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ABSTRACT 
This paper provides another derivation of the Karmarkar direction for linear programming. 
It is strongly motivated by derivations of Gonzaga, but we show how the direction can be viewed as 
a steepest descent  direction in the original feasible region corresponding to a metric different from 
the Euclidean one. We show that a fixed decrease in the potential function can be obtained by 
taking a step in this direction, as long as a certain assumption holds. We give an example showing 
that such a restriction is necessary, and discuss two ways to remove it. 
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RESUMEN 
Este artículo presenta una nueva derivación de la dirección Karmarkar para la programación lineal. 
Está motivada fuertemente por las derivaciones de Gonzaga. Nosotros mostramos cómo la 
dirección puede interpretarse como la dirección de descenso más empinada en la región factible 
original si se utiliza una métrica diferente de la Euclideana. Demostramos que se puede lograr un 
decremento fijo en la función de potencia tomando un paso en esta dirección, bajo cierta 
condición. Damos un ejemplo que demuestra que esta condición es necesaria, y exponemos dos 
maneras de eliminarla. 
 
MSC: 90C05, 90C51. 

 
1. INTRODUCTION 
 

The last fifteen years has seen a revolution in algorithms for solving linear and certain convex 
programming problems. General discussions of these so-called interior-point methods, mostly in the 
context of linear programming, can be found in the texts by Roos, Terlaky, and Vial (1997) Vanderbei 
(1997), Wright (1997), and Ye (1997), while the monographs of Nesterov and Nemirovski (1994) and 
Renegar (2001) provide a deeper treatment of the application of these methods in a general setting.  
A survey of path-following methods can be found in Gonzaga (1992), while two surveys of potential-
reduction algorithms appear in Anstreicher (1996) and Todd (1996). 
 
 The modern theory of interior-point methods originates with the work of Karmarkar (1985), whose 
algorithm was the first potential-reduction method. It also employed a projective scaling at each iteration, 
which made it less intuitive than the closely related (and much earlier) affine-scaling method of Dikin (1967) 
or the later affine-scaling potential-reduction algorithm of Gonzaga (1990). However, in contrast to Dikin's 
method, Karmarkar established polynomial convergence for his, by showing that the potential function he 
defines is reduced by a constant at each iteration. While Karmarkar's method has been supplanted by more 
efficient algorithms for practical computation, it remains of interest for historical reasons, and for the ideas it 
introduced. A nice elementary treatment has recently been given by Gonzaga (2002). 
 
 In this paper we give an alternate and more intuitive derivation of the search direction chosen in 
Karmarkar's algorithm for a standard-form linear programming problem, which makes clear its very close 
relationship to the simpler affine potential-reduction algorithms. Our derivation is strongly motivated by 
and closely related to several proposed by Gonzaga; see p. 162 in Gonzaga (1989), p. 162 in Gonzaga 
(1991a), and p. 222 in Gonzaga (1991b). However, while Gonzaga looks at the intersection of a spherical 
neighborhood and the cone generated by the feasible region, we keep the original feasible region and 
intersect it with a neighborhood that is a spherical cone. In this way, we can view Karmarkar's direction as 
a steepest descent direction with respect to a certain metric and we describe this precisely. The 
motivation here, of taking as a neighborhood of the current interior point not an ellipsoid but rather an 
ellipsoidal cone, was apparently first discussed by Megiddo (1985) in the context of a modification of the 
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affine-scaling algorithm of Dikin (1967). See also p. 171 in Gonzaga (1991a) (note that ”f'' in (30) should 
be “r'') and Padberg (1985). 
 
 We also prove directly that a fixed decrease in the potential function can be obtained by taking a step of 
an appropriate length in this direction. This proof is again very similar to those of Gonzaga (1989) and 
(1991a). We need, as he did, to make an additional assumption, which follows if the feasible region is 
compact. We provide an example showing that this restriction is necessary. 
 
 There are two ways to remove this unpleasant restriction. One is to use a monotonic variant of  
the direction, as discussed by Gonzaga (1989). The other is to convert the given standard-form linear 
programming problem into homogeneous form using an extra variable, as discussed by Anstreicher 
(1986), de Ghellinck and Vial (1986), Gay (1987), Jensen and Steger (1985), and Ye and Kojima (1987). 
As noted in Todd (1991), the latter approach is equivalent to adding a dummy variable set equal to one to 
the original standard-form problem and then following Gonzaga's approach. 
 
2. THE KARMARKAR DIRECTION 

 
We are concerned with the standard-form linear programming problem  

 
(P)  minimize    cTx 

 
      subject to   Ax = b, x ≥ 0, 
 
where A ∈ Rmxn, b ∈ Rm  and c ∈ Rn.  We assume that  F0(P) := {x ∈ Rn: Ax = b, x  > 0} is nonempty, that 
we have an initial point in this set, and that (P) has an optimal solution. Let us also assume that the 
objective function is not constant on the feasible region of (P); if so, this can easily be detected at the first 
iteration, and the algorithm halted. We further assume that b is nonzero; otherwise, the feasible region is 
a cone, and given that (P) has an optimal solution, the origin is optimal. 
 
 Interior-point methods for (P) generate a sequence of points in F0(P). At each iteration, given the 
current point  ∈  Fx̂ 0(P), most methods scale the problem so that the current point is e: = (1,1,...,1)T.  
To simplify the notation, we will assume that the current point is itself  e. 
 
 Karmarkar's method tries to drive a potential function down to -∞. Let v(P) denote the optimal value of 
(P), and suppose we have a lower bound z on v(P). By our assumptions, for any x ∈ F0(P), we have  
cTx > z. For any q ≥ n, let us define 
 
      φq(x, z): = qln(cTx - z) - ln(x),                                       (1) 
 
where  
 

             ln(x): = .                                                      (2) ∑
=

n

1j
j)xln(

 
 It is helpful also to write φq in another form. We can easily find a vector g such that gTx = 1 for all 
feasible x, for example by scaling a row of Ax = b corresponding to a nonzero component of b. In any 
case, g will be in the row space of A . Then we can alternatively write 
 
      φq(x, z):= qln((c - zg)Tx) - ln(x).                                     (3) 
 
   A natural way to choose the search direction is as the steepest descent direction for the function φq(.,z)  
for a certain q and  z. This direction is the solution to the problem  
 
     (SP)  minimize  ∇x φq (e,z)Td 

             subject to  Ad = 0 

                            d  ≤ 1, 
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and is a positive multiple of  -P∇xφq(e, z) . Here P denotes the orthogonal projection operator onto the null 
space of A; we also write vP for the projection Pv of a vector v. (Note that, for any vectors u and v,  
we have and,0)vv(u,vuvuvu p

T
p

T
pp

t
p

T
p =−== ).vvvv 22

p
2

p =−+  We can alternatively define the 
steepest descent direction as the limit of the solutions (suitably scaled) to 
 
     (SP(ε))  minimize   φq(e + d) 
              
      subject to  Ad = 0, 
 
                             d ≤ ε, 
 
as ε ↓ 0. The result is the same. This search direction is used in the affine potential-reduction algorithm of 
Gonzaga (1990), for q equal to n + .n  (Note that most of Gonzaga (1990) assumes that the optimal 
value is known to be zero, and uses z = 0, but that the final section shows how lower bounds on v(P) can 
be used and updated.) 
  
    In this derivation, the trust region constraint (||d|| ≤ 1 in (SP) or ||d|| ≤ ε in (SP(ε))) is added because the 
potential function φq is nonlinear, and so the linear approximation used in the objective of (SP) is only 
accurate close to e. However, if q = n, as in Karmarkar's original algorithm, then the potential function  
 

φn(x, z) = n ln(c - zg)Tx) - ln(x) 
  
is homogeneous of degree zero in x. Moreover, the first-order Taylor approximation at the point x = e can 
easily be seen to be accurate for any point that is a positive multiple of e. Hence perhaps a more suitable 
trust region to use for this function is a neighborhood of e that is a spherical cone of small semi-angle.  
(An alternative trust region would seem to be a cylinder with spherical cross-section centered on the ray 
{σe: σ ∈ R}  the same result as obtained below would hold in this case, but the neighborhood seems less 
suitable because the approximation is very inaccurate for points in the boundary of the cylinder near the 
origin.) Similar arguments can be made for (SP(ε)). 
 
   Such a spherical cone, with semi-angle arccos((1 +ε)-1/2)  can be written as the set of  x satisfying 
 

2
1

)xx(

ex
T

T
≥ (1+ ε))-1/2 n .

 
 Alternatively, this is the set of x with xTe ≥ 0 and  
 

xT ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ε+−

n
ee)1(I

T
x ≤ 0. 

 
 Now write x = e + d. Then x satisfies the linear constraints Ax = b and lies in this cone if and only if 
 

Ad = 0,  eT d ≥ - n, 
(4) 

dT
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

n
ee)e1(I

T
d - 2εeTd ≤ nε. 

 
Observe that Ad = 0 implies that eTd =  so we can replace “e” by “e,deT

p P” in the above constraints.  
 
 Next we use the following result. 
 

Lemma 1. If b is nonzero, I – 
n
ee T

pp  is positive definite. 
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Proof: As a symmetric rank-one update of the identity, I - 
n
ee T

pp  is positive definite iff its determinant is 

positive. But the latter is 1 - 
n
ee p

T
p =

n
een p

T
p−

=
n

ee
2

p
2

−
= .

n
ee

2
p−

 Since Ae = b ≠ 0 = Aep, this 

quantity is positive as desired. � 
 

   From the lemma, it follows that for any sufficiently small ε, the matrix I - (1 + ε) 
n
ee T

pp is also positive 

definite. Hence, for ε small, any d feasible in Gay (1987) is correspondingly small (also see the argument 
following (SP'(ε)) below). Thus for any sufficiently small ε, the constraint eTd ≥ -n follows from the other 
constraints in Gay (1987).  Hence, x = e + d satisfies Ax = b and lies in the conical neighborhood of e iff d 
lies in the null space of A and a small ellipsoid, for all sufficiently small ε. We can now proceed in either of 
two ways, corresponding to the two problems (SP) and (SP(ε)) above. 
 
   First, we see that as ε converges to 0, the ellipsoidal constraint on d  tends to that corresponding to the 

metric defined by the positive definite matrix I – 
n
ee T

pp . Hence it is natural to choose our search direction 

d as the solution to   
 
     (SP')  minimize  ∇xφn(e,z)Td 
       
      subject to   Ad = 0,  
  

        dT(I - 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

n
ee

I
T
pp d ≤ 1. 

 
 Note that (SP') differs from (SP) only in that the Euclidean metric has been replaced by that determined 

by I - 
n
ee T

pp (and q has been specialized to n). 

 
Theorem 1. Let  ∆: = cTe - z be the current duality gap. Then we have: 

 
a) The solution to subproblem (SP) is a positive multiple of 
 

     d = - P∇xφq(e, z) 
     
        = - (q/∆)cp + ep.                                             (5) 
 

 b) The solution to subproblem (SP’) is a positive multiple of 
 

            .e
een

ec)/n(n
c)/n(d̂ p

p
T
p

p
T
p

p
−

∆−
+∆−=                             (6) 

 
Proof: 
 
a) Since Ad = 0 for all feasible solutions, we may change the objective in (SP) to min (P∇xφq(e, z))Td. Then the 

optimal solution to this problem, considering only the constraint ||d|| ≤ 1, is a positive multiple of  
d = - P∇xφq(e,z). But this solution also satisfies the constraint Ad = 0, so is the optimal solution to the 
original problem (SP) also. 

 
   The second expression for d is obtained by using the definition of φq in Anstreicher (1986). Alternatively, 
if (3) is used, the first term becomes (q/∆)(cp – zgp); but since g is in the row space of A, its projection 
vanishes and the same expression results. 
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b) Again we change the objective to min (P∇x φn(e, z)Td. Also, let  
 

      M: = I – .
n
ee T

pp                                          (7) 

 
   Then the optimal solution to the problem (SP'), considering only the constraint dTMd ≤ 1, is a positive 
multiple of But from the Sherman-Morrison formula, ).z,e(PM:d̂ nx

1 φ∇−= −

 

      M-1 = I + ,
een

ee

p
T
p

T
pp

−
                                  (8) 

 
so we find 
 

d̂ =  
 

)z,e(PM nx
1 φ∇− −

      = )z,e(P
een

ee
I nx

p
T
p

T
pp φ∇

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+−  

      

      = )ec)/n((
een

ee
I pp

p
T
p

T
pp −∆

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+−  

 

      = .e
een

ec)/n(n
c)/n( p

p
T
p

p
T
p

p
−

∆−
+∆−                (9) 

 
   Moreover, we see that  automatically satisfies the omitted constraint Ad = 0, so that it is a positive 
multiple of the solution to (SP'). � 

d̂

 
   We wrote  in the form given in (b) above to show its similarity to the direction d in (a), which is familiar 
from the affine potential-reduction method. However, note that d  is just a positive scalar multiple of  

d̂
ˆ

 

            p
p

T
p

p
T
p

p e
een
ec

cd̂
−

−∆
+−= ,             (10) 

 
which is the Karmarkar direction for the standard-form problem derived in Lemma 3.1 of Gonzaga (1991a). 
 
   For our second method, we proceed directly from the constraints (4), postponing taking limits. Let us 

choose  sufficiently small that the smallest eigenvalue of I - (1 + ε)ε̂
n
ee T

pp is at least some fixed positive 

  independent of ε whenever 0 < ε ≤ , cf  Lemma 1. Then we consider, for such ε, )ˆ(ελ=λ ε̂
 
(SP'(ε)) minimize    φn(e + d, z)   

 
      subject to   Ad = 0, ≥ -n, deT

p

      dT de2d
n
ee

)1(I T
p

T
pp ε−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε+−  ≤ nε. 

  
   Note that any d satisfying the last inequality above also satisfies  

 
λ||d||2 − 2ε n ||d|| ≤ nε, 
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so that 
 

||d|| ≤ ,nnn 2

λ
ελ+ε+ε  

 
which tends to zero as ε ↓ 0.  Henceforth assume that ε is chosen sufficiently small that this bound on ||d|| 
is less than 1. Then the constraint  ≥ -n is automatically strictly satisfied, and e + d must be positive in 
each component, so that (SP'(ε)) is the minimization of a continuous function on a compact set and has 
an optimal solution, which we denote by 

deT
p

).(d ε Moreover, since d = 0 satisfies the only nonlinear constraint 
of (SP'(ε)) strictly, and the constraints are convex, the Karush-Kuhn-Tucker conditions hold at ).(d ε  Hence 
for some µ = µ(ε) ∈ R and y = y(ε)∈ Rm  we have 

 

 ∇xφn )z),(de( ε+ + ATy + ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε−ε

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε+−µ p

T
pp e2)(d

n
ee

)1(I2  = 0, 

                                                  
                                                                        ,0)(dA =ε                (11) 
 

µ ≥ 0, ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε−εε−ε

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε+−εµ )n)(de2)(d

n
ee

)1(I)(d T
p

T
ppT  = 0.

 
   Now multiply the first equation of (11) by T)(d ε and use the other equations to deduce  
 

z),(de()(d))(de2n2( nx
TT

p ε+φ∇ε+εε+εµ  = 0. 
 
   If we now take limits as ε ↓ 0, and recall that )(d ε → 0 so that ∇xφn(e + )z),(d ε remains bounded, we find 
that µε → 0 also. Now let  
 

:)(d̂ ε = ),(d2 εµ  
 
and multiply the first equation of (11) by the projection matrix P  to get  
 

               )(d̂
n
ee

)1(I
T
pp ε⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε+− = )z),(de(P nx ε+φ∇− + 2µεep                               (12) 

 
   Taking limits in (12) and using (9) and µε → 0, we arrive at 
 
Theorem 2. As ε ↓ 0, a positive multiple of the optimal solution to (SP'(ε)) converges to the direction d  
of (6). � 

ˆ

 
   Hence we have seen that the Karmarkar direction for standard-form problems can be derived by either 
minimizing the potential function over the intersection of the feasible region with an infinitesimally small 
spherical cone centered at the current solution e, or by taking the steepest descent direction for this 

function at e, where the metric is defined by the matrix .
n
ee

I
T
pp−  

 
3. CONVERGENCE ANALYSIS 
 
   In this section we show that the potential function can be reduced by a fixed constant at each iteration, 
as long as a certain assumption holds, which follows if the feasible region is compact. This then yields the 
standard convergence results. We give an example showing that such a potential reduction may not be 
achievable if the feasible region is unbounded, and provide a simple remedy. To show this potential 
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reduction, we must have updated the lower bound z on v(P) suitably. Such bounds come from linear 
programming duality. The dual of (P) is 
 
     (D)  maximize    bTy  

     subject to    ATy + s = c,  s ≥ 0, 

nd if (y,s) is feasible in (D), the corresponding duality gap with respect to x = e is cTe – bTy = eT(c – ATy) = eTs. 

 ≥ c e - e s(ν),  ∆ ≤ e s(ν).                  (13) 
 

   Observe that, if an update is performed so that ∆= eTs(ν), then ν = 

 
 
 
a
Note that for any vector v ∈ Rn, Pv differs from v by a vector in the row space of A; we write yv for a vector 
in Rm with Pv = v – ATyv. We may assume that in calculating cp and ep, we also have yc and ye. Now 
observe that for any ν, (y(ν) := yc – νye, s(ν) := cp + ν(e – ep)) is feasible in the equality constraint of (D), 
and if s(ν) is nonnegative, the corresponding duality gap is eTs(ν) = eTcp + ν||e – ep||2. Hence, if there is 
any ν such that s(ν) is nonnegative, we choose the smallest such ν and then update z if necessary so that 

 
T T Tz

,
een
ec

p
T
p

p
T
p

−

−∆
and this is the coefficient of 

ep in (10). 

 From (9), we have  

             

 
  
 

 ,ePe
ee

Pe
Pd̂ pp2

p

T
p ρ−φ∇−=
−

φ∇
−φ∇−=              (14) 

 
here ∇φ is shorthand for ∇x φn(e, z) and  

             

w
 

 
2

p

T
p

2
p

T

2
p

T
p

ee

e

ee

Pe

ee

Pe
:

−

φ∇
=

−

φ∇
=

−

φ∇
=ρ              (15) 

 
 In this section, φn is always defined using (3) rather than (1). The difference is significant since 

              

  
sometimes ∇φ appears without the projection P, and then the result depends on which definition is used. 
We find it very convenient to consider also the direction 
 
 d :=   + ρe 

          = -P∇φ + ρ(e – ep)                             (16) 

d̂
 
 
           

pcn
− + e  +            = 

∆
p p

 

ρ(e – e ). 

 One reason this direction is important is that we can show  

emma 2

  
 
L . ,ed </ so that d  ≥ 1. 

roof. Suppose not, so that e - 
 
P d  > 0. Note that 

  

 

    )ee)(1(
n

c)de(
n pp −ρ−

∆
+=−

∆                 (17) 

 

ν) above, and the corresponding duality gap is eTs(ν) = which is of the form s( )de(e
n

T −
∆

− . Now 
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     2
p

T

p
TTT

ee

Pe)ee(ePede
−

φ∇
++φ∇−= = 0 .                (18) 

 

   Thus the duality gap is .ee
n

T ∆=
∆  But since s(ν) is strictly positive, we can find a feasible dual slack 

with a smaller ν, and this would give a smaller duality gap than ∆, contradicting (13). � 
 
   Note that Lemma 2 (with deT  = 0) also shows that d  is nonzero. ˆ
 
   Since eT∇φ = eT((n/∆)(c -zg) – e) = 0, we can alternatively write using (15) and (16) 
 

      = d̂ ,P:
ee

)ee)(ee(
P Q2

p

T
pp φ∇−=φ∇

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−−
+−               (19) 

 
where the last equation defines the matrix PQ. It is easy to check that PQ is a projection matrix; indeed,  
as shown in Lemma 2.2 of Gonzaga (1991a), PQ is the matrix projecting onto Q := {x ∈ Rn: Ax = σb for 
some σ}. 
  
   Now we use the following standard lemma, due to Karmarkar; for a proof, see for example Ye (1991). 
 
Lemma 3. If eTd = 0 and α||d|| < 1 , then  
 

     φn(e + αd, z) ≤ φn(e, z) + α∇φTd + .
)d1(2

d 22

α−

α
                   (20) 

 

   If we apply this lemma with d = d  and α =
d2

1  we arrive at: 

 

Proposition 1. If  α = ,
d2

1  then e + dα > 0 and 

 

φn (e + )z,dα ≤ φn(e,z) - .
4
1                          (21) 

 
Proof: Note that 
 

dTφ∇ = - ∇φTPQ∇φ = - ||PQ∇φ||2  = -|| d ||2, 
 

using (19) and the fact that PQ is a projection matrix. Thus α ∇φT d  = - ,
2
1

2

d
−≤ using Lemma 2. Also, 

our choice of α  ensures that 
)d1(2

d
22

α−

α
= ,

4
1  from which the result follows using (20).         � 

 
   How can we use Proposition 1, when the point e + dα is not feasible in (P)? We use the fact that the 
two directions d  and d  are equivalent in the sense of Gonzaga (1989), so that line searches in these 
directions in some sense give equivalent points. Indeed, using the homogeneity of φ

ˆ

n we obtain: 
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)z,de(n α+φ = )z),ed̂(e(n ρ+α+φ  

)z),d̂
1

e)(1(n αρ+
α

+αρ+φ               =              (22) 

          = )z,d̂
1n e(

αρ+
α

+φ  

 
s long as 1 + αρ > 0 (note that there is a slight mistake in Lemma 2.6 of Gonzaga (1991a) on the potential 

heorem 3. Provided we have 
      σ:= 

a
reduction achievable in two equivalent directions: the condition that x + αh > 0 should be x + αh ∈ C. This is 
related to the condition 1 + αρ > 0 needed above.) 
 
T
     

,0d̂ >/
)1/( ρα+α > 0,                             (23) 

here 
 
w α  is as in Proposition 1 and ρ is defined in (15), and  

       φ (e +

 

 n .
4
1)z,e()z,d̂ n −φ≤σ                                         (24) 

 Moreover, the hypothesis holds if either the feasible region of (P) is compact or there is a nonnegative 

roof: From the definition of 

 
  
nonzero vector in the row space of A. 
  

 we see that 
 

e +

P ,α

dα  = (1 + αρ)e +
 

 positive for all 0 < α ≤ Hence if  1 + αρ equalled zero for any such α, we could deduce  > 0, 

d̂α  

is
contrary to hypothesis. It follows that 1 + 

 .α̂ d̂
ρα  > 0, and hence σ is (well-defined and) positive as desired. 

Then (24) is implied by Proposition 1 and (2 . 
 

2)

 For the last part, note that  lies in the null space of A, and is therefore orthogonal to its row space. 

is

 We now provide an example to show that if the hypothesis fails, then a step in the direction  may not 

xample 1. Let A = [1,10,-10], b = 1, and c = (0, 2, 1) . Then x = e is feasible, and we can take g = AT.  

  
Thus we cannot have d̂  > 0 if either the feasible region of (P) is compact ( d̂  would be a direction of 
recession) or there is a nonnegative nonzero vector in this row space (since th  cannot be orthogonal to 
a positive vector).� 
 

d̂

  
be able to provide a decrease of 1/4 in the potential function. 
 

T

d̂

E
We then find 
 

.
10
10
1

201
1eeand,

211
191
200

201
1e,

301
302
10

201
1c ppp

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−
=  

 
 The optimal value of this problem is 0, corresponding to x = (1,0,0)T, and the lower bound updating technique 

p p p p

  
described at the beginning of this section will increase any negative lower bound to 0 (the smallest ν making 

s(ν) := c + ν(e – e )) nonnegative is 10, and then eTs(ν) = eTc  + ν||e – e ||2 = 
201
110593

+ = 3,  while the 

current obje tive value is c
201

c  = 1 and Te = 3). Thus c - zg = c, and ∆ = 3 - 0 = 3, so n/∆
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   We then find ρ = 2
p

T
p

ee

Pe

−

φ∇
= -9, so = - P∇φ -ρed̂ p = (10,8,9)T. The corresponding direction 

d = + ρe = (1, -1, 0)d̂ T. We would like to move a stepsize α =
d2

1  = 
4
2  in the direction .d  However, 

every point on the ray from e in the direction  is a positive multiple of a point of the form e +d̂ ,dα  with  

α < 1/9. Indeed, an “infinite'' stepsize leads to the point at infinity in the direction of , which corresponds 

to (is a positive multiple of) the point e + 

d̂

d
9
1 = (10/9, 8/9, 1)T. The potential function φn(.,0) is decreasing 

all along this ray, converging to a value of  = 3.0774 from its original value φ)0,d̂(nφ n(e, 0) = 3.296,  
a reduction of only about .22. � 

  
   As we noted in the introduction, there are two ways to circumvent the problems illustrated by the example 
above. One is to require that the search direction be monotone with respect to the objective function, as 

suggested by Gonzaga (1989). In the example above, this leads to the direction 
593

1 (930,-31,62)T, and  

the potential function can be decreased by 2.81 by searching in this direction. However, the proof that the 
potential function can be reduced is more complicated than that above. 

  
   The other remedy is to use the last part of Theorem 3, and ensure that some nonnegative nonzero vector 
lies in the row space of A. The simplest way to do this is to introduce a dummy variable, so that (P) becomes  

      (P')  minimize  cTx + 0 ξ 

subject to   Ax + 0 ξ= b,  

0Tx + 1ξ = 1,  

x ≥ 0, ξ ≥ 0, 
 
and the final equality constraint provides the desired nonnegative nonzero vector in the row space of the 
augmented A. This reformulation is equivalent to converting the given standard-form linear programming 
problem into homogeneous form using an extra variable, as discussed by Anstreicher (1986), de Ghellinck 
and Vial (1986), Gay (1987), Jensen and Steger (1985), and Ye and Kojima (1987); see Todd (1991).  
 
   If we modify our example thus, then cp and ep just have a zero component appended. The lower 
bounding technique can only guarantee a duality gap of at most 13 in this case, but for simplicity let us 
suppose that we have z = -1, so that ∆ = 3 - (-1) = 4 = n. Then P∇φ also just has a zero component 

appended. However, now it turns out that ρ = -9/202 and then  becomes d̂
202

1 (220, -103, -81)T. A line search 

in this direction can decrease the potential function by 3.16. 
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