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ABSTRACT 
 We consider a single server bulk arrival queueing system with two phases of heterogeneous service 
under Bernoulli schedule vacation, where the customers arrive in batches of the random variable ‘X’. 
Using the imbedded Markov chain technique, we first derive the queue size distribution at a stationary 
point of time. Next, we obtain a recursive solution of the stationary queue size distribution of this model. 
Finally, we obtain the Laplace Stieltjes Transform of the waiting time distribution and some related 
performance measures. The method proposed here is not only easily amenable to computation but can 
be applied to solve more complicated problems of similar nature. 
 
Key words: Mx/(G1,G2)/1 queue, Queue size, Heterogeneous service, Bernoulli schedule vacation,  
                       Imbedded Markov Chain. 
 
RESUMEN 
Consideramos un solo servidor con un sistema de colas con grandes arribos  y servicio heterogéneo de 
arribo bajo una política  de vacaciones Bernoulli. Los clientes arriban en lotes de una variable aleatoria ´X´. 
Usando la técnica de la Cadena de Markov  empotrada, primero derivamos la distribución del tamaño de la 
cola en un momento puntual estacionario. Después, obtenemos una solución recursiva de la distribución 
de tamaño de la cola estacionaria de este modelo. Finalmente obtenemos la Transformada de Laplace 
Stieltjes del tiempo de la distribución del tiempo de espera y algunas medidas de comportamiento.  
El  método  propuesto aquí  no es solo responsable de una fácil computación sino que puede ser utilizada 
para resolver problemas más complicados de una naturaleza similar. 
 
MSC: 60K25, 90B22. 

  
1. INTRODUCTION  
 
 The queueing model with vacation under Bernoulli schedule has received attention from many authors due 
to its applications in many real life situations. Considerable efforts have been devoted to study these models 
by Keilson and Servi (1986, 1987 1989), Servi (1986), Ramaswamy and Servi (1988), Doshi (1986) and 
Takagi (1991) among others. Further, Ghafir and Silio (1993) recognized its applications in a Multiple Access 
Ring Network. 
 
 Recently, Madan (2000, 2001) studied two similar types of vacation models for M/G/1 queueing system. In 
both the models he introduced the concept of two stages heterogeneous models with two phases of 
heterogeneous service and Bernoulli schedule along with a single vacation policy. However, the two phase 
queueing system with generalized service times have been classified by Doshi (1991). Although some 
aspects of these types of models studied by these authors, it seems that batch arrival queues of these types 
will give us much more information on the number of batches instead of total number of individual units in 
deciding whether the server is activated or not. Thus in this paper we propose to study such a batch arrival 
queue, where the concept of Bernoulli schedule along with a vacation time is introduced for a two phase 
heterogeneous service queueing system . 
 
 At present however, most of the studies are devoted to batch arrival vacation models under different vacation 
policies because of its interdisciplinary character. Numerous researchers including Baba (1986), Choudhury 
(2000, 2002(a, b)), Choudhury and Borthakur (2000), Lee and Srinivasan (1989), Lee et al. (1994, 1995), 
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Rosenberg and Yechiali (1993) and Teghem (1990) and many others have studied batch arrival vacation 
queues under different vacation policies. However, recent progress of Mx/G/1 type of queues with vacations 
have been served by Dishalalow (1997) and Medhi (1997).   
  
 In this paper we first obtain the condition for the existence of steady state solution of this model. Next we 
obtain the queue size distribution at a stationary point of time. The method proposed in this paper not only 
conduct to the use of a numerical algorithm of easy computation but can be applied to solve much more 
complicated problems of similar nature. Finally we derive the Laplace Stieltjes transform (LST) of the waiting 
time distribution and some performance measures of this model. 
 
2. MODEL DESCRIPTION  
 
 We consider here a single server batch arrival queueing model with two phases of heterogeneous service 
under Bernoulli schedule vacation, in which the units arrive in batches of random size ‘X’ and according to a 
compound Poisson process with rate λ (> 0). The service times of two phases are assumed to follow a 
general law of distribution with distribution function (d.f) , LST  with finite moment for i =1,2. 
In this model, after completing the first phase service (FPS), the server must provide a second phase service 
(SPS) to all customers. However, after completion of SPS the server may decide to take a vacation with 
probability p (0 ≤ p ≤ 1) or may continue to stay in the system with probability (1 - p). Assuming that the 
vacation time random variable ‘V’ follows a general law of distribution with d.f V(x), LST V*(θ)  which  is 
independent of  the service times. After returning from the vacation if the server does not find any units in the 
system it remains in the system till a batch of new customers arrive. Thus the time required by an unit to 
complete the service cycle which we will call it modified service time is given by  

)x(Si )(S*
i θ )S(E k

i

  
B = S1 + S2 + V, with probability ‘p’ 

 
                                                             B´ = S1 + S2, with probability ‘1 - p’ 
 
 For convenience we designate our model as Mx/(G1,G2)/VS/1(BS) queue, where VS represents the vacation 
time with single vacation and BS represents Bernoulli schedule . 
 
 Let us define the following probabilities for our model  
 
        ak =  Prob [ X=k ] ; k ≥ 1 
 
         )j(
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 Let X(z), G(z), H(z) and M(z) be the probability generating functions (PGF) of                      
 and ,respectively, then  
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3. EXISTENCE OF STEADY STATE SOLUTION    
 
 This section will provide a discussion on the existence of the  steady state  solution based on the Lyapounov 
function in  the  following  Theorem.1.  
 
Theorem 1:  Let E(Si) and E(V) be  finite for  i = 1, 2 ; where Si  is the service time random variable for i-th 
phase of service and V is the vacation time random variable, then the system is ergodic if and only 
if  < 1, where )V(E)X(pE* λ+ρ=ρ )]S(E)S(E)[X(E 21 +λ=ρ  . 
   
Proof:  
 

              Let, tn be the n–th departure epoch and   be the number of units in the system at the time instant “t)t(N n n”, 
then Ln = N(tn + 0); n ≥ 0  is the number in the system immediately after the n-th departure has a denumerable 
state space Ω ={0,1,2,…}. Clearly the Markov chain {Ln; n ≥ 0} is irreducible and aperiodic; since it is 
denumerable with  transition probability matrix . 
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                                                         = pP1 + (1 - p)P2; 
 
where  

P1    and   P

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ..

........

........

........

........

....bb00

....bbb0

....bbbb

....bbbb

10

210

3210

3210

2  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ..

........

........

........

........

....cc00

....ccc0

....cccc

....cccc

10

210

3210

3210

               ci = Prob [ ‘i’units arrive during the service time ‘S1+S2’ ] 
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   Clearly, the transition probabilities are given by 
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          Then the drift also known as Lyapounov function [see Pakes (1969)] is defined as  

)i(γ = E {   - | = i }   for  i ∈Ω, where  Ω = {0,1,2,…..} is the state space (i.e. the number of units in 
the system) . 

1nL + nL nL

  
 Now, for this model the drift is given by  
 
      *)]V(E)X(pE[)0( ρ=λ+ρ=γ
 

11)]V(E)X(pE[)i( * −ρ=−λ+ρ=γ ; for i 1 . ≥

 
 Then there exist an ∈ > 0, such that )i(γ < -∈  for all i ≠  0. Hence by Fosters criterion the condition 

, (say) < 1,  is sufficient for ergodicity. Hence the proof is complete. *)]V(E)X(pE[ ρ=λ+ρ
         
4. THE QUEUE SIZE DISTRIBUTION AT A STATIONARY POINT OF TIME  
 
  The derivation of the PGF of the queue size distribution at a stationary point of time under the steady state 
condition of this Mx/(G1,G2)/VS/1(BS) queue is done in this section.  
 

            Let   (j ≥ 0) be the steady state probability that ‘j’ customers are left behind by a departing customer, then   jψ
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                  Now,    can be obtained by solving the system of equations  }0j;{ j ≥ψ

 
                                                      Ψ´P = Ψ ;                                                                           (4.1) 
 
where, Ψ = (  is a column vector. /

210 ,........),,( ψψψ
 
 Utilizing equations (3.3) in (4.1), we observe that  satisfies the following Kolmogorov equation   jψ
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 Let us now assume Ψ(z) be the PGF of ,  then multiplying equation (4.2) by appropriate powers of  
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j‘ and taking summation over all possible values of  ‘j’  (j  ≥ 0) and after simplification  we get Ψ(z) as 
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where B(z) and C(z) are the PGFs  of {bj ; j ≥ 0} and {cj; j ≥ 0} which can be obtained from equations (3.1) and 
(3.2) as follows : 
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 Now, utilizing (4.4) and (4.5) in (4.3) and simplifying we get  
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 Now, using the normalizing condition  1)z(lim

1z
=ψ

→
 we get 0ψ  after differentiation as 
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where,  is the utilization factor of the system under which the steady state solution exist. )V(E)X(pE* λ+ρ=ρ
 

 Hence we can summarize our result in the following Theorem 2. 
 
Theorem 2: Let be the PGF of the queue size distribution at a stationary point of time of this 
M

)z(ψ
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Remark 1: 
 
 Taking p = 0 in the above Theorem 2, we get 
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which is the PGF of the queue size distribution at a departure epoch of an Mx/(G1,G2)/1 queue                   
without server vacation. In this model, the total service time required by a customer to complete both the 
phases of service is . Thus the LST of B is given by  with utilization factor 
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 Similarly by putting p = 1 in the above Theorem 2, we get 
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  Note that the above expression is nothing but PGF of the queue size distribution at a stationary point of 
time for the Mx/(G1,G2)/VS/1 queue with limited service. In limited service model, the server takes a vacation 
each time after completing the service of an unit. However, after returning from the vacation, he serves the 
remaining units in the queue, if any, otherwise the system becomes idle until a new batch of customers arrive. 
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5. MEAN QUEUE SIZE 
 
       This section will provide the mean queue size of the Mx/(G1,G2)/VS/1(BS) queuing model. This is 
obtained by differentiating w.r.t z and taking limit as z → 1. i.e. )z(ψ
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where L is the mean queue size of this Mx/(G1,G2)/VS/1(BS) queueing model, E(Si

2), j =1,2 and E(V2) are the 
second moments of the service time and vacation time random variables respectively . 
 
 In particular putting p = 0 in (5.1), we get the mean queue size of the  queueing model without 
server vacation, which is given as 
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  Similarly for p = 1, we get and therefore (5.1) reduces to )]V(E)S(E)S(E)[X(E 21
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which is the mean queue size of the   queue with limited service. 1/V/)G,G/(M s21

x

           
6.  RECURSIVE SOLUTION OF THE MODEL  
 
  In this section an attempt has been made to obtain the recursive solution of the steady state queue size 
distribution of this model. Since our Markov chain is aperiodic and irreducible, therefore the PGF of the steady 
state queue size distribution can be written as  
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      Unfortunately this is not a very practical method since taking derivatives is not easy. As an alternative one 
may use equation (4.2) to compute  ’ s recursively. jψ
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 This method runs into numerical trouble because of the substraction involved. 
 
 However equation (4.2) can be rearranged as follows 
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Now proceeding in a similar manner, we get 
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 These equations, involving only sums of positive numbers are very stable and yield a good numerical 
method for computing { }.    0j;j ≥ψ

 Note that it even yields a simple method of truncation, for a given  η ≥ 0, stop the Computation at j if  

∑
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and set  = 0, for all k > j.   kψ

7. WAITING TIME DISTRIBUTION  
 
 In this section we derive the LST of the waiting time distribution for an arbitrary (test) customer at a random 
point of time. In an Mx/G/1 queue, the waiting time of the test customer can be obtained by summing the 
waiting time of the first customer in the test customers group and the additional delay (waiting time) for the 
service of the group who are served before the test customer under consideration . 
 
 For our convenience we consider a test unit and let ‘D’ be the total waiting time of the unit in queue, that is 
‘D’ is the queueing time of an arbitrary test unit. Then the delay ‘D’ is seen by the test unit to consist of two 
independent delays, ‘D1’ and ‘D2’. ‘D1’ is the delay (or waiting time) of the first member to be served of the 
batch in which the test unit arrives, and ‘D2’ is the delay caused by the service times of the members of this 
batch that are served prior to the test unit, in other words, 21 DDD += . Let and  be the d.f of ‘D’ 

and ‘D

)x(W )x(Wi

i’ respectively and and  be the LST of  and  respectively for i =1, 2. Now since 

the  are mutually independent of each other, therefore we may write  
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  Let be the d.f of the modified service time distribution and  be its LST. Denote  be the LST 
of the d.f of the total service time of all customers belonging to the same arrival group.  Then  

)x(B )(B* θ )(* θβ
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 In our system, since we take our modified service time as service time therefore we may write 
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  In fact the concept of a modified service time was first introduced by Keilson and Servi (1986) for an GI/G/1 
queueing system. Subsequently, in a series of papers Keilson and Servi (1987, 1989), Servi (1986) and 
Ramaswamy and Servi (1988) utilized the concept of modified service time for M/G/1 queueing system.  

  
Clearly, the first two moments of the modified service time can be computed as follows  
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 Again, it is well known that the LST of on M/G/1 queue [e.g. see Kleinrock (1975), page – 200] is 
given by  
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where is the utilization factor of the M/G/1 queueing system. )B(E* λ=ρ
 
 To obtain the delay ‘D1’, consider a batch as a single super customer. Then the LST of the waiting time 
distribution of the first member of the batch in which the test unit arrive can be obtained from the corresponding 
expression of an M/G/1 queue with  replace by . That is  and 

replacing  by in (7.2), we get   
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 : the event that the test customer in the i-r,iE th position under the condition that the group of size is ‘r’ 

 
 : the event that the test customer belongs to a group of size ‘r’ . rH
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 Now utilizing (7.3), (7.4) in (7.1), we get LST of the waiting time distribution as    
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 Now differentiating equation (7.5) with respect to ‘θ ’ and taking limit as , we get the mean  waiting 
time for this  (BS) queue as 
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 Now putting p =1 in (7.5), we get 
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where .  )1()]V(E)S(E)S(E)[X(E 21
* <++λ=ρ

 It may be noted here that equation (7.7) is the LST of the waiting time distribution for an  

type of single vacation queue with limited service i.e.  queue with limited service. In such a 
model, if there is at least one or a batch of customers in the system at the end of a vacation, the service starts 
immediately. Otherwise the system becomes idle until a new customer arrives. In this model, the total time 
required by an unit to complete both the phases of service is then 

1/)G,G/(M 21
x

1/V/)G,G/(M s21
x

21 SSB +=  with its LST 

. )(S)(S)(B *
2

*
1

* θθ=θ
 
 Further, if we take Prob [X =1] = 1 then E(X) = 1 and consequently (7.7) is simply reduced to 
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where  )].V(E)B(E[)]V(E)S(E)S(E[ 21

* +λ=++λ=ρ
 
 Note that the LST of the waiting time distribution for an M/G/1 queue with a single vacation and limited 
service was studied by Takagi (1991) and it verifies equation (6.10(a)) of Takagi (1991) [see page - 230]. 
 
8. NUMERICAL EXAMPLE  
  
 In order to see the effect of the parameter λ and p on the mean waiting time (M.W.T) in our model, we take the  
service time distributions are exponential with mean 

i
i

1)S(E µ= and finite second moment 2
i

2
i

2)S(E
µ

=  for 

i = 1, 2. The calculation of,    and  can be computed as follows  ),X(E ),X(E 2 )V(E )V(E 2
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 Now, let us assume that vacation time = 0.2 (constant) then we have  and therefore from 

equation (8.3) and (8.4), we get  and . Now, for computing  and , let us 
consider the following two examples . 

θ−=θ 2.0* e)(V
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Example 1: Here we consider that the batch size distribution follows a discrete Uniform distribution with 

probability function N
1

ka =  for k=1,2,…,N and 0ak =  for )1N(k +≥ , then X(z) will be 
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Example 2: Here we consider that the batch size distribution is a displaced Geometric distribution with 

probability function  for , then X(z) will be 1k
k )1(a −θθ−= 1k ≥

)z1(
z)1()z(X

θ−
θ−

=  and therefore from (8.1) and 

(8.2) we have 
)1(
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= and 
)1(
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 Now for some specific values of N, we can calculate E(X) and E(X2) in Example 1. To make a comparative 
study of the uniform batch size and the Geometric batch size for M.W.T. of our model, we can calculate the 
value of  as Further for computational convenience we arbitrarily choose , , 

and  E(X) = 1, 1.5, 2.0, 2.5 and 3.0 [ i.e. N = 1, 2, 3, 4 and 5  for Example 1]  for both Uniform and 
Geometric distribution  cases but we vary p from 0 to 1.0 such that the utilization factor  always 
satisfied. Now based on our result found in (7.6), we make the following tables for the computed values  
of M.W.T.   

θ )].X(E/1[1−=θ 101 =µ 202 =µ
6.0=λ

1* <ρ

 
Table 1. Expected mean for the uniform distributed waiting time. 

 
p E(X) = 1 E(X) = 1.5 E(X) = 2 E(X) = 2.5 E(X) = 3.0 

0 0. 03963 0. 20377 0. 41406 0. 69318 1. 08153 

0. 1 0. 05012 0. 23513 0. 47781 0. 81009 1. 29286 

0. 2 0. 06093 0. 26814 0. 54673 0. 94133 1. 54339 

0. 3  0. 07207 0. 30289 0. 62147 1. 08968 1. 84521 

0. 4 0. 08355 0. 33954 0. 70282 1. 25872 2. 21572 

0. 5 0. 09540 0. 37825 0. 79167 1. 45313 2. 68155 

0. 6 0. 10762 0. 41921 0. 88911 1. 67906 3. 28483 

0. 7 0. 12024 0. 46261 0. 99647 1. 94486 4. 09696 

0. 8 0. 13329 0. 50867 1. 11532 2. 26210 5. 24904 

0. 9 0. 14677 0. 55766 1. 24764 2. 64733 7. 01104 

1. 0 0. 16071 0. 60985 1. 39583 3. 12500   10. 04168 
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Table 2. Expected mean for the displaced Geometric distributed waiting time. 
 

p E(X) = 1 E(X) = 1.5 E(X) = 2 E(X) = 2.5 E(X) = 3.0 

0 0. 03963 0. 27226 0. 57031 0. 96591 1. 51631 

0. 1 0. 05012 0. 31006 0. 65097 1. 11779 1. 79599 

0. 2 0. 06093 0. 34979 0. 73817 1. 28827 2. 12758 

0. 3 0. 07207 0. 39164 0. 83274 1. 48098 2. 52698 

0. 4 0. 08355 0. 43579 0. 93566 1. 70058 3. 01740 

0. 5 0. 09540 0. 48242 1. 04808 1. 95313 3. 63393 

0. 6 0. 10762 0. 53175 1. 17138 2. 24662 4. 43237 

0. 7 0. 12024 0. 58402 1. 30720 2. 59192 5. 50721 

0. 8 0. 13329 0. 63950 1. 45759 3. 00404 7. 03198 

0. 9 0. 14677 0. 69851 1. 62500 3. 50447 9. 36397 

1. 0 0. 16071 0. 76137 1. 81250 4. 12500   13. 37500 
 
 The above tables clearly show that as p increases the mean waiting time increases for both Uniform and 
Displaced Geometric distributions. But the rate of increase of M.W.T for Displaced Geometric distribution is 
slightly greater than the Uniform distribution because the coefficient of variation of the Geometric distribution 
is less than the Uniform distribution. Further, it is observed that for a single unit arrival case i.e.  the 
numerical values of M.W.T for both the cases are exactly same and hence the original model reduces to 

 queue. 

1)X(E =

)BS(1/V/)G,G/(M S21
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