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ABSTRACT 
We analyse a special kind of a MAP/G/1/r FCFS queue where the first customer who arrives in the 
system, at the beginning of a busy period, has a service time ruled by a different distribution function 
than customers getting service during the busy period. An arriving customer who finds the system 
completely full is lost. We derive the steady state probabilities of the Markov process underlying the 
considered queueing system. 
 
Key words: Queueing system, Markov Arrival Process, Supplementary variable method, Steady-state  
                     (stationary) distribution. 
 
RESUMEN 
Nosotros analizamos un tipo especial de una cola del tipo MAP/G/1/r FCFS donde el primer cliente que 
llega al sistema, al principio de un periodo ocupado, tiene un tiempo de servicio gobernado por una 
función de la distribución diferente de los clientes que son serviciados durante el periodo de ocupación. 
Un cliente que arriba y se encuentra el sistema completamente lleno es perdido. Nosotros derivamos 
las probabilidades estacionarias del proceso de Markov subyacentes en el sistema de colas 
considerado.  
 
MSC: 60K25 

1. INTRODUCTION 

 It is known that the Poisson arrival process does not match the arrival pattern in the recent communication 
networks. For example, the Poisson process is not appropriate for describing the packet arrival pattern 
because of the correlation between arriving packets in the ATM network. Therefore, with the purpose of 
getting a better adaptation between the models and the real problems, it is necessary that arrivals streams 
more complex are considered. 

 The Markov Arrival Process (MAP) was introduced in Neuts [1979] as a generalization of the Poisson 
process which is well shifted for matrix analytic and numerical investigations. Lucantoni [1991] suggested a 
convenient notation which is better suited for a general discussion than that which was originally used. 

 The MAP, a special class of tractable Markov renewal process, is a rich class of point processes that 
includes many well-known processes such as Poisson, PH-renewal processes, and Markov-Modulated 
Poisson Process (MMPP). One of the most significant features of the MAP is the underlying Markovian 
structure and fits ideally in the context of matrix-analytic solutions to stochastic models. Matrix-analytic 
methods were first introduced and studied by Neuts [1981]. As it is well known, Poisson processes are the 
simplest and most tractable ones used extensively in stochastic modeling. The idea of the MAP is to 
generalize significantly the Poisson processes and still keep the tractability for modeling purposes. 
Furthermore, in many practical applications, notably in communications engineering, production and 
manufacturing engineering, the arrivals do not usually form a renewal process. So MAP is a convenient tool 
to model both renewal and nonrenewal arrivals. 

 Also we note that MAP is useful for modeling broadband networks bursty traffic streams. There are several 
special cases of MAPs used in modeling data traffic, as for example the Interrupted Poisson Process (IPP) to 
approximate overflow traffic in finite trunks systems. 

 On the other hand, the queueing systems with exceptional first service may arise in many practical 
situations, as the server starting work after a period of idling may work slower (or faster) than the way it 
otherwise would. In a computer network, this may also arise because the first packet in a sequence may 
require special processing for route establishment, and will therefore require a different kind of service than 
the other packets. As related works, the reader is referred to Atencia-Moreno [2002], Koder-Mizawa [2002],  
Li et al. [1996], Welch [1964]. 
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 There exist numerous publications considering single server queueing systems and Markovian Arrival 
process, for example see [2]; nevertheless, the case of exceptional first service has not been studied yet. 
Later on, in our paper we present an analysis of the MAP/G/1/r FCFS queue with exceptional first service. We 
give a procedure of finding the stationary distribution of the number of customers in the steady-state regime. 
 
 The rest of the paper is organized as follows. In Section 2 the mathematical description of the considered 
queueing system is given. Section 3 gives the system of differential equations using the supplementary 
variable method. In Section 4 the matrix solution for the queueing system is obtained. Some conclusions are 
presented in Section 5. 
 
2. DESCRIPTION OF THE QUEUEING SYSTEM 
 
 Let us consider a single server queueing system at which customers arrive according to a Markov Arrival 
Process. The customers' service discipline is First Come First Served (FCFS). Assume the buffer capacity is  
r (2 ≤ r < ∞). An arriving customer who finds the system completely full is lost. The first customer to be served 
when a busy period starts gets a different kind of service (different distribution of service times) than the other 
customers served during the busy period. 
 
 The service times of customers are independent. Let B2(x) [with Laplace-Stieltjes transform β2(s)] be the 
probability distribution function of the normal service time and β1(x) be the probability distribution function of  
the first customer being served in a busy period. We assume that βh(x) is absolutely continuous, βh(0) = 0 and bh 

= xdB∫
∞

0

h(x)< ∞, h = 1, 2. Besides, we suppose that β2(-σi) ≠ 0 where {σi} are the eigenvalues of the matrix Λ. 

 We shall call 1-customer to the first customer being served in each busy period and 2-customer to the 
second or following customers being served in each busy period. So an h-customer has a service time ruled 
by Bh(x), h = 1, 2. 
 
 Further a symbol "⋅" will denote summing over all possible values of a discrete argument. 
 
 We shall briefly review MAP. The MAP is constructed by considering a two-dimensional Markov process  
{ξ(t), ν(t): t ≥ 0} on the state space  where I,In0n

∞
=∪ n = {(i, n): i =  }l,1  with an infinitesimal generator 

 
 I0 I1 I2 I3 ⋅ ⋅ ⋅

I0 Λ N 0 0 ⋅ ⋅ ⋅
I1 0 Λ N 0 ⋅ ⋅ ⋅
I2 0 0 Λ N ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅
where the matrices Λ and N are l × l. Λ has negative diagonal components and nonnegative off-diagonal 
components, and N has nonnegative components. 

 If ξ(t) indicates the current phase of the next arrival and ν(t) represents the number of arrivals during [0,t), 
then the above Markov process defines a MAP where 
 
 Λij, i ≠ j, is the state transition rate from state i to state j in the underlying Markov chain without an arrival. 

 Nij is the state transition rate from state i to state j in the underlying Markov chain with an arrival. 
 
 MAP has the following properties: 
 
 Λ* = Λ + N is an irreducible infinitesimal generator for underlying Markov chain {ξ(t): t ≥ 0} with stationary 
probability vector δ

r
 such that  and 11T =δ

rr
.0* TT

rr
=Λδ  Obviously  ,0,01* *

ij ≥Λ=Λ
rr

 i ≠ j and  .0*
ii <Λ   

 Λ is a stable matrix. 

 The fundamental arrival rate of MAP is    .N1N i

l

1i
i

T ∑
=

δ=δ
rr
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3. SYSTEM OF DIFFERENTIAL EQUATIONS 
 
 At any arbitrary moment of time the state of the system can be characterized by the Markov process 
{ζ(t): t ≥ 0} with the state space 
 

χ = {(0,i): i = l,1 : (h,i,n,x) : h = 1, 2, i = l,1 . n = ,1r,1 +  x ≥ 0}. 
 
 A state (0,i) of the process ζ(t) at some time moment t means that the system is idle and the Markov chain 
ξ(t) in the state i; ζ(t) = (h,i,n,x) corresponds to the situation in which the system contains n customers, the 
Markov chain ξ(t) is in the state i, the serving customer is an h-customer and elapsed service time is equal to 
x. Define po,i(t) = P[ζ(t) = (0,i)] and Ph,I,n(x,t) = P[ζ(t) ∈ {h,i,n} ⊗ [0,x)}]. 
 
 We assume that there exist stationary probabilities po,i = )t(plim i,0t ∞→

 and Ph,i,n(x) =  and 

stationary probability densities p

),t,x(Plim n,i,ht ∞→

h,i,n(x) = ).x(P
dx
d

n,i,h  

 

 Note that  is a stationary probability that there are n customers in the system, the Markov 

chain ξ(t) is in the state i and the serving customer is an h-customer. Let us denote q

dx)x(pp
0

n,i,hn,i,h ∫
∞

=

h,i,n(x,t) = [1 - Bh(x)]-1 

ph,i,n(x,t) for h = 1, 2,  i = l,1  and n = 1r,1 + . 
 
 Now we define the vectors 

     T
0p
r

 = (p0,1, p0,2,..., p0,l) 
 
      = (pT

n,hp
r

h,1,n, ph,2,n,..., ph,l,n); h = 1, 2, n = .1r,1 +  
 
 By considering the transition probabilities from t to t + ∆t and using the supplementary variable method, we 
have the following system of differential equations: 

               (1) )x(dB)x(q)x(dB)x(qp0 2
0

T
1,21

0

T
1,1

T
0

T ∫∫
∞∞

++Λ=
rrrr

        r,1n,2,1h:N)x(q)1n(u)x(q)x(q
dx
d T

1n,h
T

n,h
T

n,h ==−+Λ= −
rrr

        (2) 

       2,1h:N)x(q*)x(q)x(q
dx
d T

r,h
T

1r,h
T

1r,h =+Λ= ++
rrr

          (3) 

                  1r,1n:Np)n2(u)0(q T
0

T
n,1 +=−=

rr
           (4) 

          r,1n:)x(dB)x(q)x(dB)x(q)0(q 2
0

T
1n,21

0

T
1n,1

T
n,2 =+= ∫∫

∞

+

∞

+
rrr

         (5) 

         TT
1r,2 0)0(q

rr
=+             (6) 

 
where u(x) is a unit Heavyside function. 
 
4. THE MATRIX SOLUTION 
 
 We introduce the sequence of functions 

,...2,1n,dyeN)y(F)x(F,e)x(F
x

0

)yx(
1nn

x
0 === ∫ −Λ

−
Λ  
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 Observe that F0(0) = I and Fn(0) = 0, n = 1,2,... Note that the matrices Fn(x) have a probabilistic 
interpretation. In fact (Fn(x))ij is the probability that during a time x, n customers will arrive and the input 
process will be in the state j, under the condition that at the initial moment it was in the state i. 
 
 Let Bh,n be the n-th exponential moment for distribution function Bh(x), h = 1,2. Observe that the matrices Bh,n 
have a probabilistic interpretation. In fact (Bh,n)ij

 is the probability that during the service of an h-customer,  
n customers will arrive and the input process will be in the state j, under the condition that at the initial moment  
it was in the state i. 
 
 For h = 1, 2 we note that 
  

,...1,0n),x(dB)x(FB:)x(dBeB
0

hn
0

n,hh
x**

0,h === ∫∫
∞∞

Λ  

 
Theorem 1. The stationary probabilities satisfy 
 
     r,1n),x(FNp)x(B1)x(p 1n

T
01

T
n,1 =]−[= −

rr
 

 

      
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−]−[= ∑
=

−
Λ

+

r

1n
1n

x*T
01

T
1r,1 )x(FeNp)x(B1)x(p

rr

 

     r,1n),x(F)0(q)x(B1)x(p j

1n

0j

T
jn,22

T
n,2 =]−[= ∑

−

=
−

rr
 

 

      [ ]∑
=

Λ
+ −]−[=

r

1n

T
n,2

x*T
n,22

T
1r,2 )x(qe)0(q)x(B1)x(p

rrr

 
where r,1n,Qp)0(q n

T
0

T
n,2 ==

rr
 and

            Q1 = -(N B1,0 + Λ)           (7) 1
0,2B−

 

     Qn = r,2n,BBNBQQ 1
0,2

1n

1j
1n,1j,2jn1n =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−− −

−

=
−−− ∑ .          (8) 

 

 The system of equations  together with the expression  T*
0,1

*
0,2

r

1n
n

T
0 0BN)BI(Qp

rr
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ−−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

1 – p0 = b1q1(0) + b2q2(0) determines the vector 0p
r

 exactly. 
 

Proof:  We can easily show that for fixed h (h = 1,2) the solution of equation (2) is r,1n),x(F)0(q)x(q j

1n

0j

T
jn,h

T
n,h ==∑

−

=
−

rr
 

and using (4) we get 
 

       r,1n),x(FNp)x(q 1n
T
0

T
n,1 == −

rr
           (9) 

 

                 r,1n),x(F)0(q)x(q j

1n

0j

T
jn,2

T
n,2 ==∑

−

=
−

rr
.       (10) 

 
 Summing equations (2) – (3) over 1r,1n +=  and integrating the result, we have 

 232



                    (11) 2,1h,e)0(q)x(q x*T
n,h

1r

1n

T
n,h

1r

1n

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= Λ

+

=

+

=
∑∑ rr

 

[ ] 2,1h,)x(qe)0(qe)0(q)x(q
r

1n

T
n,h

x*T
n,h

x*T
1r,h

T
1r,h =−+= ∑

=

ΛΛ
++

rrrr
 

 
but ,0)0(q TT

1r,h

rr
=+ h = 1,2 then 

 

2,1h)],x(qe)0(q[)x(q T
n,h

x*T
n,h

r

1n

T
1r,h =−= Λ

=
+ ∑ rrr

. 

 
 Besides, if we take into account (4) and (9), we obtain 
 

.)x(FeNp)x(FNpeNp)x(q
r

1n
1n

x*T
01n

r

1n

T
0

x*T
0

T
1r,1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=−= ∑∑
=

−
Λ

−
=

Λ
+

rrrr
 

 
 We now focus on determining  for )0(qT

n,2
r

.r,1n =   By substituting (9) - (10) into (1) and (5), we get 
 

0,2
T

1,20,1
T
0

T
0

T B)0(qBNpp0
rrrr

++Λ=  
 

1r,1n,B)0(qBNp)0(q j,2

n

0j

T
j1n2n,1

T
0

T
n,2 −=+= ∑

=
−+

rrr
. 

 
 Therefore, we have the following system of equations for )0(qT

n,2
r

, n = r,1 : 
 

0,2
T

1,2
T
00,1

T
0 B)0(qpBNp

vrr
=Λ−−  

 

0,2
T

2,21,2
T

1,21,1
T
0 B)0(q)IB)0(qBNp

vvr
+−=−  

 

r,3n,B)0(q)IB)(0(qB)0(qBNp 0,2
T

n,21,2
T

1n,2jn,2

2n

1j

T
j,21n,1

T
0 =+−+=− −−

−

=
− ∑ rrrr

 

 
which can be written in the matrix form 
 

)BNp,...,BNp,pBNp( 1r,1
T
01,1

T
0

T
00,1

T
0 −−−Λ−−

rrrr  =  ( ) .

B00

BB0
BIBB

)0(q),...,0(q),0(q

0,2

2r,20,2

1r,21,20,2

T
r,2

T
2,2

T
1,2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

−

−

L

MOMM

L

L

rrr

 
 Since the matrix of coefficients for this system has a triangular structure in blocks, if the matrix B2,0 is 
inversible, then the unknown vectors  ),0(q n,2

r
r,1n =  can be expressed in terms of the vector . 0p

r

 
 It is known that if σi is an eigenvalue of the matrix Λ, then β2(-σi ) is an eigenvalue of the matrix β2(-Λ) = B2,0. 
And by hypothesis β2(- σi) ≠ 0, ,l,1i =  so the matrix B2,0 is inversible and there exists  .B 1

0,2
−

  
 Now we are going to look for the solution for this system of equations in the form 
 
             r,1n,Qp)0(q n

T
0

T
n,2 ==

rr
         (12) 
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where the matrices Qn are determined by the next formulae: 
 
for n = 1,   ;B)BN(p)0(q 1

0,20,1
T
0

T
1,2

−Λ+−=
rr

 
for n = 2,   ;B)0(q)IB(QpBNp 0,2

T
2,21,21

T
01,1

T
0

rrr
+−=

  
    1

0,21,11,211
T
0

T
2,2 B)BNBQQ(p)0(q −−−=

rr

 

for n = r,3   0,2
T

n,21,21n
T
0jn,2j

2n

1j

T
01n,1

T
0 B)0(q)IB)QpBQpBNp +−+= −−

−

=
− ∑ rrr

 

    1
0,2

1n

1j
1n,1j,2jn1n

T
0

T
n,2 BBNBQQp)0(q −

−

=
−−− ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= ∑rr

 
and so we have the expressions (7) - (8) for Qn, .r,1n =   
 
 Finally, it will be enough to determine the vector .p0

r
 Summing equation (5) over r,1n =  and adding the 

result to equation (1), we have 
 

.p)x(dB)x(q)x(dB)x(q)0(q T
0

1r

1n
2

T
n,2

0

1r

1n
1

T
n,1

0

r

1n

T
n,2 Λ++= ∑∫∑∫∑

+

=

∞+

=

∞

=

rrrr
 

 
 Now using (4), (6) and (11) - (12) leads to 
 

                                         (13)  .0BN)BI(Qp T*
0,1

*
0,2

r

1n
n

T
0

rr
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ−−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

 
 The vector  is found from {13) with accuracy up to a constant, for whose determination we are going to 
use an equivalent relation to the normalization condition. By multiplying equation (11) on the right by the 
vector 1 we obtain  

0p
r

 

2,1h,1e)0(q1)x(q x*T
n,h

1r

1n

1r

1n

T
n,h =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= Λ

+

=

+

=
∑∑

rrrr
 

 

but 11...)
!n
*...*I(1

!n
*1e

n

0n

n
x*

rrrr
=+

Λ
++Λ+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Λ
= ∑

∞

=

Λ  and thus 2,1h),0(q)x(q hh ==  

 

2,1h,dx)0(q)]x(B1[dx)x(q)]x(B1[
0

hh
0

hh =−=− ∫∫
∞∞

 

 
ph = bhqh(0), h = 1,2 

 
          1 - p0 = b1q1(0) + b2q2(0).        (14) 
 
 Therefore, if the equation (12) is used to determine r,1n),0(q n,2 =

r
, the system of equations (13) together 

with the relation (14) determines the vector  exactly.   � 0p
v

 

 234



Corollary 1. The main performance measures of the system are the following: 
 
1. The server/system is idle with probability p0. 
 
2.  The server/system is busy with probability 1 - p0. 
 
3. The probability that the server is busy by a customer with exceptional service is 

 
                p1 = 1Npb T

01
v

K
r                 (15) 

 
4. The probability that the server is busy by a customer with normal service is 
 

                  .         (16) 1Qpbp
r

1n
n

T
022

rr

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

 
Proof. 

 Multiplying equation (11) on the right by the vector 1
r

 we have 
 

2,1h,1e)0(q1)x(q x*
1r

1n

T
n,h

1r

1n

T
n,h =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= Λ

+

=

+

=
∑∑

rrrr
 

 

2,1h,1)0(q)x(q T
n,h

1r

1n
h =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

+

=

rr
 

 

∫∑∫
∞+

=

∞

=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−

0
h

T
n,h

1r

1n0
hh .2,1h,dx)]x(B1[1)0(qdx)x(q)]x(B1[

rr
 

 

.2,1h,1)0(qbp
1r

1n

T
n,hhh =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

+

=

rr
 

 
 Now using the equations (4), (6) and (12) we obtain (15) - (16). � 
 
Corollary 2. The procedure of finding the stationary distribution of the number of customers in the steady-
state regime is the following: 
 

1Qpb1Npb1p
r

1n
n

T
02

T
010

rrrr

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑

=

 

1)Q*(pp 1
1

T
01

rr −Λ+Λ−=  

+Λ+−ΛΛ++−= −−−− 1}Q)N)(NI)(QN()1{(pp 1
n

2n11
1

nT
0n

rr
 

             r,2n,1)N)(NI)(Qp)2n(u 1
1n

2j

1jn11
j

T
0 =Λ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ−Λ+−+ −
−

=

−−−−∑
rr

 

∑
=

+ −−=
r

1n
n01r pp1p . 

 
Proof: For h = 1, 2, n = ,r,,1K  multiplying (2) by 1-Bh(x) and integrating it over x we obtain 
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∫ ∫∫
∞ ∞

−

∞

−+Λ=−
0 0

T
1n,h

T
n,h

0

T
n,hh Ndx)x(p)1n(udx)x(pdx)x(q

dx
d)]x(B1[

rrv
 

but 

∫∫
∞∞

+−=−
0

h
T

n,h
T

n,h
0

T
n,hh )x(dB)x(q)0(qdx)x(q

dx
d)]x(B1[

rrv
 

and so 

.Np)1n(up)x(dB)x(q)0(q T
1n,h

T
n,h

0
h

T
n,h

T
n,h −

∞

−+Λ=+− ∫
rrrr

 

 
 Next, summing the above equality over h = 1, 2 for n = 1 and adding the result to (1), we have  
 

))0(q*p()pp( T
1,2

T
0

T
1,2

T
1,1

rrrr
+Λ−=Λ+  for r,2n =  and adding the result to , 

we have 

∫∫
∞∞

− +=
0

2
T

n,2
0

1
T
n,1

T
1n,2 )x(dB)x(q)x(dB)x(q)0(q

rrr

r,2n,N)pp()pp()0(q)0(q T
1n,2

T
1n,1

T
n,2

T
n,1

T
1n,2

T
n,2 =++Λ+=+− −−−

rrrrrr
 

 
 Now using (12) we can write 

1
1

T
0

T
1,2

T
1,1 )Q*(ppp −Λ+Λ=+

rrr
 

{ } r,2n,N)pp()QQ(ppp 1T
1n,2

T
1n,11nn

T
0

T
n,2

T
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 Proceeding by recurrence we get 
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which completes the proof of corollary 2. � 
 
Remark 1. Assume Bh(x), h = 1, 2 are of phase type with irreducible PH-representation )M,( hhβ

r
 where hβ

r
 is 

an mh ×1 vector,  and M11T
h =β
rr

h is an mh × mh matrix. Denote 1Mhh −=µ
r

. Then for h = 1, 2 we have 
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)I()M*)(I(*B h
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h
T
h0,h µ⊗⊕Λβ⊗−= − rr

. 

 The symbol ⊗ denotes the Kronecker product of two matrices, i.e., A ⊗ B denotes the matrix made up of 
blocks aijB. The symbol ⊕ denotes the Kronecker sum of two matrices: A ⊕ B = A ⊗ I + I ⊗ B. 
 
5. CONCLUSIONS AND FUTURE WORK 
 
 The importance of this paper is in the direct resolution of the system of differential equations. From the 
solution we can obtain, among others things, all the moments for the stationary distribution of the number of 
customers in the system. Besides, the procedure of finding the solution can be easily implemented in several 
programming languages and, on this way, we can make comparissons between systems with exceptional 
distribution functions sensitively different. 
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 Moreover the previous formulae can be used for the approximate calculus (with accuracy up to a known ε of 
the stationary features of the respective queueing system with infinite buffer capacity (for values of r large 
enough). 
 
 Finally, we observe that a Batch Markovian Arrival Process (BMAP) is a MAP where the arrivals can occur 
in random-sized batches. As future work, we would like to analyse the BMAP/G/1/r FCFS queue with 
exceptional first service. 
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