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ABSTRACT 
This paper deals with a non-linear system consisting of two ordinary differential equations describing 
differentiated fungal phases, a diffusion equation of the oxygen density. The equations are coupled due to 
the influence of the oxygen density in the biomass growth and the oxygen consumption by the biomass. Its 
solution is investigated using a perturbation technique. An asymptotic formula is given for phase-change 
times of biomass at any depth inside the reactor. Is determined the maximal thickness of substrate in order 
that tall present biomass be in the competent phase in the moment previous to the sporulation at the open 
surface. 
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RESUMEN 
Este trabajo se refiere a un sistema no lineal consistente en dos ecuaciones diferenciales ordinarias 
que describen fases diferenciadas de un hongo, y una ecuación de difusión para la densidad de oxigeno. 
Las ecuaciones están acopladas debido a la influencia de la densidad de oxigeno en el crecimiento de la 
biomasa y, al consumo del oxigeno por biomasa, la solución es investigada usando una técnica de 
perturbación. Se presenta una formula asintótica para los tiempos de cambios de fase en biomasa a 
cualquier profundidad dentro del reactor. Se determina el grosor máximo del sustrato para que toda la 
biomasa presente se encuentre en fase competente en el momento previo a la esporulación en la 
superficie superior abierta. 
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1.  INTRODUCTION 

    Currently, appear in the literature a lot of mathematical simulations for the growth of a microbial colony. 
[Doelle et al. (1992)]. The majority of the existing mathematical models deal with the increase of biomass, but 
there is a modern tendency to consider also environmental effects on biomass differentiation [Axelrod (1972), 
Georgiou (1986)], and the influence of diffusion of metabolites in the media for homogeneous liquid cultures 
and solid state fermentation (SSF). Advantages of SSF are very well known. [Hesseltine (1987)] 

 Biomass is a fundamental parameter in the characterization of microbial growth. Direct determination of 
biomass in SSF is very difficult (see [Doelle et al. (1992)], Ch. 4]). There are not mathematical models in the 
literature representing the visual evidence of stratified values of retards in the (differentiated) growth and also 
in the change-of-phase time for a filamentous fungal (for instance Trichoderma citrinoviride) culture in SSF, 
on which we are interested as a way to obtain proteinized animal feed. Here we propose a model for the 
study of the influence on the (differentiated in the sense of Mitchell et al. (1990)) biomass growth of the 
oxygen diffusion through the solid substrate fixing evenly a truncated cylinder (without lid) with generatrix 
parallel to the vertical axis –called bio-reactor–. 

 A question follows , how can we determine the thickness of the reactor’s substrate column for which all the 
biomass present inside the substrate stay in a ´competent´ phase when sporulation starts over the substrate’s  
external surface- ? We shall call it the critical thickness (CT) of the reactor’s substrate column. 

 Our model, presented in Section 3, is based on a system of differential equations derived from standard 
considerations as Monod law, diffusion and consumption of nutrients, a qualitative investigation and 
consumption of nutrients. A qualitative investigation of the solution of this system is given in Section 4 using a 
perturbation technique. There, we will estimate analytically the fungal mass at any depth and at any time 
inside the medium before sporulation. Further, we will show in Section 5 how we can do an estimate of the 
CT. In section 6 we give the conclusions. A description of the coefficients appearing in the model can be seen 
in the appendix. 
                                                           
E-mail: 1rricard @matcom.uh.cu 

 285



2.  BASIC CONSIDERATIONS 
 
 Mathematically, the model is given by a system of three equation for three variables representing two 
differentiated phases of the biomass (DPB), called vegetative and competent respectively, and oxygen 
density. 
 
 The solid medium (or substrate) is composed homogeneously by sugar cane straw and zeolite, which bring 
the requirements of ammonium and glucose for the fungal growth. We recall that our concern is the evolution 
of the biomass before the appearance of the conidial phase at the external surface over the medium. Here we 
use a terminology like in Axelrod (1972) and Georgiou et al. (1986), but we consider that the differentiation in 
components of the biomass is a consequence of the changes in its physical characteristics during the growth, 
not connected necessarily with a secondary metabolite [Mitchell et al. (1990)]. 
 
 We suppose that, initially, there is a homogeneous distribution of spores in the substrate. In the process of 
degradation of the cane straw by the biomass, a small glucose quantity appears in medium, which are 
consumed during the growth. Nitrogen appears due to the liberation of ammonium ions of the zeolite matrix, 
by an exchange with the hydronium ions in medium. For any depth inside the reactor, we follow a surface 
model differentiated growth, in which the ammonium, glucose and oxygen are considered as nutrients. We 
assume constant values of glucose ad ammonium concentrations, only the oxygen density and the biomass 
are considered depending on the time and on the relative depth inside the substrate column. 
 
 The liberation of glucose to the medium due to the hydrolysis of the cellulose (sugar cane straw) is enzyme 
regulated by a control feedback, permitting the presence of a sufficient level of glucose for the fungal growth. 
So, the glucose is here neither a limiting substance or an inhibitor for the growth. Furthermore, the ammonium 
in the interior of the zeolite is liberated slowly as the culture needs and for this reason, its density in the media 
is sufficiently low and there is no inhibition due to a high salt concentration.. Also it is not here considered as 
a limiting substance. 
 
 In the vegetative biomass X1 there is no cell differentiation. Competent biomass X2 is characterized by the 
evidence of aerial hyphae an foot cells initiation, and immature conidiophorous which have not developed into 
fully-grown reproductive structures after sporulation this process follows with other DPB characterized by the 
appearance of mature conidiophorous and conidia, which we will not considered here. 
 
 We assume the diffusion process to be governed by a linear law [Vvedensky (1993), pag. 98]. This 
assumption is practically fulfilled at least in the laboratory stage. 
 
 Affinity and inhibition constants for the nutrient were determined experimentally following Monod kinetics, 
starting from the knowledge of the specific growth rates for different substrate concentrations. Specific growth 
rates ad specific decrement rates are determined from the knowledge of the variations of the weight of the 
fungal biomass in a given time interval, under exponential growth phase. Usually, it is determined from the 
amount of mycelial proteins.  
 
3. EVOLUTION EQUATIONS 
 
 In the following we are going to consider only non-dimensional variables, according to appropriate scales: 
T*- time in which competent biomass turns on conidiopore at the top of the mass substrate. H - height of the 
substrate column in the reactor. α - expected (competent) biomass dry weight at the upper surface at time T*. 

 Let us consider the unknown distribution of DPB: Xi(ζ, τ), (i = 1,2), depending on ζ, (relative depth) and  
τ (time), and let the total biomass distribution be given by X = X1 + X2. We denote the unknown oxygen 
density (relative to the atmospheric) by Ω (ζ, τ). Let us introduce, for brevity, the function Γ(ζ,τ) = εΩ⁄(εΩ + 1) 
to be presented in (1) - (2) due to the consideration of the oxygen as a nutrient in a Monod-like growth law for 
the biomass, in which the corresponding non-dimensional affinity coefficient is equal to 1/ε. 

 The system representing the DPB evolution at the ζ-level is given by two equations, each valid in disjoint 
time intervals divided by the time-value t*(ζ) at which takes place, in the ζ-level, a change of the biomass 
phase. This time-value is a priori unknown . If τ < t*(ζ): 

       
τd

dX1  = mΓ(ζ, τ)X1           (1) 
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and, if τ > t*(ζ), a generalization of Monod law like in [Georgiou et al. (1986)] is considered: 
 

      
τd

dX2  = [m ⋅ Γ(ζ, τ) - n1 - n2]X2                       (2) 

 
In non-dimensional form, the equation for oxygen density taking into account diffusion and consumption is: 
 

      
τ∂
Ω∂  = d ⋅ 2

2

ζ∂

Ω∂  - eΩ ⋅ [X1 +X2]                       (3) 

 
 Here d is a non-dimensional time-dependent function because the volume of biomass is growing and so. 
The pores volume is decreasing in time. However, it is assumed practically equal to the non -dimensional 
constant denoted J2; and, e is a non-dimensional constant representing the oxygen consumption by the 
biomass.  
 
 The initial (known) condition for the system is  
 
       X1[ζ, 0] =                                                          (4) 0

1X
 
             X2[ζ, t* (ζ)] = X1[ζ, t* (ζ)] 
 
       Ω(ζ, 0) = C0 (ζ)                                                                      (5) 
 
where C0 (ζ) is an initial oxygen density distribution inside the medium. 
 
 The boundary conditions are: 
 

Ω(0, τ) = 1 
(6) 

ζ∂
Ω∂
(1, τ) = 0 

 
according to the fact that it is considered a constant oxygen density at the atmosphere over the medium and, 
that there is no flow through the (impenetrable) reactor’s bottom. 
 
4. INVESTIGATION OF THE SOLUTION 
 
 Equations (1) and (2) could be formally integrated assuming acknowledge of the initial condition s and Ω. 
We obtain, for τ < t*(ζ): 

      X1(ζ,τ) = (ζ) ⋅ exp        (6a) 0
1X ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
ζΓ∫

τ

dt)t,(m
0

 
and for τ > t*(ζ): 

     X2(ζ,τ) = (ζ, t*(ζ) ⋅ exp                                     (7) 1X
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
]−−ζΓ[∫

τ

ζ

dtnn)t,(m 2
)(*t

1

 
 It is known that the (non-dimensional) oxygen affinity coefficient is high. Hence, we will consider the ratio: 
(atmospheric oxygen density)/(oxygen affinity coefficient) as the small parameter ε. Let us do a regular 
perturbation technique [Georgescu (1995)] for a qualitative investigation of the solution to the system (1) - (3). 
It should be noted that the parameter ε is non-zero. Additionally, it is not difficult to see that  
 
       d = J2(1 + O(ε))                  (8) 
 
where J2 is a non-dimensional number involving essential characteristics of the system. 
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 Hence, following standard techniques we consider the formal expansions: 
 
      Xj =  + ε + +...                                 (9) 0

jX 1
jX 22

jX ε

 
and, 
 
           Ω = Ω0 + Ω1ε + Ω1ε

2 +...                                (10) 
 
 The equation for Ω0 results: 
 

        
τ∂
Ω∂ 0  = J2⋅ 2

0
2

ζ∂

Ω∂
 – eX0Ω0                       (11) 

 
 Noting that, for τ < t*(ζ): 
 

                X1 =                                       (12) )(X0
1 ζ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Ωε+ ∫

τ

Kdtm1 0
0

 
and, for τ > t*(ζ): 
 

         X2 = exp(-(n
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+Ωε+ζζ ∫

τ

ζ

Kdtm1))(*t,(X 0
)(*t

0
2 1 + n2)(τ - t*(ζ))                              (13) 

 
we get that the initial values  are the zero order terms in the corresponding expansions, and the first order 
ones depends only on Ω

0
1X

0. 
 
 The solution to (11) - (5) - (6) can be obtained numerically of analytically. An analytical description of Ω0 can 
be done using Fourier series: 
 

                Ω0(ζ,τ) = U(ζ) +  sin((n + 1/2)πζ)                           (14) ∑
∞

=

τ
0n

n
0
1 )(aX

 

U(ζ) = 
)Acosh(

)A)1cosh(( −ζ  

 

A = 2

0

J
eX

 

an = bn exp(- Bnτ) 
 

Bn = (Jπ(n + 1/2))2 + eX0 
 
and the numbers bn are determined by the Fourier development: 

C0(ζ) - U(ζ) = sin((n+1/2)πζ) . ∑
∞

=0n
nb

 It is evident that ),(lim 0 τζΩ
+∞→τ

= U(ζ). Furthermore, we conclude that for large times the oxygen density at 

the reactor’s bottom is strictly less than the atmospheric provided (eX0) ≠ 0. 
 
 Substituting Ω0 in (12) follows the calculation of DPB. If another term in the asymptotic development is 
needed, the next step is the determination of Ω1, being the solution to (11) with respective null boundary 
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conditions. This solution could be obtained numerically or analytically (by Fourier series) taking into account 
the obtained Ω0. After this, one could perform calculations to obtain  For our purpose, only the zero order 
approximation is needed. 

.X1
j

 
5. ESTIMATE FOR t*(ζ) 
 
 A knowledge of the function t*(ζ) is necessary in the understanding the causes of the biomass growth delay 
inside the substrate. 
 
 Now we will derive formulas for times t*(ζ). To do so, we consider that t*(ζ) is the time needed at level ζ to 
obtain a quantity of vegetative biomass equal to the present at the substrate top in time t*(0). We recall that 
t*(0) is a datum in this problem. 
 
 We obtain the following implicit formula: 
 

         =  .                                 (15) dt)t,(
)(*t

0
0 ζΩ∫

ζ

dt)t,0(
)0(*t

0
0∫Ω

 
 It is evident, from the positiveness of  Ω0, that 
 
               t*(ζ) ≥ t*(0)                                                                              (16) 
 
 From (15) and the implicit function theorem it is possible to obtain the values t*(ζ) (0 < ζ ≤ 1) provided the 
existence of a τ´ = τ´(ζ) such that Ω0(ζ, τ´) ≠ 0. In any case, this occurs “near” the upper boundary. We will 
present numerical results solving (15) in a future paper.  
 
 A direct consequence of (15) is the feasibility of the estimation of the CT, which is crucial if we are looking 
for the profitable culture. To do so, we should find the value  for which t*(1) = 1. 2

minJ
 
 More precisely, as Ω0 implicitly depends on J2, one should solve the following equation derived from (15): 
 

             dt = t*(0).                                                 (17) )J;t,1( 2
1

0
0∫Ω

 
 As usual, coefficients bn are small and bn are large, justifying the principal role of U(ζ) in (17), hence it can 
be rewritten approximately as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
2
min

0

J
eXch

1  = t*(0) 

or more easily 

              2
min

0

J
eX  = ln 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 1

)0(*t
1

)0(*t
1                                       (18) 

 
6. CONCLUSIONS 
 
 In this paper we have shown a method to estimate the oxygen density (see (10) and (14)) inside the 
substrate. The results are shown in Figure 1, and they agree very well with numerical calculations  
(see Alonso (1997)). Further, we determine the quantities of DPB (12) - (13) at different levels inside the 
substrate, at different times. The delay in growth of X1 at different levels is shown in Figure. 2. Formula (14) 
explains the question about the delay of growth of the biomass inside the substrate, which is due to a 
gradient in the oxygen density. 
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Figure 1. Oxygen concentration. 
 

 
Initial distribution: C0(z) = exp(-2z) 

J2 = 147.652 
eX0 = 518.587 

 
Figure 2. Total biomass by depth-levels. 

 

 

Initial distribution:  = 0.1 0
1X

J2 = 147.652 
0
1eX  = 518.587 

 
 Further, we show in (15) a way to estimate the biomass change-of-phase times inside the substrate and 
consequently, in (17), a way to determine the CT substituting  in the equation defining J2 (see appendix). 
From (Alonso (1997)) we know that a typical diagram of the phase-change times is given in Figure 3  
as is expected. 

2
minJ

 290



Figure 3.Phase-change times. From vegetative to competent. 
 

 
 

       Typical portrait for J2 
             near  2

minJ
 
 The parameter J2, which involves several physical and biological characteristics, is crucial in the model. We 
show that condition J2 >  is enough to guarantee the presence of competent biomass at the bottom 

reactor before the appearance of conidia over the medium. Theoretical values of  

2
minJ

2
minJ  with respect to eX0 and 

t*(0) are given in Figure 4 and Figure 5. 
 
   Figure 4. Theorical .     Figure 5. Theorical . 2

minJ 2
minJ

 

J^2min 

 

)0(t̂  = 0.3 
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