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ABSTRACT 
A new proof of the Strong Consistency of a non parametric estimator of the quantiles is provided. The 
estimate uses record breaking data. The proposition uses a smaller number of hypothesis than other 
similar. The application to some well known problems as the determination of Optimal-burn-in-time, 
pollution and the newsboy vendor problem are discussed. 
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RESUMEN 
Se brinda una nueva demostración de la Consistencia Fuerte de un estimador de los quantiles. El 
nuevo estimador utiliza mediciones de rupturas. La proposición utiliza menos hipótesis que otras 
versiones. Se discute su aplicación a algunos conocidos problemas como los de la  determinación del 
tiempo óptimo de Burn-in, la polución y el problema del vendedor de periódicos. 
 
MSC: 62G07. 
 

1. INTRODUCTION 
 
 In different experiments the quantile Q(P) is used for measuring uncertainty. It measures the evidence that 
a null hypothesis, as H0: θ ≥ θ0, is true. Taking: θ *[s] as a test statistic P(θ*[s] ≥ Q(P)) = P = 1 - α. 1 – P = α is 
the probability of committing a Type I error. Classic models deal with test statistics with a standard normal 
distribution. In many real life problems it is not possible to assume certain realistic distribution of θ*[s]. 
 
 We will consider the problem of rejecting H0: θ ≥ θ0 or of determining a one side confidence interval [Q(P), ∞[ 
when the involved distribution function (DF) is unknown. This problems arises in Quality Control when a new 
good is developed and the lifetime X is studied for establishing its survival function F*(t) = 1 - F(t). The 
manufacturer wants to fix Q(P) such that Prob{X > Q(P)} ≤ 1 – P = 1 - α. 
 
 The written warranty for the good will state the compromise of providing labour and parts to fix or to replace 
the defective product if X < Q(P). The consumer feels safe. The manufacturer fixes P and expects to give 
service to n* = n(1 - P) goods in a lot of size n. 
 
 A similar situation is present when the environment is studied. For example, Q(P) must be fixed for 
establishing if the quality of the air or the water is acceptable. 
 
 This class of problems can be characterised by experiments where the test implies a costly measurement 
process. Sometimes they are destructive. That is the case when the goods are stressed up to destroying it or 
the survival of mice under certain environmental conditions is observed. 
 
 Generally observing a sample and calculating the sample P-the quantile makes the estimation of Q(P).  
A less costly procedure is to apply the test and measure successive minima. That is to stress the first sampled 
unit up to obtain X1 = X(1). If it does not survive at X1 then X2 = X(2)  otherwise Xi = X(2), where i is the first unit 
with Xi < X(1). The procedure is repeated with the entire sample and X(1), X(2),...X(r1) minima are observed with 
X(i) < X(j) if i< j. Take K(i) as the number of sampled units evaluated after observing. X(i)… . Therefore we 
obtain a sequence of record values 
 

{(X(1), K(1)),...,(X(r),K(r))} 
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 Chandler (1952) studied the stochastic behaviour of this sequence. This study has been followed by Pwass 
(1964) who derived the distribution of the frequency of the record highs. Glick (1978) obtained that the 
number of records in a sample of size n has a distribution which converges to a N(ln(n), ln(n)). Samaniego-
Whitkaker (1988) studied the estimation of the distribution function F using a set of m independent record 
samples. Gulati- Padgett (994) analysed the estimation of quantiles. In this paper we reanalyse this problem 
and a new proof for the pointwise consistency of the estimation based on kernel function is developed. 
 
2. THE MAIN RESULT 
 
 Take a random sample of size n from the continuous distribution F. Its quantile of order P is given by 
 

Q(P) = F-1(P) = inf {x ⎢F(x) ≥ P}. 
 
 We measure the succesive minima X(i) and K(i), the number of data between it and its succesor or the last 
unit. The number of records R  is a random variable. The estimator of  

 
       )t(F = 1 – F(t)                   (2.1)  
                                                                        
proposed by Samaniego-Whitaker (1988)  is 
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 We will select m independent samples with the same size n sequentially from F. Then we have m 
sequences {(X(i)1, K(1)), (X(i)2,K(2)),..., (X(i)ri ,K(ri))}, i = 1,…,m. They may be   combined in an ordered  sample 
of size 

r* = ∑  
=

m

1i

)i(r

 Now we can use the sequence Smn={(X(j), K(j))⎜j=1,…,r* }. An estimator of (2.1) based on the combined 
sequence is given by: 
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 Therefore  

)t(F1)t(*F)t(F mnmn −==  

 The nonparametric estimator of Q(P) , derived directly from Fmn(t) using Smn , is 
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 The consistency of Qmn(P) is easily derived from the convergence of the empirical measure. In the proof is 
assumed that F is absolutely continuous with a density f(t) = ∂F(t)/∂t. 
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   Take a suitable kernel G[(x-t)/hmn] such that the bandwidth hmn > 0 is such that hmn → 0 and mh → 0 when 
m → ∞. Gulati-Padgett (1994) proved the following theorem: 
 
Theorem 2.1. (Gulati-Padgett, 1994). Take  
 

xmn(P) =  )P(F~ 1
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 h1)  hmn → 0  as  m → ∞ 
 
 G1)  ∫⎟ G(y)⎟ dy < ∞,   Sup⎟ G(y)⎟ < ∞  and ⎟ yG(y)⎟ → 0   as  y → ∞ 
 
 G2)  G(y) ≥ 0  and  ∫ G(y)dy = 1 
 
then xmn(P) → Q(P) a.s. as m → ∞  and  ∀P∈]0,1[ 
 
 We will derive the Strong Consistency of xmn(P) using a single hypothesis on the kernel. 
 
Proposition 2.2. For any P∈]0,1[ if G(•) is a bounded continuous function then xmn(P) → Q(P) as m → ∞ 
almost surely. 
 
Proof. 

 Take f*(x) = G[(x - t)/h∫
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0

mn]f(t)dt  where  f(t) = ∂F(t)/∂t and ⎢f
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 From Nadaraya (1965) we have that → 0 if m → ∞. )x(U*
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 Consider that Fmn = F1 and F = F2 are DF generated by probability measures from a class ℘ and take 
 

D(ν1, ν2) = {η ∈℘⊂ ( × )⎟ η ° π
+ℜ +ℜ i = νi} 

 
where πi is the projection of i. Let us define an appropiate distance d(x,t*) between t* and x, denote by ρ a 
radius with center x and  
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 Hence we have that  
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 Proposition 2.1 of Römisch-Scultz (1989) for a bidimensional variable holds in our case because p = q =2. 

 The Wasserstein metric , see Pflug (1996) for bidimensional variables is 
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 Using the related DF´s we have that 

Umn(x) ≤ Max (Lh)W1 (ν1, ν2) = Max(Lh) ⎢F∫
∞

0

mn(t) - F(t) ⎢dt 

 Using the consistency of Fmn obtained by Samaniego-Whitaker (1988) we complete the proof.� 
 
3. APPLICATIONS  
 
 We can illustrate through some classic examples cases where the estimation of Q(P) is needed and the 
results obtained in this paper provide frame where a cheaper method permits of enhance good results. 
 
Example 1. A product has three phases in its life cycle. At first the failure or hazard rate decreases up to  

a certain moment t*. The manufacturer wants to determine Q(P) such that P{t* < Q(P)} < 1 - P.  
A sample is selected from a lot and the selected units are operated under extreme conditions for 
identifying failures. The use of record data permits to ship the K(i) products sampled which exhibit a 
performance not worse than the unit with lifetime X(i). The estimation of Q(P) permits to fix the 
warranty time . See Chou–Tang (1992) and Bouza (2001) for a discussion of the theoretical 
problem. 

 
Example 2. The concentration of 239.246 Pu in surface oil over an area in the surroundings of a nuclear 

power station is to be measured. Samples of quadrates to a depth of 10 cm will be collected. The 
interest is to calculate Q(P) for establishing if the station operates safely. The initial samples are 
used for estimating the quantile. Changes in the emissions will be analyzed by comparing the 
posterior monitoring results with the threshold fixed by the estimate, see a detailed description  
in Gilbert (1987). The collector determines “in situ“ if the selected quadrate has a smaller 
concentration. Then each sampled quadrate is compared with the previous minimum before 
deciding to collect it or not. 

 
Example 3. The newsboy vendor problem models a wide variety of economical problems. It is described in 

the following way: 
 

a. The newsboy has an initial wealth. He buys newspapers at a price c(1) and sells them at price 
c(2). The unsold papers are returned to the dealer and he obtains c(3) for each unit.  
When a lot is insufficient he buys additional newspapers at a cost c(4). The demand is a 
random variable with distribution function F(y). The payoff is: 
Z(y,x) = Z* + c(2)y - c(1)x + c(3)[Max (0, -x -y) - c(4)[Max(0, y - x)] with c(3) < c(1) < c (2) 

 
b. Using the utility function u[Z(x,a)] the optimization problem to be solved is: Maxa≥0E[u(Z(x,a))]. 

 It is a Stochastic Linear Programming problem. The optimal decision for a distribution function F is x(F) = Q(P).  

 If the newsboy is risk neutral: P = c(4)c(1)/[c(4) - c(3)], see Eeckhoudt-Golleer (1995). 

 If the newsboy is risk averse P < c(4)c(1)/[c(4)-c(3)]. 

 In practice the newsboy does not know F, as he is maximizing a small change is needed for computing 
Q(P) using the records of the successive maxima. 
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