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ABSTRACT

We present  in  this paper  a generalization of the Traveling Salesman Problem with Time Windows 

(TSPTW) in which arc costs depend on the period of time in which the cycle starts to traverse the arcs. 

This  new problem fits  more  accurately  some real  routing  problems in  big  cities  than the  TSPTW, 

because the time, and then the cost, of traversing certain avenues depends on the instant we start to do 

it. For instance, at peak hours this time is bigger than in other moment of the day. We prove that this 

new problem can be transformed in pseudo-polynomial time into an Asymmetric Generalized Traveling 

Salesman Problem and then, into an Asymmetric Traveling Salesman Problem. Thus, we can solve the 

problem with known techniques. We also present computational results on this transformation in a set of 

140 instances with up to 30 vertices with an  exact  algorithm. We consider our results  satisfactory 

according to the complexity of the new problem.

Key words: Traveling salesman problem, time windows, dependence on time.

RESUMEN

En este artículo presentamos una generalización del Problema del Agente Viajero con Ventanas de 

Tiempo (PAVVT), en la que el coste de los arcos depende del periodo de tiempo en el cual el ciclo 

comience a  atravesar  los  arcos.  Este  nuevo problema se ajusta  mejor  a  las  situaciones reales de 

vehículos en grandes ciudades que el PAVVT, porque el tiempo y por tanto el coste, de circular por 

ciertas avenidas, depende del instante en que se realice. Por ejemplo, en las horas punta este tiempo es 

mucho mayor que en cualquier  otro instante del  día.  Nosotros probamos que este nuevo problema 

puede ser transformado en un tiempo pseudo-polinomial a un Problema del Agente Viajero Generalizado 

y Asimétrico y después, en un Problema del Agente Viajero Asimétrico. En consecuencia, podemos 

resolver este problema con técnicas conocidas. Presentamos también resultados computacionales sobre 

esta transformación en un conjunto de 140 instancias con hasta 30 vértices con un algoritmo exacto. 

Consideramos los resultados satisfactorios acorde a la complejidad del nuevo problema.

MSC: 90B06.

1. INTRODUCTION

Given  a  directed  graph  G  =  (V,  A) with  nonnegative  costs  associated  with  its  arcs,  the  well-known 

Asymmetric Traveling Salesman Problem (ATSP) consists of finding a minimum cost Hamiltonian circuit in G, 

that is, a minimum cost circuit passing through each vertex exactly once.

(*)This work has been partially supported by the Research Project 20010945 of the Universidad Politécnica de Valencia.
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An  interesting  generalization  of  the  ATSP  is  the  Traveling  Salesman  Problem  with  Time  Windows 

(TSPTW). In this problem, each vertex i  has associated a time window [ai, bi], one of the vertices, say i0, is 

considered as a depot and traversing arc (i, j)  ∈ A implies a travel time ti,j > 0. The aim of the TSPTW is then 

to find a minimum cost circuit in  G starting in i0 at time 0i
a  and passing through each vertex exactly once, 

such that the circuit must live each vertex in its associated time window, and ending at i0 not latter than .b
0i  

Note that it is allowed to arrive at vertex i before ai  (waiting time), but in this case, the circuit will leave i at 

time ai. For simplicity, if in a vertex i it is necessary a service time, this time is included in the travel times

tj,i j ≠ i.

The TSPTW has important applications, especially in sequencing and distribution problems. Because of 

that,  many studies  have been  written about  it  in  the last  decade.  See  for  example Dumas,  Desrosiers, 

Genlinas and Solomon (1995) and Gendreau, Hertz, Laporte and Stan (1998) or the more recent papers of 

Wolfer (2000) and Ascheuer, Fischetti and Grötchel (2000).

In some real vehicle routing problems, as for example the distribution of goods inside a big city, in addition 

to the time windows required by the customers,  the time (which normally corresponds with the cost)  of 

traversing some streets, like main avenues, depends on the moment in which we start to traverse them. For 

example at peak hours such as going to or leaving the school or work. If we take into account this issue, the 

costs of the arcs in some routing problem must depend on time. In this case, probably nearly all the easy 

problems used as subroutines to solve routing problems (shortest path, shortest spanning tree, matching, 

minimum cost flow…) will not be useful.

Despite the traffic jams we have to stand at certain times and in certain areas of a big city, routing problems 

with time dependent costs have hardly been considered in the literature. In fact, as far as we know, the more 

recent paper on this topic is by Haouari and Dejax (1997), who solved the shortest path problem with time 

windows and time dependent costs in pseudo-polynomial time.

In this paper we present a generalization of the TSPTW in which the cost and the travel time of each arc 

are time dependent and some waiting times are allowed. For instance, if the instant 0i
a (the lower bound of 

the depot time window) corresponds to a peak hour, we can minimize the cost of the tour by waiting for a 

short period of time (working inside the warehouse) instead of starting the route at 0i
a .

In Section 2 we define this new problem which we have called the Traveling Salesman Problem with Time 

Dependent Costs (TSPTDC). In order to solve this problem with known techniques, we must mention another 

combinatorial  optimization  problem  studied  in  the  OR  literature:  the  Asymmetric  Generalized  Traveling 

Salesman Problem (AGTSP). Given a directed graph G = (V, A) with nonnegative costs associated with its 

arcs, such that  V is partitioned into  k nonempty subsets  k
1ii}S{ = , the AGTSP consists of finding a minimum 

cost circuit passing through exactly one vertex of each subset Si ∀i = 1,…,k. 

To solve the AGTSP, several polynomial time transformations of this problem into an ATSP have been 

described. It seems that the most efficient transformation is the one given by Noon and Bean (1993). As we 

will use this transformation, we basically describe it: construct a new directed graph with the same vertex set 

but order the vertices of each subset Si consecutively in an arbitrary fashion {v1,…,vr}; then, for j = 1,…,r - 1 

define the cost cj,j+1  of an arc (vj, vj+1) as - M, where M is an arbitrary large positive constant; also define cr,1 

as – M. Then, for each vj ∈ St and for each vl ∈ Sk  with t ≠ k, cj,l is equal to the cost in G of the arc from 

vertex vj+1(mod r), to vertex vl; any other arc has cost infinite. Solve the AGTSP in G is equivalent to solve the 

ATSP in the new graph.
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In Section 3 we present a pseudo-polynomial time transformation of the TSPTDC into an AGTSP and a 

little example of this transformation. Finally, in Section 4 we show some computational results with the exact 

procedure by Fischetti  and Toth (1992) on a set  of 140 instances obtained from the instances used by 

Gendreau, Hertz, Laporte and Stan (1998) for the TSPTW. Our results show that in TSPTDC instances with 

up to 20-25 customers at day it is possible to obtain the optimal solution in a reasonable time.

2. DEFINITION OF THE TSPTDC

The Traveling Salesman Problem with Time Dependent Cost (TSPTDC) can be defined as follows:

Let G = (V, A) be a directed graph, being  { } n
0iivV ==  its vertex set, where v0 is the depot vertex. Each 

vertex vi ∈ V has associated a time window [ai, bi] such that ai, bi ∈ Z+∪ {0} and  [ai,bi] ⊆ [a0,b0] ∀i ∈ {1,...,n}

.. Consider for each time window [ai,bi], pi = bi - ai + 1 periods of time { } ip
1kii  [ka ,1ka[ =+−+ . For simplicity we 

will denote [ka ,1ka[T ii
k
i +−+=  and in order to discretize time, we identify period k

iT  with the instant of time ai 

+ k – 1.

On the other hand, the time and the cost of traversing an arc (v i, vj)  ∈ A depend on the period of time 

{ })p1,...,  (kT i
k
i ∈  in  which  we  start  to  traverse  it.  Denote  0c  and ZT k

j,i
k
j,i ≥∈ +

 the  time  and  the  cost 

respectively of traversing arc (vi, vj) starting at period k
iT .

The TSPTDC consists of finding a Hamiltonian circuit in G, starting and ending at v0 in its time window 

[a0, b0] such that the circuit leaves each vertex vi ∈ V with i > 0 in its associated time window, the cost of the 

circuit be minimum and in order to minimize this cost, it is allowed a zero cost waiting time in each vertex vi if 

it is reached before time ai, but in this case the circuit will leave the vertex at instant ai.

As in the TSPTW, for simplicity we assume that (if necessary) the time of traversing arc (v i, vj) with j  > 0 

includes  the  service  time at  vj.  In  the  particular  case  of  the  TSPTDC in  which  ,kccTT s
j,i

k
j,i

s
j,i

k
j,i ∀===  

s  ∈ {1,…,pi} and ∀(vi, vj)  ∈ A, we have a TSPTW with the objective function equal to the total time of the 

circuit. Then the TSPTDC is an NP-hard problem.

3. TRANSFORMATION OF THE TSPTDC INTO AN ATSP

In this section we show a way to solve the TSPTDC by transforming it in pseudo-polynomial time into an 

ATSP. We have seen in Section 1 that the AGTSP can be transformed into an ATSP in polynomial time 

(Noon and Bean), then, our aim is to prove that the TSPTDC can be transformed in pseudo-polynomial time 

into an AGTSP.

To see this, we need to construct an auxiliary directed graph G´= (V´, A´) from the graph G given in the 

definition of the TSPTDC, in the following way:

1. For each vi and for each period of time 
k
iT  ∀ k ∈ {1,…,pi} and ∀ i ∈ {0,1,…,n} create a vertex 'Vvk

i ∈

.
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2. For each pair of vertices 
l
j

k
i v,v ∈ V´ with i ≠ j and such that aj + l – 1 = }T1ka ,amax{ k

j,iij +−+ , add to 

G´ an arc )v,v( l
j

k
i  with cost equal to 

k
j,ic . Note that jak

ji,T1kia <+−+  implies a waiting time at vertex 

vj ∈ G if the circuit traverses arc (vi, vj) at period k
iT .

3. Partition {1, 2,..., p0} into four subsets I1, I2, I3, I4,  such that:

•If k
01 v ,Ik ∈  only has leaving arcs in G´. In these case, change also name k

s0
k
0 vby    v  

(starting vertex).

•If k
02 v ,Ik ∈  only has entering arcs in G´. In these cases, change also name k

0v  by k
e0v  

(ending vertex).

•If k
03 v ,Ik ∈  has both entering and leaving arcs in G´. In this case, split vertex k

0v  into two new 

vertices k
e0

k
s0 v and v   such that k

s0v  is only incident with the leaving arcs from vertex k
0v  in G´ 

and k
e0v  is only incident with the entering arcs to vertex k

0v  in G´.

•If k
04 v ,Ik ∈  has not neither leaving arcs nor entering arcs. Delete from G´ k

0v  for all .Ik 4∈

4. Add to G´ two new vertices es v  and v  and the following arcs, all of them with cost zero:

•For each  ,IIk 31 ∪∈ an arc ).v,v( k
s0s

•For each ,IIk 32 ∪∈  an arc ).v,v( e
k

e0

•Arc (ve, vs). 

In Figure 1 we show an example of a TSPTDC with n = 3. Time windows are given in the figure and the 

time dependent costs are given in Table 1. From Table 1 we can easily obtain the travel time depending on 

the instant we start to traverse the arcs, because each k
iT  has in brackets its corresponding instant of time. 

For example, the element )T,T( 2
1

1
0  implies that if we traverse arc (v0, v1) starting at period of time 1

0T , which 

corresponds with instant 1,  70c1
1,0 =  and  2T1

1,0 =  because we arrive to v1 to  2
1T , which corresponds with 

instant 3. A dash inside a cell )T,T( l
j

k
i  means that if we traverse arc )v,v( ji  starting at  period k

iT  we will not 

arrive  to  vj at  period  ,T l
j  neither before in the case .T1

j
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Table 1. Time dependent costs from g

In Figure 2 we show the transformed graph G´ from G, where in order to give a clarifying drawing, vertex k 

inside ellipse vi corresponds with vertex k
iv  defined above.

Theorem. The TSPTDC can be transformed in pseudo-polynomial time into an AGTSP.

Proof:

Let G = (V, A) be a directed graph where the TSPTDC is defined. We will consider all its elements as they 

are given in our definition of the TSPTDC ii0 b,a[ ,v( ], k
iT , etc.).

Let  G´=  (V´,  A´)  be  the  transformed  graph  constructed  from  G,  as  it  has  been  explained  above.  

Consider  in  G´  an  AGTSP  corresponding  to  the  partition  of  V´  into  the  following  subsets: 

31

i
IIk

k
s00

p
1k

k
ii }v{S  },n ,...,1{i  all for  }v{S ∪∈= =∈= , 32 IIk

k
e01n }v{S ∪∈+ = , }v{S s2n =+  and }v{S e3n =+ .
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)2(T1
1 )3(T2

1 )4(T3
1 )2(T1

2 )3(T2
2

)1(T1
0 - 70 - 55 -

)2(T2
0 - 55 - - 39

)3(T3
0 - - 53 - -

)4(T4
0 - - - - -

)5(T5
0 - - - - -

Table 1. Time dependent costs from graph G

)t(Tk
i  means that the period of time 

k
iT   

is associated  with the instant of time t.

)3(T3
0 )4(T4

0 )5(T5
0 )3(T2

2

)2(T1
1 43 - - 40

)3(T2
1 - 40 - -

)4(T3
1 - - 31 -

)3(T3
0 )4(T4

0 )3(T2
1 )4(T3

1

)2(T1
2 35 - 37 -

)3(T2
2 - 36 - 38
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Figure 2. Graph G´.



By construction of G´, there is a one-to-one correspondence between the set of circuits solution to the 

AGTSP in G´ and the set of feasible solutions to the TSPTDC in  G. To see this it is enough to identify  

the circuit solution to the AGTSP in G´. T´ =  }v,v,v,v,...,v,v,v,v{ se
k

e0
k
i

k
i

k
i

k
s0s

1nn

n

2

2

1

1

0 +  with the TSPTDC feasible 

solution  H in  G consisting  of  the  Hamiltonian  circuit  in  G }v,v,...,v,v,v{ 0iii0 n21  starting  in  v0 at  time

∈0k  [a0, b0], leaving each vertex ri
v  at time rrr iiri b,a[1ka ∈−+ ] for all }n  ,...,1{r ∈  and ending at v0 at time 

]b,a[1ka 001n0 ∈−+ +  (note that two TSPTDC feasible solutions in  G with the same Hamiltonian circuit but 

with at least one different leaving period of time k
iT  are considered as distinct solutions). Both T´ and H have 

the same cost so the optimal solution of the AGTSP in G´ leads to the optimal solution of the TSPTDC in G.

As  'V  depends  on  the  width  of  the  time  windows  besides  V  'V(  is  O((n  +  1)p*)  where

p* = )1abmax iini0 }+−{≤≤ , we  conclude that this transformation is pseudo-polynomial. 

According to the transformation of G´ given by Noon and Bean (1993), we obtain the optimal solution to the 

ATSP corresponding to our example, from which we obtain the optimal solution to the AGTSP in G´, which is 

given in Figure 2 (the bold arcs), and then  the optimal solution to the TSPTDC in graph G }v,v,v,v{ 0120  with 

the time sequence {2, 3, 4, 5} and with cost 39 + 38 + 31 = 108. Note that there are not waiting times in this 

tour solution.

Proposition. The size of graph G´ can be reduced in the following way:

i. Condense all vertices  vk
0s together with sv  into a single vertex sv .

ii. v∀  vertex of G´ not condensed before, calculate  )},vv{cost(min k
0

k s and give this value to ),vv(cost s .

iii. Condense all vertices   vk
e0 together with  ev  into a single vertex ev .

iv. For each arc )v,v( k
e0  with finite cost in G´, being v vertex of G´ not condensed in point iii, do   cost

)v,v( e  = cost )v,v( k
e0 .

Proof:

It  is  easy  to  see  that  solving  the  AGTSP  in  the 

condensed graph is equivalent to solve the AGTSP in G´, 

because  the  only  difference  in  the  condensed  graph 

is  the  substitution  of  an  initial  section   )v,v,v( k
0s s of 

an AGTSP solution in G´ for a single arc  )v,v( s  which in 

the  optimal  solution  will  necessary  have  cost 

)}v,v({costmin k
0

k s ,  and the substitution of a final section 

)v,v,v( e
k

e0  of an AGTSP solution in G´ for the arc )v,v( e  

with the same cost.

In  Figure  3  we  show  the  condensed  graph  of  G´ 
corresponding to our example, passing from 13 vertices 
in G´ to 7 vertices in the condensed graph.
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4. COMPUTATIONAL EXPERIMENTS

In order to test the efficiency of this transformation, we have make some computational experiments on a 
set of 140 instances obtained from the instances used by Gendreau, Hertz, Laporte and Stan (1998) for the 
TSPTW. The main difference is that the number of vertices of each one of our instances is always smaller 
than the number of  vertices of  the one from which it  has been obtained. This  is  a consequence of  the 
definition of the TSPTDC, because it implies that the travel time of each arc )v,v( l

j
k
i  is greater or equal than a 

period of time, which we have considered as 10 minutes in our instances. The original instances have many 
vertices with the same or similar tight time windows, so  many of these instances have not solution to the 
TSPTDC because it is impossible to visit all vertices in their time windows consuming at least a period of time 
each time that an arc in traversed. Under this restriction, we have decided to eliminate some vertices of each 
original instance and to weight the time windows according to a working day from 8:00h. untill 20:00h. in a 
department store. We show in Table 2 a small example of this weighting of the time windows, with a depot 
and two customers, corresponding to an instance of Gendreau, Hertz, Laporte and Stan.

Table 2. Original time windows (left) and their weighted time windows (right).

ai bi

0 408

181 205

306 324

ai bi

0 720

320 360

540 570

In all these TSPTDC instances we have considered the cost of traversing arc )v,v( ji  in period k
iT  as the 

integer part of ,)v,v()T(p ji
k
i  being 1)T(p5.0 k

i ≤≤  weights that depend on the strip of time in which k
iT  is 

included (see Table 3). We have established the strips of time showed in Table 3, according to the traffic 

density in the city of Valencia.

Table 3. Assignment of  weighs )p(Tk
i  according to the strips of time.

Strip of time )p(T k
i Strip of time )p(T k

i

 [8:00, 9:40[ )T(p k
i = 1  [13:30, 15:20[ )T(p k

i = 1

 [9:40, 11:40[ )T(p k
i = 0,5  [15:20, 16:20[ )T(p k

i = 0,5

 [11:40, 12:40[ )T(p k
i = 0,75  [16:20, 18:40[ )T(p k

i = 0,75

 [12:40, 13:30[ )T(p k
i = 0,65 [18:40, 20:00] )T(p k

i = 1

The  140  TSPTDC instances  were  transformed  into  ATSP instances  and  then,  solved  with  the  exact 
algorithm by Fischetti and Toth (1992), which can be considered one of the best coded exact algorithms for 
the ATSP. In Table 4 we summarize the results obtained in these computational experiments.

It is easy to see in Table 4 the exponential complexity of the exact algorithm, according to the number of 
vertices in the condensed graphs, which increases with the number of vertices in the TSPTDC and the size 
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of the time windows. We can conclude that the TSPTDC can be solved optimally in instances with size that 
we consider reasonable in a working day for a traveling salesman or a delivery-man (up to 20-25 customers), 
with a running time limit of 12 hours for the code (the code was run in a PC Pentium IV). We expect that if we 
increase this time limit, TSPTDC instances with more costumers could be solved optimally, especially if the 
time windows are not very wide. In fact, in our computational experience, all instances with 30 vertices and 
original  amplitude  of  the  time 
windows  not  greater  than  20 
were  solved  optimally  in  less 
than 12 hours. 
Table 4. Computational results. 

NV: Number of vertices; 

TW: Maximum amplitude

of the time windows
in the original instances; 

NI: Number of instances; 

ANV: Average number 

of vertices 
in the condensed graph;

NISO: Number of instances 

solved optimally; 

WT: Worst time computed

in seconds to obtain the optimal solution in the 
10 instances (>12 h. means that at least an instance was not solved optimally in 12 hours).

5. CONCLUSIONS

We have presented here a  new problem that  generalizes  the Traveling Salesman Problem with Time 

Windows, in such a way that the arc costs depend on the interval of time in which we start to traverse them. 

We think that this problem fits more accurately than the TSPTW to real problems involving visits, collection or 

delivery inside a big city,  where it  is  evident that  many arc traversing times depend on the moment we 

traverse the arcs.

We can solve this new problem from a theoretical point of view by transforming it in pseudo-polynomial time 

into  an  ATSP.  In  order  to  check  the efficiency  of  this  transformation,   we  have applied  it  to  a  set  of  

140 instances obtained from a known set of instances for the TSPTW, that then were solved with an existing 

exact  algorithm for  the ATSP.  Our  conclusion is  that  we can expect  to  obtain  the optimal  solution in  a 

reasonable time for real problems with up to 25 customers in a working day. Problems with more costumers 

or with wide time windows could be solved optimally with more time consuming or heuristically, but in this last 

case, we have to note that the traditional heuristics for the ATSP could not obtain a feasible solution; due to 

the fact that in the transformed graph many arcs have infinite cost (the graph is not complete).
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NV TW NI ANV NISO WT

10

20 10 36 10 0.00

40 10 51 10 0.21

60 10 62 10 1.00

15

20 10 54 10 0.43

40 10 78 10 10.05

60 10 97 10 463.79

20

20 10 70 10 11.21

40 10 101 10 216.59

60 10 124 10 242268.81

25

20 10 83 10 477.74

40 10 116   8 > 43200 (12h)

60 10 128   4 > 43200 (12h)
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