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ABSTRACT 
This work concerns estimation of linear autoregressive models with Markov-switching using expectation 
maximisation (E.M.) algorithm. Our method generalise the method introduced by Elliott for general 
hidden Markov models and avoid to use backward recursion. 
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RESUMEN 
Este trabajo concierne la estimación de modelos lineales autoregresivos con cambios Markov usando el 
algoritmo de maximización de la esperanza. Nuestro método generaliza el método introducido por Elliott 
para modelos de Markov ocultos y evita el uso de la recursión descendente. 

 
1. INTRODUCTION 

 In the present paper we consider an extension of basic (HMM). Let (Xt, Yt)t∈Z be the process such that  
 

1. (Xt)t∈Z
 is a Markov chain in a finite state space IE = {e1,…,eN}, which can be identified without loss of 

generality with the simplex of IRN, where ei are unit vector in IRN, with unity as the ith element and 
zeros elsewhere. 

 
2. Given (Xt)t∈Z, the process (Yt)t∈Z is a sequence of linear autoregressive model in IR  and the 

distribution of Yn depends only of Xn and Yn-1,…,Yn-p. 
 
 Hence, for a fixed t, the dynamic of the model is: Yt+1 = YXt+1

+ σ)Y( t
1pt +− Xt+1

εt+1 with FXt+1 
∈ {Fe1

,…,FeN
} linear 

functions, σXt+1 ∈ {σe1
,…,σeN

} strictly positive numbers and (εt)t∈IN* a i.i.d. sequence of Gaussian random 
variable N(0,1).  
 
Definition 1. Write Ft = σ{X0,…,Xt}, for the σ-field generated by X0,…,Xt, yt = σ{Y0,…,Yt}, for the σ-field  
                       generated by Y0,…,Yt and Gt = σ{(X0,Y0),…,(Xt,Yt)}, for the σ-field generated by X0,…,Xt  
                       and Y0,…,Yt. 
 
 The Markov property implies here that P(Xt+1 = ei|Ft) = P(Xt+1 = ei|Xt). Write aij = P(Xt+1 = ei|Xt = ej) and  
A = (aij) ∈ IRN×N and define: Vt+1: = Xt+1 - E[Xt+1|Ft] = Xt+1 – AXt. With the previous notations, we obtain the 
general equation of the model, for t ∈ IN:  
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 The parameters of the model are the transition probabilities of the matrix A, the coefficients of the linear 
functions Fei

 and the variances σei
. A successfull method for estimating such model is to compute the 

maximum likelihood estimator1 with the E.M. algorithm introduced by Demster, Lair and Rubin (1977). 
                                                 
E-mail: ∗rynkiewi@univ-paris1.fr 
1This likelihood is computed conditionally to the first “p” observations.  
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Generally, this algorithm demands the calculus of the conditional expectation of the hidden states knowing 
the observations (the E-step), this can be done with the Baum and Welch forward-backward algorithm (see 
Baum et al. (1970)). The derivation of the M-step of the E.M. algorithm is then immediate since we can 
compute the optimal parameters of the regression functions thanks weighted linear regression. 
 
 However we show here that we can also embed these two steps in only one. Namely we can compute, for 
each step of the E.M. algorithm, directly the optimal coefficients of the regression functions as the variance 
and the transition matrix thanks a generalisation of the method introduced by Elliott (1994). 
 
2. CHANGE OF MEASURE 
 
 The fundamental technique employed throughout this paper is the discrete time change of measure. Write 
σ the vector (σe1

,…,σeN
), φ(⋅) for the density of N(0,1) and 〈.,.〉 the inner product in IRN. 

 

 We wish to introduce a new probability measure ,P  using a density Λ, so that Λ=
dP

Pd and under P  the 

random variables yt are N(0,1) i.i.d. random variables. 
 
 Define 
 

,
)(

)y(X,

l

l1l
l εφ

φσ
=λ −  l ∈ IN*, with Λ0 = 1 and  l

t

1lt λΠ=Λ
=

 
and construct a new probability measure P  by setting the restriction of the Random-Nikodym derivative to Gt 
equal to Λt. Then the following lemma is a straightforward adaptation of lemma 4.1 of Elliott (1994) (see 
annexe). 
 
Lemma 1. Under P  the Yt are N(0,1) i.i.d. random variables. 
 
 Conversely, suppose we start with a probability measure P such that under P  
 

1. (Xt)t∈IN   is a Markov chain with transition matrix A. 
 

2. (Yt)t∈IN   is a sequence of N(0,1) i.i.d. random variable. 
 
 We construct a new probability measure P such that under P we have Yt+1 = FXt  )Y( t

pt− + σXtεt+1. To 

construct P from ,P  we introduce :lλ = (λl)-1 and :tΛ (Λt)-1 and define P by putting t
Gt

Pd
dP

Λ=⎟
⎠

⎞
⎜
⎝

⎛ . 

 
Definition 2. Let (Ht), t ∈ IN be a sequence adapted to (Gt), we shall write: 
 

γt(Ht) = ]|Λ[ ttt yHE  and Γi(Yt+1) = .
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 The proof of the following theorem is a detailed adaptation of the proof of theorem 5.3 of Elliott (1994)  
(see annexe). 
 
Theorem 1. Suppose Ht is a scalar G-adapted process of the form: H0 is F0 measurable, Ht+1 = Ht + αt+1 +  
〈βt+1, Vt+1〉 + δ t+1f(Yt+1), k ≥ 0, where V t+1 = Xt+1 - AXt, f is a scalar valued function and α, β, δ are G predictable 
process (β will be N-dimensional vector process). Then: 
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         γt+1(Ht+1Xt+1): = γt+1,t+1(Ht+1) 
 

      = ∑ {〈γ
=

N

1i
t(HtXt), Γi(yt+1)〉ai

 
      + γt(αt+1〈Xt,Γi(yt+1)〉)ai          (2) 
 
      + γt(δt+1〈Xt,Γi(yt+1)〉)f(yt+1)ai
 
      + (diag(ai) + γ)aa T

ii t (βt+1〈Xt,Γi(yt+1)〉) 
 
where ai: = Aei, is the transpose of aT

ia i and diag(ai) is the matrix with vector ai for diagonal and zeros 
elsewhere. 
 
 We will now consider special cases of processes H. In all cases, we will calculate the quantity γt,t(Ht) and 
deduce γt(Ht) by summing the components of γt,t(Ht). Then, we deduce from the conditional Bayes´ theorem 
the conditional expectation of Ht: 
 

:Ĥt  = E[Ht|yt] = .
)1(
)H(

t

tt

γ
γ  

 
3. APPLICATION TO THE EXPECTATION (E.-STEP) OF THE E.M. ALGORITHM 
 
 We will use the previous theorem in order to compute conditional quantities needed by the E.M. algorithm. 
 

 Let = rs
tJ ∑

=
−

t

1l
slr1l e,Xe,X  be the number of jump from state er to state es at time t, we obtain: 
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 Write now  = r
tO ∑

+

=

1t

1n
rn e,X for the number of times, up to t, that X occupies the state er. We obtain 
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 For the regression functions, the M-Step of the E.M. algorithm is achieved by finding the parameters 
minimising the weighted sum of squares: 
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where γi(t) is the conditional expectation of the hidden ei at time t knowing the observations y-p+1,…,yn. 
 

 Write ψT(t) = (1, yt-1,…,yt-p) and θi = suppose that the matrix is invertible. 

The estimator of θ
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 Hence, in order to we need to estimate the conditional expectation of the following processes: ),n(ˆ

iθ
 

1. T ∑
+

=
+−+ =

1t

1l
1ljlrl

r
1t YYe,X)j(A  

 
  for – 1 ≤ j ≤ p and 1 ≤ r ≤ N. 
 

2. T ∑
+

=
−−+ =

1t

1l
iljlrl

r
1t YYe,X)j,i(B  

 
  for 0 ≤ j,i ≤ p and 1 ≤ r ≤ N. 
 

3. T ∑
+

=
++ =

1t

1l
1lrl

r
1t .Ye,XC  

 

4. T ∑
+

=
−+ =

1t

1l
jlrl

r
1t Ye,X)j(D  

 
  for 0 ≤ j ≤ p and 1 ≤ r ≤ N.  
 
 Appling theorem (2) with Ht+1(j) = T H),j(Ar

1t+ 0 = 0, αt+1 = 0, βt+1 = 0, δt+1 = 〈Xt, er〉Yt-j and f(Yt+1) = Yt+1, if j ≠ -1 

or δt+1 = 〈Xt, er〉 and f(Yt+1) =  if j = -1, gives us 2
1tY +

 

             γt+1,t+1(T = ))j(Ar
1t+ ,aYY)1tY(r)tX(a)1tY(i)j(AT r1tjtt

N

1i
i

r
tt,t ,),( +−

=
+γ++γ ΓΓ∑        (5) 

 
where ar is the r-th column of A. 
 
 Then, applying theorem (2) with Ht+1(j) =  H),j,i(BT r

1t( + 0 = 0, αt+1 = 0, βt+1 = 0, δt+1 = 〈Xt, er〉Yt-jYt-i and f(Yt+1) = 1 
gives: 
 

   γt+1,t+1(T = ))j,i(Br
1t+ .aYY)1tY(r)tX(a)1tY(i)j(BT ritjtt
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 Next, applying theorem (2) with 
 
 Ht+1 = T  H,Cr

1t+ 0 = 0, αt+1 = 0, βt+1 = 0, δt+1 = 〈Xt, er〉 and f(Yt+1) = Yt+1 gives: 
 

           γt+1,t+1(T = )Cr
1t+ .aY)1tY(r)tX(a)1tY(i)j(CT r1tt

N
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 Finally, applying theorem (2) with  
 
   Ht+1(j) = T  H),j(Dr

1t+ 0 = 0, αt+1 = 0, βt+1 = 0, δt+1 = 〈Xt, er〉 (Yt-j and f(Yt+1) = 1 gives: 
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   γt+1,t+1(T = ))j(Dr
1t+ .aY)1tY(r)tX(a)1tY(i)j(DT rjtt
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 The “Maximisation” pass of the E.M. algorithm is now achieved by updating the parameters in the following 
way. 
 
Parameters of the transition matriz. The parameter of the transition matrix will be updates with the formula: 
 

       .
)O(
)J(â r

TT

sr
TT

sr
γ

γ
=             (9) 

 
Parameters of the regression functions. For 1 ≤ r ≤ N, let Rr: =  be symmetric with = 1, = 

=  R

1pj,i1
r
ij )R( +≤≤

r
11R r

j1R
r
1jR ),j(DT̂ r

ij = and C)1j,1i(BT̂ r −− r = We can then compute the update parameter 

of the regression F

).pi0))i(AT̂(,CT̂ rr( ≤≤

rθ̂ er with the formula: 
 
           = (Rrθ̂

r)-1Cr          (10) 
 
Parameters of the variances: Finally, thanks the previous conditional expectations, we can directly calculate 
the parameters since for 1 ≤ r ≤ N the conditional expectation of the mean square error of the rth 
model is   

,N,...,1 ˆˆ σσ

 

      ( ) .Cˆ2ˆRÔ)1(AT̂
O
1ˆ rT

rr
rT

r
r

r

2
r θ−θ+−=σ        (11) 

 
 This complete the M-step of the E.M. algorithm. 
 
4. CONCLUSION 
 
 Using the discrete Girsanov measure transform, we propose new way to apply the E.M. algorithm in the 
case of Markov-switching linear autoregressions. 
 
 Note that, contrary to the Baum and Welch algorithm, we don´t use backward recurrence, altought the cost 

of calculus slighty increase since the number of operations is multiplicated by ,
2
N where N is the number of 

hidden state of the Markov chain. 
 

ANNEXE 
 
Proof of lemma 1 
 
Lemma 2. Under P  the Yt are N(0,1) i.i.d. random variables. 
 
Proof. The proof is based on the conditional Bayes´Theorem, it is a simple rewriting of the Proof of Elliott, 
hence we have 
 

P (Yt+1 ≤ τ | Gt) = E [1{Yt+1≤τ}| Gt] 
 
 Thanks the conditional Bayes´ Theorem we have: 
 

    E [1{Yt+1≤τ} | Gt] = 
]Λ[

]Λ[

+

}τ≤{+ +

t1t

tY1t

GE
G1E

1t  = 
]λ[

]λ[
×

Λ
Λ

+

}τ≤{+ +

t1t

tY1t

t

t

GE
G1E

1t  

 
 Now 
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Proof of Theorem 2 
 
Theorem 2. Suppose Ht is a scalar G-adapted process of the form: H0 is Fl measurable, Ht+1 = Ht + αt+1 + 
〈βt+1, Vt+1〉 + δt+1f(Yt+1), k ≥ 0, where Vt+1 = Xt+1 – Axt, f is a scalar valued function and α, β, δ are G predictable 
process (β will be N-dimensional vector process). Then: 
 
         γt+1(Ht+1Xt+1) := γt+1,t+1(Ht+1) 
 

      = ∑  
=

+ 〉Γγ{〈
N

1i
i1t

i
ttt a)y(),XH(

 
      + γt(αt+1〈Xt, Γi(yt+1)〉)ai 

(12) 
      + γt(δt+1〈Xt, Γi(yt+1)〉)f(yt+1)ai
 
      + (diag(ai) - γ)aa T

ii t(βt+1〈Xt, Γi(yt+1)〉) 
 
where ai: = Aei, is the transpose of aT

ia i and diag(ai) is the matrix with vector ai for diagonal and zeros elsewhere. 
 
Proof. Here again it is only a rewriting of the proof of Elliott. 
 
 We begin with the two following results: 
 
Result 1 
 
    E [Vt+1 | Yt+1] = E [E [Vt+1 | Gt, Yt+1 ] Yt+1] = E [E [Vt+1 | Gt]Yt+1] = 0.                (13) 
 
Result 2 
 

T
1t1t XX ++  = AXt(AXt)T +  + + . T

1ttVAX +
T

t1t )AX(V +
T

1t1t VV ++

 
 Since Xt is of the form (0,…,0,1,0,…,0) we have 
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T
1t1t XX ++  = diag(Xt+1) = diag(AXt) + diag(Vt+1) 

 
so 
 

T
1t1t VV ++  = diag(AXt) + diag(Vt+1) – A diag(Xt) AT -  - VT

1ttVAX + t+1(AXt)T. 
 
 Finally we obtain the result 
 
       〈Vt+1〉: = E[Vt+1

T
1tV + | Ft] 

 
      = E[Vt+1

T
1tV + | Xt]        (14) 

 
      = diag(AXt) – A diag(Xt)AT. 
 

Main proof  We have 
 

γt+1,t+1(Ht+1) = ]Λ[ ++++ 1t1t1t1t YXHE = ]Λ×δ+>β<+α++[ ++++++++ 1t1t1t1t1t1t1tt1tt Y))y(fV,H)(VAX(E . 
  
 Thanks equation (13), 
 

γt+1,t+1(Ht+1) = ]Λ×>β<+δ+α+[ +++++++ 1t1t1t1tt1t1t1tt Y)V,AX))y(fH((E  
 
so: 
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N
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=

+++++ +∑  
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we have noted ai = Aei, so 
 

γt+1,t+1(Ht+1) = ]Λ×>β[<+}]Λ><δ+α+[{ +++
=

+++++ +∑ 1t1t1t
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 Since for an adapted process Ht to the sigma-algebra Gt 
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i
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 So, for all er ∈ IE 
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 So we have: 
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]><Λ[ ++ 1trtt1t Ye,XHE  = = . ∑
=

+ 〉Γγ〈
N

1i
1t

i
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T
tttt )y(),eXXH( 〉Γγ〈 + )y(),XH( 1t
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 Since α, β, δ and G predictible and f(yt+1) mesurable with respect to Yt+1, the result (14) yield us the 
conclusion    
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