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ABSTRACT 
We analyze a single server queue with modified Bernoulli server vacations based on exhaustive service. 
Unlike other vacation policies, we assume that only at the completion of service of the last customer in 
the system, the server has the option to take a vacation or to remain idle in the system waiting for the 
next customer to arrive. The service times of the customers have been assumed to be exponential and 
vacations are phase type exponential.  We obtain explicit steady state results for the probability 
generating functions of the queue length, the expected number of customers in the queue and the 
expected waiting time of the customer. Some earlier known results of the single server  have been 
derived as a particular case. 
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RESUMEN 
Analizamos una cola  servidor simple con vacaciones Bernoulli modificada basada en un servicio 
exhaustivo. En forma diferente a otras políticas de vacaciones, asumimos que el servidor tiene la 
opción de tomar vacaciones o de continuar vacante en el sistema esperando el próximo cliente, 
solamente al completar el servicio del último cliente. Se asume que los tiempos de servicio de los 
clientes son exponenciales y las vacaciones son del tipo exponencial fásico. Obtenemos resultados 
explícitos para el estado estable para las funciones generatrices de probabilidad del largo de la cola, la 
esperanza del número de clientes en cola y la esperanza del tiempo de espera del cliente. Algunos 
resultados conocidos sobre servidores simples han sido derivados para este caso particular. 

1. INTRODUCTION 

 In recent years, vacation queues has emerged as an important area of queueing theory. A number of 
researchers including Levy and Yechiali [1976], Fuhrman [1981], Doshi [1986, 1990], Keilson and  
Servi [1986], Baba [1986], Cramer [1989], Borthakur and Chaudhury [1997], Madan [1999], Madan and  
Al-Saleh 2001], Choi and Park [1990], Takagi [1991, 1992], Rosenberg and Yechiali [1993] and Choudhury 
[2000] and many others have studied vacation queues with different vacation policies with single or multiple 
server vacations. The different vacation policies include Bernoulli schedules, exhaustive service, generalized 
vacations, among others. In the present paper, we study a single server queue with modified server vacations 
based on exhaustive service, which means that the server must complete service of all customers present in 
the system before exercising his option to take a vacation. In other papers found in literature on this type of 
queues, the server must take a vacation after completing service of the last customer. However, in our model, 
the server may or may not take a vacation even after serving the last customer present in the system. 
Further, it may be noted that customers who arrive during the vacation period of the server have to wait in the 
queue for the server to be back. Under multiple vacation policy, it is often assumed that on returning back 
from vacation, if the server finds the system empty then he takes another vacation. But unlike this assumption 
of repeated vacations, we assume that whenever the server takes a vacation, it is always a single vacation.  
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 The single server queueing system without server vacations is widely found in queueing literature, see 
Bunday [1986] and  Kashyap and Chaudhry [1988], to mention a few. The mathematical model of our study is 
briefly described by the following assumptions: 
 
2. ASSUMPTIONS UNDERLYING THE MODEL 
 
 The following assumptions describe the mathematical model: 
  
 Customers arrive at the system one by one in a Poisson process with a mean arrival rate λ (> 0). There is a 
single server  who provides   one by one service to customers on a first come, first-serverd basis. The service 
times are assumed to be exponential  with mean service time 1/µ.  The server does not have an option to 
take a vacation at every service completion like some other models studied by Madan and Al-Saleh [2001] 
and Madan [1999]. We assume that the server can take a vacation only when he has served the last 
customer present at the system. At such an instant when the server becomes idle he may take a vacation 
with probability p or he may continue to stay idle in the system with probability 1 –p and wait for the next 
customer to arrive. A queue with such a policy is called a vacation queue based on exhaustive service. The 
vacation time of the server is exponential with mean 1/β, β > 0. It is further assumed that whenever the server 
takes a vacation, it is always a single vacation. Finally, we assume that inter-arrival times of customers, the 
service times of the customers and the vacation times of the server are all independent of each other.  
 
3. DEFINITIONS, NOTATIONS AND THE TIME-DEPENDENT EQUATIONS GOVERNING THE SYSTEM 
 
 We define  
 
 Wn(t): probability that at time t, the server is providing service and there are n ≥ 0 customers in the queue  
              excluding one in service 
 
 Vn(t): Probability that at time t, the server is on vacation and there are n ≥ 0 customers in the queue. 
 
 Q(t): Probability that at time t, there is no customer in the system  and the server is idle but available in the  
            system. 
 
 In addition, we define the following probability generating functions (PGFs): 
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 Then, connecting states of the system at time t with those at time t+δt we have the following time– 
dependent forward system equations: 
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 Next, we assume that initially the system starts when there is no customer in the system and the server is 
idle but available in the system so that the initial conditions are given by 
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 Let , and  respectively denote the Laplace transform (LT) of W)s(W *
n )s(V*

n )s(Q*
n(t), Vn(t) and Q(t) and let 

W*(z,s) and V*(z,s) denote the LTs of  the PGFs W(z,t) and V(z, t) respectively and are given by  
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 Then taking LTs of equations (3.2) to (3.6) and utilizing the initial conditions (3.7), we obtain 
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 Now, we multiply equations (3.9) and (3.10) by suitable powers of z, take summation over all possible 
values of  n , add the two results, use (3.8) and simplify. We thus obtain 
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 A similar operation on equations (3.11) and (3.12) yields  
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 Then we substitute for V*(s,z) from (3.15) into (3.14) and simplify, and have  
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 Now, consider the denominator of the right side of (2.15). It has two zeros z1  and z2 such that 1z1 ≤  and 

1z2 > .  
 
 For 1z1 ≤ ,  the numerator of the right side of (3.16) must vanish, giving us 
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 The three unknowns Q*(s), V0*(s) and W0*(s), can be determined by solving the three equations (3.12), (3.13) 
and (3.17). Thus the LTs of the PGF's in (3.15) and  in (3.16) can be completely determined. )s,z(V* )s,z(W *

 
4. STEADY STATE SOLUTION 
 
 If we assume that the steady state exists, then we let  ,,W)t(WLim nnnt

∀=
∞→

  V
∞→t

Lim n(t) = Vn, ∀n and  

 denote the steady state probabilities corresponding to  WQ)t(QLim
t

=
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n(t), Vn(t) and Q(t). Further, let W (z), 

V(z) denote the steady state PGFs corresponding to W(t,z) and V(t,z) respectively . 
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 Now we shall use the well-known property of the LT   
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 Similarly from (3.15), we have    
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 Now, for the steady state,  equation (3.13) becomes  
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 Then, using (4.4) in (4.2), it is easy to see that W(z) in (4.2) is indeterminate of the zero/zero form at z = 1, 
so that applying L’ Hopital’s rule, (4.2) yields  
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 Similarly, (4.3) yields 
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 Now we shall apply the normalizing condition 
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 Using (4.5) and (4.6) in (4.7) we have on simplifying    
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 Now, for the steady state,  equation (3.12) becomes  
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 Using this value of V0 from (4.9) into  (4.4),   we obtain on simplifying   
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 Again, utilizing the value of Q from (4.10)  into (4.8).  we have 
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which gives 
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 Further, using  (4.12) in to  (4.9) and (4.10) we obtain  
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 We note that (4.13) gives the steady state probability that the server is on vacation and there are no 
customers in the queue and (4.14) gives the steady state probability that the system is empty and the  server 
is idle but available in the system. 
 
 The utilization factor ρ being the proportion of time the server is busy is given by W(1) found in (4.5). Thus 
utilizing the value of W0 from (4.12) and the value of Q from (4.14), equation (4.5), on simplifying, yields 
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 Finally, utilizing the values of  W0, V0, and Q from (4.12), (4.13) and (4.14) into (4.2) we obtain on 
simplifying 
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 Next, substituting the value of W0 from (4.12) into (4.3), we have  
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 Now, let  denote the PGF at a random epoch of the queue size distribution irrespective 
of the state of the server. Then adding  (4.16) and (4.17), we get 
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 We further note that when there are no server vacations, then for p = 0, (4.13) yields V0 = 0, as it should be 
and  from (4.12), we get 
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 The results in (4.19), (4.20) are the known results of the ordinary M/M/1  queueing system. 
 
4.5.1. The Steady State Average Number of Customers in the Queue and the System  
 
 Let Lw, Lv respectively be the average number of customer in the queue when the server is working and 
when the server is on vacation. Then  Lq = Lv + Lw  is the mean number customers in the queue irrespective of 
the state of the server. Then using (4.17) we have    
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 Using (4.12), (4.21) can be further simplified to 
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 Now we shall use W(z) found in (4.2) to find Lw. However, we note that at z = 1, W(z) is indeterminate of the 

zero/zero form. Therefore we let  
)z(D
)z(N)z(W = , where N(z), D(z) are the numerator and the denominator of 

the right hand side of (4.2). Then using L’ Hopital’s rule twice we obtain   
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where primes stand for the derivatives with respect to z at z = 1. Carrying out the derivatives of N(z) and D(z) 
at z = 1, substituting in (4.23) and simplifying we obtain  
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where Q has been found in (4.14). 

 Then finally  on adding (4.22) and (4.24), we get 

         VWQ LLL +=  

 
2

222
3

)(2

)p(2)(p2)(

λ−µ

β+λβ+λµλ+β+λ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

β
µλ

λ−µ

=  

               +
[ ]βµ+β+λ−µβ+β+λβλµ

β+λλ−µλ
p))(p1()(p

))((p
2

2
, µ<λ .            (4.25)  

 Further, let L denote the average number of customers in the system.  

 Then adding (4.25) and (4.15), we obtain 
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 Further note that when p = 0, we get  
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 Note that the results in (4.27) are know results of the ordinary M/M/1 queueing system. 

4.5.2. Average Waiting Time in the Queue and the system  

 Let Wq and W denote the average waiting time in the queue and the system respectively. Then using the 
values of L and Lq obtained above we get  
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