of Ak. Applying the same arguments to the inverse updating 
problem = sk

1
1k yA−
+ k one arrives after some manipulation at the so called "bad" Broyden formula 

 
         Ak+1 = Ak + rk

T
ky Ak / AT

ky ksk       (3) 
   
 Since for both formulas (Ak+1 - Ak)sk = rk, one sees immediately that either the new residual rk = Fk+1 is small 
-indicating progress towards the solution- or there is a sizable correction from Ak to Ak+1 along sk. In finite 
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dimensional Euclidean space it then follows under mild I regularity assumptions [Broyden et al. (1973] that we 
have local Q-superlinear convergence in that  
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provided x0 and A0 are sufficiently close to a root x* ∈ F-1(0) and the Jacobian F´(x*), respectively. Using a 
suitable line-search or trust-region stabilization these last two locality conditions can be significantly relaxed. 
 
 To understand the function space situation let us consider the discrepancies 

Dk ≡ Ak – F´(x*) =  ∑
−

=

+
1k

0j

T
jj0 srD

which can be interpreted in the separable Hilbert space l2 in the obvious manner. Since the accumulated 
corrections Dk – D0 have rank k it is clear that the essential norm 
 

σess(Dk) ≡ inf{ CDk − ⎪linear C: l2 la
2, rank(C) < ∞} 

 
remains constantly equal to σess(D0). The essential norm is important because it has been shown [Griewank, 
(1987)] that  
 

lim sup k1
kF = lim sup k1

k xx ∗− ≤ σess(D0) 
 
with equality being obtained for almost all initial conditions. Hence it is usually necessary even for  
R-superlinear convergence -which is always implied by Q-superlinear convergence– that σess(Dk) = 0. 
Provided A0 has a bounded inverse this condition is equivalent to σess )DA( 0

1
0
− = 0 and equivalently  

I -  being a compact operator, which is true exactly when its singular values converge to zero. )x´(FA 1
0 ∗
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 The theoretical results are confirmed by the convergence histories plotted in Figure 1 and Figure 2.  
The Chandrasekhar integral equations was discretized by central differences yielding a nonlinear system of 
equations with a dense Jacobian, which is a compact perturbation of the identity I to which A0 was initialized. 
The slope of the logarithmized of the residuals norm plotted against the iterations counter becomes quite 
steep indicating superlinear convergence, before round-off invalidates the asymptotic analysis. The plot was 
obtained for a grid size of 0.01 but was essentially the same for all sizes smaller than 0.1. 
 
 The residual convergence history in Figure 2 was obtained on a central difference discretization of the 
linear convection diffusion equation 

0 = - ∆u + (v,w)∇u = ∇u = f  on  Ω 

 This time the initialization A0 = I is very poor since the discrepancy between the identity and the Laplace 
operator is not even bounded, let alone compact. 

 As a consequence the convergence is very slow and strongly dependent on the grid-size. The run-time 
became also very long because towards the end our limited memory implementation along the lines of 
[Deuflhard et al. (1990)] had to store and manipulate more than 300 vectors in each iterations. In contrast this 
was not a problem on the Chandrasekhar equation, where only 16 vectors needed to be stored until full 
working accuracy in the solution had been achieved.  

 Hence we may conclude that secant updating still makes sense on large problems, provided they are 
relatively compact perturbations of an invertible linear operator. Considerable efforts were undertaken to 
incorporate sparsity into secant updating. While thus is quite easy theoretically, the practical results were 
mostly unconvincing. Since the resulting updates are usually of full rank all savings with regards to the 
Newton step calculation is lost, so that one arrives in some sense at the worst of both worlds, the step 
calculation is expensive and the Jacobian approximation is still not very good. 
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Figure 1. Residual Convergence of Aroyden on Chandrasekhar Equation  
            where Compactness Condition is Satisfies. 
Figure 2. Residual Convergence of Broyden on Convenction Diffusion Equation 
      where Compactness Condition is Violated. 

ED-RANK-ONE UPDATE (TRL) 

very intensive research activity on secant updates in the sixties, seventies, and eighties, it 
r belated and even preposterous to propose yet another formula. However, there is one 
at has changed through the advent of reverse mode automatic differentiation, namely, the 
joint secant information as defined below. To derive and motivate the new update we 
sical problem of equality constrained optimization. 

alar objective function f(x) subject to a vector constraint c(x) = 0 ∈ IRm is locally equivalent to 
 points of the Lagrange function  

L(x, λ) ≡ f(x) + λTc(x). 
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 In other words one has to solve the nonlinear KKT-system 
 
     0 = [g(x, λ), c(x)] ≡ [∇f(x) + λTc´(x), c(x)] ∈ IRn+m      (4) 
 
 According to (1) the gradient g(x, λ) = Lz(x, λ) can be evaluated with an effort 
 

OPS{g(x, λ), c(x)} ∼ OPS{f(x), c(x)}, 
 
whereas the evaluation of the complete constraint Jacobian c'(x) may well be m times as expensive. In other 
words, even though the matrix c'(x) occurs explicitly in the algebraic definition of the vector g(x, λ), the latter 
may be an order of magnitude cheaper to obtain than the former. 
 
 To illustrate this crucial effect we consider again the example 
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 Hence c ∈ IRm for some m ≤ n can clearly be evaluated with an effort of O(n). However, c´ is dense  
and therefore costs at least mn arithmetic operations. In contrast the vector-Jacobian product  
λTc´(x) = (hj/xj)j=1...n can also be calculated at a cost of O(n) using the recurrence 
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 Subsequently the hj can be divided by xj to yield the jth component of λTc´(x). It must be stressed once 
more that any division can be avoided, both in the evaluation of the ci and in the resulting reverse mode 
procedure for λTc´(x) generated automatically. 
 
 Whether or not the Jacobian c´(x) is significantly more expensive than g(x, λ), we also have to consider the 
cost of factorizing the constraint Jacobian c´(x), which is needed to obtain a suitable representation of its 
nullspace. In the last example with m a certain fraction of n, an LU or QR factorization of the Jacobian will be 
one order of magnitude more expensive than its evaluation. Hence it makes sense to consider secant 
methods simply for the purpose of reducing the linear algebra effort. Suppose we have approximations 
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where Bk and Ak will be referred to as approximate Hessian and Jacobian, respectively. Here and throughout 
the remainder of the paper subscripts represent again itaration counters. Then the quasi-Newton step (sk, σk) 
on the KKT system (4) is defined as solution of the linear system  
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where gk = g(xk, λk) and ck ≡ c(xk) at the current point (xk, λk) ∈ IRn+m.  After the step to (xk+1, λk+1) = (xk, λk) + 
(sk,σk) we obtain new values gk+1 ∈ IRn and ck+1 ∈ IRm, which immediately yields the direct secant condition 

               Ak+1sk = yk ≡ ck+1 - ck ≈ c´(xk)sk       (6) 

 For updating the Hessian we'll also assume that the intermediate gradient gk+1/2 = g(xk+1, λk) has been 
evaluated, possibly as part of a line-search procedure. Then we may impose the secant condition 

      Bk+1sk = wk ≡ gk+1/2 - gk ∈ IRn       (7) 

which is fairly standard in constraint optimization codes. A natural way to satisfy this condition is to apply the 
symmetric-rank-one (SRI) update 
 

             Bk+1 = Bk + εk 
k
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where εk is a damping factor that can be selected to avoid singularity or blow-up of Bk+1. While the vector wk 
represents the change in g(x, λ) due to the shift in the primary variables x there is also a shift σk = λk+1 - λk in 
the dual variables, which leads to the adjoint secant condition 
 
     = g)x´(cA 1k

T
k

T
k1k

T
k ++ σ≡µ=σ k+1 - gk+1/2       (9) 

 
 In the linear case the two conditions (6) and ((9) are exactly consistent in that for A = c´ 
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 Provided this scalar value is nonzero, the formula 

         Ak+1 ≡ Ak + δk 
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is the unique rank-one-update satisfying both secant conditions when the damping factor δk equals 
 
1. Because both direct and adjoint secant information enters into this formula we call it the two-sided-rank-

one update (TR1). 
 

 Still assuming linearity of c we find that the discrepancy Dk = Ak - A satisfies the recurrence  
 
    Dk+1 = ⇒σσ− kk

T
kk

T
kkkk sDDsDD  rank(Dk+1) = rank(Dk) - 1               (11) 

 
so that we must have Dk = 0 after k ≤ m undamped updates. In other words, TR1 being a generalization of 
SR1 shares the a priori desirable property of heredity, but it also suffers from its main drawback, namely blow 
up when the denominator but not the numerator vanish. 
 
 In Griewank-Walther (2002) we have developed constructive conditions on the damping parameters δk and 
εk that limit the change in the determinant of the full KKT matrix (5) to a specified interval about 1. These 
conditions and in fact the whole updating procedure for Ak and Bk are shown to be invariant with respect to 
linear transformations on the variable vector x and the constraint vector c. Like for Newton's method and the 
classical symmetric secant formulas BFGS ans DFP this key property holds even if f and c are nonlinear. Its 
achievement is crucially dependent on the scaling information inherent in the adjoint secant condition (9), 
which is based on reverse mode differentiation. 
 
 In order to examine the properties of TR1 in isolation from other algorithmic aspects we consider the case 
m = n, where c(x) = 0 defines a locally unique feasible point x* assuming det(c'(x*) ≠ 0. Then the KKT system 
becomes block triangular and effectively decomposes into the equation pair  
 

c(x) = 0 and ∇f(x)+ λT c'(x) = 0 
 
 The second equation depends on the first and is of course linear in the Lagrange multiplier, which measure 
sensitivity of the objective function value f(x*) with respect to perturbations in the constraint c(x*) = 0. The 
Jacobian of the second equation is the transposed of the Jacobian of the first. Naturally, we keep only one 
copy and update it according to the TR1 formula (10). The test equation considered is the central difference 
discretization of the second order ODE  
 

)t(x
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∂ + γ exp(x(t)) = 0 for 0 < t < 1 

 
 As objective function we used the corresponding discretization of a linear functional 
 

fi(X) ≡  ∫ω
1

0
i dt)t(x)t(
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with the weighting defined by ω0 = 1, ω1 = 8t(1 - t)2, or ω2 = 2 - 7.6t(1 - t).  Figure 3 displays the dependence  
of the number of iterations on the number of grid points, where the initial approximation A0 for all secant 
updating methods was chosen as the negative identity divided by the mesh-size. Except in the case of 
Newton's method, which performs mesh- 
independent, there is a very strong 
growth of the iterations count with 
respect to the number of grid points n. It 
appears to be at least quadratic in case 
of the standard "good" Broyden formula 
(2) but only linear in case of the 
supposedly "bad" Broyden formula (3) 
and the newly proposed TR1 update 
(10). Even though the problem is mildly 
nonlinear, TR1 converges in just a little 
more than n steps as might be expected 
on the basis of its heredity property (11). 
 
 In contrast when A0 is initialized as the 
discretization of the leading second 
order derivative term, all secant methods 
perform also mesh-independently as 
shown in Figure 4. This observation 
agrees with the theory discussed in 
Section 2 as the compactness condition 
is now satisfied. TR1 takes about half as 
many iterations as "bad" Broyden. That 
seems reasonable since, loosely 
speaking, TR1 takes in twice as much 
information as SRI per step. Also two 
linear systems have to be solved per 
step, so that the computational effort 
should be almost exactly the same, even 
in a limited memory implementation. 
However, in the latter case there would 
be a halving of the memory requirement 
for TRI compared to the Broyden 
formulas. Of course not too much should 
be made of a single example, and in any 
case, we are primarily interested in 
situation where the simultaneous solution 
of an adjoint system is required or 
desirable for some intrinsic reason. 

 
Figure 3.  

Iterations for Newton and quasi-Newton from “simple” Initialization. 

 
 To check the influence of the adjoint 
system on the iterative solution of  
the direct one we have conducted the 
numerical experiment displayed in 
Figure 4. Instead of considering some 
norm of the residual at the sequence of 
iterates we have plotted the values of the 
second objective function defined above. 
For the sequence labeled with 0 we used 
the gradient of the same right objective  
in defining the adjoints sytem and thus the TRI update. For the sequence labeled with + we used wrong 
second objective for that purpose. As we had hoped the right, consistent, choice leads to considerably faster 
convergence of the function values to their limit. Neither the iterates generated by Newton's method nor the 
ones generated by "bad" Broyden depend themselves on the adjoint system so that there is only one 
sequence of function values for each of them. 

Figure 4.  
Iterations for Newton and quasi-Newton from “smart” Initialization. 
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 While Newton converges very rapidly, "bad" Broyden takes about a hundred
a reasonable approximation to the function value. This was to be expe
initialization for both secant methods, which did however not inhibit TR1 n
special nature of the test problem and the fact that no meaningful runtime co
preliminary Matlab implementation the relative performance of TR1 and Newto
 
5. SUMMARY AND OUTLOOK 
 
 For several decades quasi-Newton methods based on low-rank secant upda
many small to medium sized nonlinear equations and optimization problem
structured problems has not always been successful. Also, the original motiv
derivative evaluations, because they were deemed impossible in practice, 
algorithmic differentiation methods. However, exact values of complete Jacobi
varying price, and even when cheap to evaluate, they usually do not allow the
calculations that low rank updating achieves. This makes the latter still attracti
 
 In general we expect that secant updating methods will be competitive on
the following two conditions are met. Firstly, they must be made in
transformations on the variables. Secondly, they may not be called upon 
Jacobian or Hessian that correspond to a noncompact operator for an under
Encouraged by preliminary results on small equality constrained optimizatio
(2001)] we are currently in the process of developing an efficient constrain
updating the Jacobian and Hessian with the symmetric- and two-sided rank-on
 
 Another promising application of the TR1 formula is the numerical solutio
context of optimal control. There the Jacobian, or a suitable approximation o
for implicit numerical integrators or the solution of the co-state equation in op
of ODE problems the numerical method should achieve invariance with resp
the variables and thus similarity transformations of the Jacobian. The fact tha
update can achieve this may explain why their usage in the ODE context
Simultaneous solution of the state and costate equation in optimal control p
and adjoint secant conditions and thus appropriate information for the TR1 up
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Figure 5.  
Init A0 = 2 * l/(h * h),  γ = 0.5, δ = 1. 
Function Value for Newton, Bad 
Broyden, and TR1 with [In-] 
Consistent Objective (n = 100).
 and fifty steps to come up with 
cted since we used the poor 
early as much. In view of the 

mparisons were possible on our 
n cannot yet be assessed. 

tes have been widely applied to 
s. Their adaption to large and 
ation of avoiding any analytical 
has been partly invalidated by 
ans and Hessians do come at a 
 kind of savings in linear algebra 
ve even on linear problems.  

 large-scale problems, provided 
variant with respect to linear 
to correct discrepancies in the 
lying problem in function space. 
n problems [Griewank-Walther 

ed optimization code based on 
e formula, respectively. 

n of stiff ODEs, possibly in the 
f the right-hand-side, is needed 
timal control. By the very nature 
ect to linear transformations of 
t neither variant of the Broyden 

 has not been very successful. 
rovides naturally a pair of direct 
date. 

rical experiments on Broyden's 
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