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ABSTRACT 
The paper provides a comprehensive review of methodology, classical as well as bootstrapped, for 
setting confidence intervals for the parameter p of negative binomial distribution. The results are 
illustrated by a numerical example. The authors have developed a computer program in Visual BASIC 
which computes confidence limits using the procedures described in this paper. 
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RESUMEN 
Este trabajo proporciona una revisión comprensiva de metodología, clásica así como la asociada al 
método de bootstrap, para establecer  intervalos de confianza para el parámetro p de distribución del 
binomio negatival. Los resultados se ilustran por un ejemplo numérico. Los autores han desarrollado un 
programa de computadora en Visual Basic que calcula límites de confianza usando los procedimientos 
descritos en este trabajo.  
 
MSC: 62f25. 
 

1. INTRODUCTION 
 
 The negative binomial distribution (NBD) is one of the most useful probability distributions and has been 
successfully employed to model a variety of natural phenomena. It has been used to construct useful models 
in many substantive fields: in accident statistics (Arbous and Kerrich, 1951, Greenwood and Yule, 1920, 
Weber, 1971); in biology (Anscombe, 1950; Bliss and Fisher, 1953; Anderson, 1965; Boswell and Patil, 1970; 
Elliot, 1977); in birth-death processes (Furry, 1937; Kendall, 1949); in ecology (Martin and Katti, 1965; Binn, 
1986; White and Bennetle, 1996); in entomology (Wilson and Room, 1983); in epidemiology (Byers et al. 
2003); in information sciences (Bookstein, 1997); in meterology (Sakamato, 1972); and in psychology (Sichel, 
1951). In addition, many other physical and biological applications have been described by Biggeri (1998) 
and Eke et al. (2001). For an excellent exposition of the negative binomial distribution and extensive list of 
references, see Johnson et al. (1992). 
 
2. THE NEGATIVE BINOMIAL DISTRIBUTION 
 

Greenwood and Yule (1920) are credited for first deriving and applying the NBD in the literature even 
though some special forms of this distribution were already discussed by Pascal. The NBD is the 
mathematical counterpart of (positive) binomial distribution. Mathematically, it is given by the expansion  
(Q – P)-k where Q = 1 + P, P > 0, k is positive real number; and the (x + 1) term in the expression yields 
P[X = x]. This is analogous to the definition of the binomial distribution in terms of the binomial expansion  
(q + p)n, where q = 1 – p, 0 < p < 1, and n is positive integer. Thus the algebraic properties of NBD are similar 
to that of the binomial distribution. The relationship between the mean and variance of the number of 
individuals per sampling unit is influenced by the underlying pattern of dispersal of the population. Three basic 
types of patterns, their variance-to-mean relationship and suitable probability models may be defined as follows: 
(i) random pattern; σ2 = µ; Poisson; (ii) uniform pattern; σ2 < µ; positive binomial and (iii) clumped pattern; 
σ2 > µ; negative binomial. 
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A number of variants of the NBD are used in practice under different assumptions and situations. Some of 
the popular forms encountered in the literature are: 
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v) The probability of finding x individuals in a sampling unit, that is, P(x), where x = 0,1,2,3,.., r  

                  individuals, is given by 
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 The form (iii) will be used in this paper. For a comparison of different forms and related characteristics see 
Shenton and Myers (1965). 
 
 It is clear from the form of the distribution that k needs not to be integer. In the case of integer k the NBD is 
sometimes known as the Pascal distribution although many authors do not distinguish between Pascal and 
negative binomial distribution. The name 'Pascal distribution' is more often applied to the distribution shifted k 
units from the origin, i.e. with support k, k+1, k+2,…; this is also called the binomial waiting-time distribution. 
 

NBD has two parameters, namely, the exponent k, dispersion parameter and p which is related to the 
mean of the NBD as 
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 The variance of NBD is given by  
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which clearly shows that the variance of the NBD is always greater than the mean. The parameter k is 
frequently referred to as an index of clustering; the larger k, less the clustering; and conversely, the smaller 
the k, the greater the clustering. k has been found to be quite stable for many populations, even though the 
mean count may be changed considerably.  
 
 A common inferential problem in dealing with the NBD is the determination of a confidence interval for the 
parameter p. Several methods for approximating confidence limits were earlier reviewed by Scheaffer (1976). 
The methods considered by Scheaffer (1976) were: central limit theorem approach and its modification; 
variance-stabilizing transformation approach; and an χ2 approach and its modification. Lui (1995) discussed 
confidence limits on the expected number of trials in reliability studies. The purpose of this paper is to review 
some methods, classical as well as bootstrapped, of obtaining a confidence interval for the parameter p. 
These procedures are not generally covered in standard references and introductory textbooks and would be 
of considerable interest to students and instructors as well as research workers in substantive fields. The 
authors have developed a computer program in Visual BASIC that computes confidence limits using the 
procedures described in this paper. 
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3. AN EXACT METHOD FOR A CONFIDENCE INTERVAL 
 
 Let X be a negative binomial random variable with parameter p. To construct an exact confidence interval 
for p, we need to find an interval consisting of all values of p such that the realized value of the negative count 
x would result in acceptance of the null hypothesis H0: p = p*  if one were using a two-tailed test. More 
precisely, if we want to form a 100(1 - α)% confidence interval for p, we observe the value of X, say x, and 
then ask, “For the given values of x, which values of p* we may use in the null hypothesis such that a two 
tailed test would result in the acceptance of H0?” These values of p would be in our confidence interval. Since 
each of the test has probability not exceeding α/2, the values of the lower confidence limit pL is selected as 
the value of p* that would barely result in rejection of H0 for the given value of x, or a larger value. Thus, pL is 
determined such that  

                .
2

)p1(p
1k

1kr
)pp|nX(P

nr

r
L

k
LL

α
≤−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−+

==≥ ∑
∞

=

     (1) 

 Similarly, the upper confidence limit pU is determined such that: 
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 The main problem in using this method is the difficulty in computing the cumulative probability expressions 
such as: 
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 Specially prepared tables are available for evaluating the expression in (3) (for example, Williamson and 
Bretherton, 1963). However, with the advent of fast, inexpresive computing and with the widespread 
availability of powerful personal computers and statistical software it is no longer difficult to evaluate. 
Computer algebra systems provide a flexible tool to solve mathematical and statistical problems like this. 
Examples of popular computer algebra sytems are Mathematica, Maple and MathCAD. We can use the 
following small Mathematica code to solve the expression (3): 
 
<<Statistics 'DiscreteDistributions' 
          k= ; n= ; p= ;    
            CDF[NegativeBinomialDistribution [k,p],n]    
 
3.1 Normal approximation using transformations 
 
 There are several transformations that approximately normalize and equalize the variance. These methods 
are applicable when the NBD is successfully fitted to the sample data. The choice of a suitable transformation 
depends upon the value of k estimated from the data. Some such transformations were considered by Elliott 
(1977) and are briefly described below:i) If  and 5k2 ≤≤ 15x ≥ , each observed value of xi in the sample is 
replaced by  
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and the mean of transformed count y  is given by 
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where n is the number of sampling units or the number of counts and k is the negative binomial exponent. In 
as much as the distribution of transformed counts is approximately normally distributed with the variance 
0.1886 trigamma(k) (Elliot, 1977, p. 57), an approximate 100(1 - α)% confidence interval for p is given by 
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n
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where tn-1,1-α/2 is 100(1 - α/2)-th percentile of the t-distribution with n-1 degrees of freedom and trigamma (k)  
is a mathematical derivative of the gamma function. 
 

ii) For k ≥ 2 and 4x ≥ , each observed value of xi  in the sample is replaced by 
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is approximately normally distributed with variance 0.25 trigamma(k) (Elliott, 1977, p. 57), an approximate 
100(1 - α)% confidence interval for p is given by 
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 These confidence intervals must be transformed back to the original scale of observations by inverting the 
original transformation.  
 
3.2. Normal approximation using Box-Cox transformation 
 
 Another approach for an approximate confidence interval for p is to use a generalized transformation like 
Box and Cox (1964) to normalize the data and then use the conventional methods based on the t-distribution. 
Each observed value of xi  in the sample is replaced by  
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and the mean of transformed counts y  is given by 
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 To use the Box-Cox transformation, one selects the value of k that minimizes the log-likelihood function (L) 
given by 
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 This must be solved iteratively to find the value of k that maximizes L. Since this is tedious; it is usually 
done by computer. In as much as the distribution of transformed counts is approximately normal, an 
approximate  confidence interval for p is )%1(100 α−
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3.3. Large sample normal approximation without transformation 
 

For a sufficiently large value of n one can apply the central limit theorem and assume that the sample 

mean X  is approximately normally distributed with mean kp and variance 
n

)p1(kp − , and an approximate 

100(1 - α)% confidence interval for p is given by: 

               )p̂Var(zp̂ α/21−±                  (12) 

where 21z α−  is the 100(1 - α/2) - th  percentile of the standard normal distribution. 
 
3.4. Normal approximation using variance stabilizing transformation 
 

The formulas 
p
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 Thus, a confidence interval for p can be obtained by first finding a confidence interval for µ and then 
transforming it according to equation (14). The confidence interval for µ is given by: 
 
                      (µL, µU) = y ± z1-α/22σY                                          (15) 
 
and the transformed interval for p is 
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3.5. Use of chi-square distribution 
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3.6. An improved large sample approximation 
 

For large sample approximation in section 3.3, we have 
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and an approximate confidence interval for p in this case is determined by 
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The classical interval estimation methods use a fully parametric model to express the uncertainty of the 

corresponding point estimator. That is, all elements of the assumed statistical model are required to derive 
the confidence interval. However, it is often not possible to make a distributional assumption, or a 
distributional assumption can be made but derivation of a confidence interval is mathematically intractable. 
The bootstrap (Efron, 1982; Efron and Tibshirani, 1993; Mooney and Duval, 1993) provides a solution in both 
the instances. 
 

In recent years the bootstrap theory is gaining support as an alternative to classical parametric inference 
methods. The principal goal of bootstrap theory is to produce good confidence intervals automatically. Here 
the term good means that the bootstrap intervals should closely match exact confidence intervals in those 
special situations where statistical theory yields an exact answer, and should give dependably accurate 
coverage probabilities in all situations. It should be noted that every thing in the bootstrap procedure depends 
on the original sample values. A different set of sample values yields a different set of estimates. 
 

Bootstrap methods, justified by mathematical arguments, are means of assessing the precision of 
estimates, and require programming ability, rather than statistical expertise, for their implementation. Taffe 
and Garnham (1996), for example, have given more details about practical applications, including MINITAB 
code.  
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4. BOOTSTRAP PROCEDURES FOR CONFIDENCE INTERVALS 
 

There are different bootstrap procedures for finding the confidence intervals; each procedure is different 
from other due to its exactness and its complexity level. When they are appropriate, bootstrap confidence 
intervals are second order accurate (Singh, 1981; Bickel and Freedman, 1981) which suggests that the 
bootstrap could provide good approximate confidence intervals, better than the usual ‘standard intervals’. For 
details on bootstrap procedures for confidence intervals see DiCiccio and Efron (1996) and Martinez and 
Louzada-Neto (2001). In this section we present some bootstrap procedures for confidence intervals. 
 
4.1. The standard bootstrap confidence limits 
 

With the standard bootstrap confidence interval is estimated by the standard deviation of estimates of a 
parameter θ that are found by bootstrap resampling of the values in the original sample of data. The interval 
is then 
 

deviation) standard (Bootstrap z Estimate 2α±  
 
4.2. The first percentile method (Efron, 1979) 
 

Bootstrap resampling of the original data is used to generate the bootstrap parameter of the interest. The 
100(1 - α)% confidence interval for the true value of the parameter is then given by the two values that 
encompass the central 100(1 - α)% of this distribution. For example, a 95% confidence interval is given by the 
value that exceeds 2.5% and 97.5% of the generated distribution. 
 
4.3. The second percentile method (Hall, 1992) 
 

Bootstrap resampling is used to generate a distribution of estimates  for a parameter θ of interest. The 
bootstrap distribution of difference between the bootstrap estimates and the estimate of θ in original sample 

 is then assumed to approximate the distribution of errors for θ  itself. On this basis the bootstrap 
distribution of  is used to find limits ε

Bθ̂

θ−θ=ε ˆˆ
BB

ˆ

Bε L and Hε  for the sampling error such that 100(1 - α)% of errors are 

between these limits. 100(1 - α)% confidence limits for θ are then . For example, to obtain 
95% confidence interval  and  should be chosen as the two values that define the central 95% part of 
the distribution of the bootstrap sampling errors 

LH
ˆˆ ε−θ<θ<ε−θ
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4.4. Bias-corrected percentile  confidence limits )%1(100 α−
 

The following steps are needed to obtain bias-corrected percentile confidence intervals:  
 
Generate values  from the bootstrap distribution for estimates of the parameter  of interest. Find the 

proportion of times p that  exceeds , the estimate of 
Bθ̂ θ

Bθ̂ θ̂ θ  from the original sample. Hence, calculate , 
the value from the standard normal distribution that is exceeded with probability p. (This is  = 0 if p = 0.5) 

0z

0z
 
 Calculate )zz2( 20 α−φ  and )zz2( 20 α+φ  which are the proportions of the standard normal distribution 

that is less than 20 zz2 α−  and 20 zz2 α+  respectively where  is the value of that is exceeded with 

probability α/2 for the standard normal distribution.  
2/zα

 
 The lower and upper confidence limits for θ  are the values that just exceed a proportion ˆ )zz2( 20 α−φ   and 

)zz2( 20 α+φ  of all values in the bootstrap distribution of estimates  respetively.  Bθ̂
 
4.5. Bootstrap-t 100(1 - α)% Confidence limits 
 

As the name suggests this method uses the t distribution. The bootstrap-t confidence limits are found by 
performing the following steps: 

 65



 
 Approximate 2tα  and 21t α−  using the bootstrap t-distribution, i.e. by finding the values that satisfy the two 
equations 
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for the generated bootstrap estimates. For example, for a 95% confidence interval the two values of t will 
encompass the central 95% of the bootstrap-t distribution. 
 
 The confidence interval is given by 
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5. AN ILLUSTRATIVE EXAMPLE 
 

A shovel sampler was used to take a large sample of 80 sampling units from the bottom of a stony stream, 
and fresh water shrimps were counted in each of sampling unit (0.05 sq. m). The chi-square goodness of fit 
test was applied on the observed counts, which justify that the negative binomial distribution provides good 
approximate for the data. The data in frequency distribution form is. (Elliot, 1977, p. 53) 
  

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total 
Obs. 3 7 9 12 10 6 7 6 5 4 3 2 2 1 1 1 1 80 

 
From the table, we obtain the mean as 5.3125 and the variance 13.534. The method of moments estimator 

of p and P are 0.3925 and 1.5157 respectively. The maximum likelihood estimates of p and P are 0.3871 and 
1.5832 respectively. 
 
5.1. Classical methods for confidence intervals 
 
Large sample normal approximation without transformation 

 
Using equation (12), 95% confidence interval of p is given as 

 
      =± )p̂(Var)96.1(p̂ (0.3527, 0.4233) 
 
Normal approximation using variance stabilizing transformation 

 
Using equation (15), confidence interval for µ is:  

 
1.05275 ± (1.96)(0.0305) = (1.35912, 1.84504) 

 
and using equation (16), the transformed interval for p is (0.3515, 0.4239). 
 
Use of chi square distribution 

The tabulated values of chi square were found as and at 
approximate k value to 4. Then using equation (18) the confidence interval of p was (0.3838, 0.4777).  

7912.5712
975.0,640 =χ 9964.7112

025.0,640 =χ

 
An improved large sample approximation 
 

An approximate confidence interval for p using equation (19) gives (0.3500, 0.4225).  
 
5.2. Bootstrap confidence intervals 
 

For bootstrap confidence intervals 10000 bootstrap samples were obtained from the original sample of 
size n = 80. With replacement sampling was done to draw each sample of size n = 80. The mean and 
variance of the original sample were 5.3125 and 13.534 respectively. The estimate of k was 3.3555. While 
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from the original sample the moment estimator of p and the maximum likelihood estimate of p were 0.3975 
and 0.3871 respectively. 
 
 Confidence intervals for the parameter p were obtained from these 10000 bootstrap samples by the 
following procedures. 
Standard bootstrap C.I: 
 
 The bootstrap standard deviation from all 10000 bootstrap confidence intervals was 0.0627, hence the 
confidence limits can be found as 

0.3871 ± (1.96)(0.0627) = (0.2642, 0.5099) 

 The mean of the 10000 bootstrap estimates of p was 0.4002. The bias is therefore estimated to be  
0.4002 – 0.3871 = 0.0131. This suggests that the original sample estimate of 0.3871 is also low by this amount 
as well, so the bias-corrected estimate of p of the original population sampled is  0.3871 – 0.0131 = 0.3740. 
Hence the confidence interval based on this estimate of p is 

0.3740 ± (1.96)(0.0627) = (0.2511, 0.4968) 

1st percentile method: 
 

First the bootstrap distribution of the parameter p estimated from the 10000 samples was constructed by 
arranging them into an array of ascending order. Now the 95% confidence limits were found by selecting two 
values that define the 95% proportion of the generated distribution. The value that exceeds 2.5% and 97.5% 
of the generated distribution were taken as the lower and the upper confidence limits respectively. So the 
confidence limits were (0.3137, 0.5804).  

 
2nd percentile method: 
 

The bootstrap distribution of the parameter p estimated from the 10000 samples was constructed by 
arranging them into an array of ascending order. The bootstrap distribution of the difference between the 
bootstrap estimate and the estimate of p in the original sample  is then constructed. Now the 95% 
confidence limits of the sampling error were found by selecting two values 

p̂p̂BB −=ε

Lε  and Hε  that define the 95% 
proportion of the generated distribution. The value that exceeds 2.5% and 97.5% of the generated distribution 
were taken as the lower  and the upper confidence Lε Hε  limits respectively. So the confidence limits for the p 
were found as  

0.3871 – 0.1545 < p < 0.3871 – (-0.0908) = (0.2326, 0.4779) 

Bias corrected percentile method: 
 

In this method from the generated distribution of p the proportion of times that the bootstrap estimate of  
p exceeds the estimate of p from the original sample was 0.5454. Hence 1764.0z0 −=  and the proportion of 
the standard normal distribution that is less than 20 zz2 α−  is 0.0617. Now the lower limit of p is 0.0617 
quantile value of the generated distribution which just exceeds a proportion 0.0104 of all values in the 
bootstrap distribution of estimate of p. Similarly the proportion of the standard normal distribution that is less 
than 20 zz2 α+  is 0.9913. Now the upper limit of p is 0.9913 quantile value of the generated distribution, 
which just exceeds a proportion 0.9913 of all values in the bootstrap distribution of estimate of p. 
 
Bootstrap-t confidence limit: 

First we calculate t statistics for each bootstrap sample by the formula  where  
 = 0.3871. Then the bootstrap t-distribution of the generated values of t was constructed. For the 95% 

confidence interval the two values of t that encompass the central 95% of the bootstrap-t distribution are 

)p̂(SE/)p̂p̂(T BBB

∧
−=

p̂

2tα =1.4717, 21t α− =-2.3709. Hence the confidence interval for p is given by  

0.3871 – (1.4717)(0.0627) < p < 0.3871 – (-2.3709)(0.0627) 

               = (0.2949, 0.5357) 
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 According to one referee some newer procedures such as the ‘wild bootstrap’ can also be used for 
constructing confidence intervals. Wild or external bootstrap, first proposed by Wu (1986), is one of the most 
promising bootstrap resampling scheme (Helmers and Wegkam, 1995). Using two stage wild bootstrapping 
we found: mean and varince for p are 0.397047 and 0.153179; lower and upper confidence limits for p were 
0.367024 and 0.42707 respectively and hence the length 0.060046. 
5. RESULTS AND COMMENTS 
 
 The purpose of this paper has been to describe some methods of constructing confidence intervals for the 
parameter p of NBD. Various methods, classical as well as bootstrap, have been described with examples 
illustrating the application of each procedure. In order to assist the reader in assessing the options of the 
methods for construction of confidence intervals, the results of the example considered in the article are 
summarized below: 

 
Confidence interval results for the parameter p of NB distribution based on various methods 

 
95% C.I. 

Method of construction Lower 
limit 

Upper 
limit 

Length 

Large sample normal approximation without 
transformation 0.3527 0.4233 0.0706 

Normal approximation using variance stabilizing 
transformation 0.3515 0.4239 0.0724 

Use of chi-square distribution  0.3838 0.4777 0.0939 
CLASSICAL 

Improved large sample approximation 0.3500 0.4225 0.0725 

Standard bootstrap C.I. 0.2642 0.5099 0.2457 

Standard bootstrap C.I on adjusted estimate 0.2511 0.4968 0.2457 

1st percentile method 0.3137 0.5804 0.2667 

2nd percentile method 0.2326 0.4779 0.2453 

Bias corrected percentile method 0.2963 0.5416 0.2453 

Bootstrap-t confidence limit 0.2949 0.5357 0.2408 

BOOTSTRAP 

Wild bootstrap C. I. 0.3670 0.4270 0.0600 
 
 The question “which is the best method?” has no simple answer. The numerical results show that wild 
bootstrap produced the shortest confidence intervals among the classical as well as bootstrap methods. 
Among the classical procedures, narrowest confidence interval is given by large sample normal 
approximation without transformation. While bootstrap confidence intervals differ by a quantity o(n-1), their 
coverage probabilities, except the wild bootstrap, are the same to o (n-1) and agree to that order, with 
coverage probability.  
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