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ABSTRACT
In classical EOQ model, it is assumed that the quantity requisitioned is same as the quantity ordered, 
payment of the goods is made as soon as it is received by the system and units in inventory are not 
subject to deterioration. In the present article, an attempt is made to develop an inventory model when 
retailer announces delay in payments, units in inventory are subject to constant rate of deterioration 
under  random  input.  A  developed  model  is  supported  by  a  hypothetical  numerical  to  study 
interdependence of parameters on the decision variables and objective function.
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RESUMEN 
En el modelo clásico EOQ, es supuesto que la cantidad requisada es la misma que la cantidad pedida, 
el pago de las mercancias es hecho en cuanto se reciba por el sistema y las unidades en el inventario 
no están sujetas a deterioración. En el artículo presente, se trata de desarrollar un modelo de inventario 
que cuando el minorista anuncia el retraso en los pagos, las unidades en el inventario están sujetas a 
una proporción constante de deterioro bajo entradas aleatorias azar. Un modelo es desarrollado y este 
se apoya en un estudio numérico hipotético para estudiar la interdependencia de parámetros en las 
variables de decisión y en la función del objetivo. 

1. INTRODUCTION  

In the classical EOQ model, it is implicitly assumed that the quantity received matches with the quantity 
requisitioned and there is no damage or deterioration of the units while in inventory and also that the supplier 
must be paid for the goods procured as soon as they are received by the inventory system. However, in 
practice, it happens that the quantity received may be different from the quantity ordered. Also it is normal 
practice  in business  that  the supplier  allows certain  fixed credit  period for  settling  the accounts  and no 
interest charges are payable if the account is settled within the prescribed period.

Silver  (1976) has developed an EOQ model  when the quantity  received is uncertain and is a random 
variable  with  specified  mean and variance.  Kalro  and  Gohil  (1982)  have  extended the  above model  by 
allowing  shortages.  Noori  and  Keller  (1986)  developed  a  stochastic  model  when  quantity  received  is 
uncertain. Ghare and Schrader (1963) developed an EOQ model for exponentially decaying inventories. This 
model  has  been  generalized  by  Covert  and  Philip  (1973)  and  the  by  Philip  (1974)  by  using  weibull 
distribution to describe time to deterioration of an inventory. Goyal (1985) has developed an EOQ model 
when supplier allows fixed credit period for settling the accounts. Mandal and Phaujdar (1989) generalized 
the work of Goyal (1985) by taking into consideration a variety of realistic situations.

In this article, we analyze an EOQ model for deteriorating items when the supply is random and supplier 
allows a certain fixed credit  period for settling the accounts. During the time account is not settled,  it is 
assumed that the cost of unit sold is deposited in an interest bearing accounts and the profit margin is used 
to meet the further operational expenses of the system.

2. ASSUMPTIONS AND NOTATIONS

  • The demand rate of R units per time unit is known and constant.

  • Shortages are not allowed. Lead time is zero.
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• The replenishment rate is infinite. The replenishment size Q is the decision variable. The order size is  
    Q - units per order, however, the actual quantity received (say) Y is a normal decision variable with

E(Y) = bQ

      V(Y) = σ0
2 + σ1

2Q2               (1)

where b ≥ 0 is the bias factor, σ0
2 and  σ1

2 are the positive known constants.

• At time t of a cycle, the constant fraction θ (0 ≤ θ ≤ 1) of the on hand inventory deteriorates per unit of time.

• There is no repair or replacement of the deteriorated inventory during the period under consideration.

• Supplier gives a specified credit period of M - time units to settle the accounts.

• The unit cost C does not depend upon the quantity ordered or received.                                               

The other notations are as follows :

• h denotes the unit holding cost exclusive of interest charges.

• Ic denotes the interest charges per rupee investment per time unit.

• Ie denotes the interest earned per rupee investment per time unit.

• A denoted the ordering cost.

• AEC(Q) denotes the average expected cost per unit per time when Q is the quantity requisitioned.

3. MATHEMATICAL MODEL

Let T(Y) denotes the cycle time and Q(t/Y) denotes the on hand inventory of the system at any instant of 
time t of a cycle. Then the differential equation that describes the instantaneous states of Q(t/Y) is given by

(2)                                                  T(Y)  t  0 R, - = Q(t/Y) 
dt

dQ(t/Y) ≤≤+

T(Y) is a function of random variable Y. Noting that Q(0 / Y) = Y, the solution of (2) is
                         

        T(Y)  t  0 ),e(1
R

YeQ(t/Y) tt ≤≤−−= −− (3)

Since, 

        Q(T / Y) = 0, we get 




 +=

R
Y

1log
1

T(Y) (4)

Now, the total number of units carried into the inventory during the cycle time is

RT(Y)-Y
 = Y)dt /Q(t  (Y)I

T(Y)

0

1 ∫= (5)

and the number of units that deteriorate during the cycle time is

        D(Y)  = Y - RT(Y)     (6)
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For obtaining the total expected cost per time unit we assume that θ and M2 are very small as compared to 
other quantities, we use series form of expansions and retain the terms up to θ and M2 only. We analyze one 
cycle. Two cases may arise.

Case 1: Y ≥ RM i.e in this case account is to be settled before the end of the cycle.

Interest earned =  
2

RMCI 2
e (7)

Interest charged = ))Me())Y(Te(
2

RCI
)ee(

YCI M)Y(Tc)Y(TMc θ+−θ+−−
θ

θ−θ−θ−θ− (8)

The total cost of the system is given by

K1(Y/Q)= A
2

RM)II(C
2

MYCI)2M(

R3

Y)CIh(
R2

Y)CCIh( 2
ecc

2

3
c

2
c +−+−θ++θ−θ++

(9)

The expected total cost of the system during the random cycle time is

E(K1(Y/Q)) = +
σ+σ++θ

−
+σ+σθ++

 
R3

)Q(bQ3Qb)(CIh(

R2

)Q)b()(CCIh(
2

22
1

2
0

33
c

222
1

2
0c

              A
2

RM)II(C

2

MbQCI)2M( 2
ecc +

−
+

−θ
+            (10)

Following Silver (1976), the average expected cost of the system per time unit  is

AEC(Q1) = E(K1(Y/Q1)) / E(T(Y))            (11)

AEC(Q1) =      
R3

)Q(bQ3Qb)(CIh(

R2

)Q)b()(CCIh(
2

2
1

2
1

2
01

3
1

3
c

2
1

22
1

2
0c







+
σ+σ++θ

−
+σ+σθ++

         










 +σ+σθ







+
−

+
−θ

+
2

1
2

2
1

22
1

2
0

1

2
ec1c

Q2b

)Q)b(((
+

bQ
R

* A
2

RM)II(C

2

MbQCI)2M(
                  (12)

For optimum value of Q1, equating partial derivative of AEC(Q1) to zero, we get,

413
3
12

4
11 EQEQEQE +++ = 0                          (13)

where

E1 = θ(h + Cic) [4b2 (b2 + )3 2
1σ - 2

1(3 σ + b2)]

E2 = 3bR 2
1(σ + b2) [θ CIcM - (h + CIc + θ C)]

E3 = 3bR[(h + CIc + θ C) 2
0σ  - θ CIcMσ0

2 + C(Ic - Ie)R2M2 + 2AR]

E4 = 3θ σ0
2[(h + CIc) 2

0σ  + C(Ic - Ie)R + 2AR]            (14)

For obtaining optimum value of Q1, solve the above equation (14) by any suitable numerical method. For 
solving (14) by Newton - Raphson method, we can take the initial iterate of Q1 = Q10 given by
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2/1

22
1c

22
ec

2
0c

10
)b)(CIh(

MR)II(CAR2)CIh(
Q













+σ+
−++σ+

=             (15)

Case 1.1: Keeping variance fixed i.e. σ1 = 0 and σ0 ≥ 0.

The above equation (15) becomes

               
b)CIh(

MR)II(CAR2)CIh(
Q

2/1

2
c

22
ec

2
0c

10












+
−++σ+

=                (16)

Then the average expected cost AEC(Q1 = Q10) is

        






+
σ++θ

−
+σθ++

2

2
0

3
1

3
c

2
1

22
0c

R3

)bQ3Qb)(CIh(

R2

)Qb)(CCIh(
                       (17)

        










 +σθ







+
−

+
−θ

+
2
1

2

2
1

22
0

1

2
ec1c

Q2b

)Qb((
+

bQ
R

*A
2

RM)II(C

2

MbQCI)2M(

For obtaining optimum value of Q1, we have to solve the equation (14) whose constants are given by

E1 = 4θ (h + Cic) b4

E2 = 3R b3 [θ CIcM - (h + CIc + θC)]

E3 = 3bR [(h + CIc + θC) σ0
2 - θCIcMσ0

2 + C(Ic - Ie)R2M2 + 2AR]

E4 = 3θ σ0
2  [(h + CIc)σ0

2 + C(Ic - Ie)R + 2AR ]            (18)

Case 1.2: The variance is proportional to the ordered quantity, i.e. i.e. σ0 = 0 and σ1 > 0. The above equation 
(15) becomes

          
)b)(CIh(

MR)II(CAR2
Q

2/1

22
1c

22
ec

10












+σ+
−+

=            (19)

and the average expected total cost is given by

AEC(Q1) =                                     
R3

)Qb3Qb)(CIh(

R2

Q)b)(CCIh(
2

3
1

2
1

3
1

3
c

2
1

22
1c +





 σ++θ

−
+σθ++

              
Q2b

Q)b(
+

bQ
R

{ * }A
2

RM)II(C

2

MbQCI)2M(
2
1

2

2
1

22
1

1

2
ec1c





+σθ

+
−

+
−θ

+            (20)

For optimum value of Q1, we solve the equation,

E1
3
1Q  + E2

2
1Q + E3 = 0            (21)

where
E1 = θ(h + CIc) [4b2 (b2 + )3 2

1σ - 2
1(3 σ + b2)]

E2 = 3bR 2
1(σ + b2)[θ CIcM - (h + CIc + θC) ]

E3 = 3bR[C)Ic –Ie)R2M2 + 2AR]                                     (22)
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Case 2: Y < RM, in this case, no interest charges are payable for the items kept in inventory and the interest 
earned is

          
2

3
e

2
e

e
R2

YCI

R2

Y)M1(CI
MYCI

θ
+

θ+
−            (23)

The total cost of the system during the random cycle is

             AMYCI
R6

Y)CI3h2(

R2

Y)CCI)M1(h(
)Q/Y(K e2

3
e

2
e

2 +−
+θ

−
θ+θ++

=             (24)

The expected cost of the system in this case is

 AMbQCI
R6

)Q(bQ3Qb)(CI3h2(
 

R2

)Q)b()(CCI)M1(h(
))Q/Y(K(E e2

22
1

2
0

33
e

222
1

2
0e

2 +−
σ+σ++θ

−
+σ+σθ+θ++

=

(25)

Following Silver (1976), the average expected cost of the system per time unit is





 +σ+σθ+θ++

=
R2

)Q)b()(CCI)M1(h(
)Q(AEC

2
2

22
1

2
0e

2

                  AMbQCI
R6

)Q(bQ3Qb)(CI3h2(
2e2

2
2

2
1

2
02

3
2

3
e







+−σ+σ++θ− *










 +σ+σθ

+
2
2

2

2
2

22
1

2
0

2 Qb2

)Q)b((

bQ
R

        (26)

For optimum value of Q2, equating partial derivative of AEC(Q2) to zero, we get,

            4
21QE + 3

22QE + E3Q2 + E4 = 0            (27)

where

E1 = θ [2b2(2h + 3CIe) (b2 + )3 2
1σ  - 3(h + CIe) 2

1(σ + b2)2]

E2 = - 3bR 2
1(σ  + b2) (h + CIe + θ C)

E3 = 3bR  [(h + θ C + CIe) 2
0σ + 2AR]

E4 = 3θ 2
0σ [(h + CIe) 2

0σ  +  2AR]                        (28)

For obtaining optimum value of Q2, solve the above equation (27) by any suitable numerical method. For 
solving (27) by Newton - Raphson method, we can take the initial iterate of Q20 given by

       

2/1

22
1e

2
0e

20
)b)(CIh(

AR2)CIh(
Q













+σ+
+σ+

=           (29)

Case 2.1: Keeping variance fixed i.e. σ1 = 0 and σ0 ≥ 0.

The above equation (29) becomes

   
b)CIh(

AR2)CIh(
Q

2/1

2
e

2
0e

20












+
+σ+=           (30)

and the average expected total cost of the system is
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



 +σθ+θ++==

R2
)Qb)(CCI)M1(h(

)QQ(AEC
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0e

202

  *  AMbQCI
R6

)bQ3Qb)(CI3h2(
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02

3
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







 +σθ+              (31)

For optimum value of Q2, we have to solve equation (27) whose constants are given by

E1 = θ[2b4(2h + 3Cie) - 3(h+CIe)b4]

E2 = - 3R b3(h + CIe + θC)

E3 = 3bR[(h + θC + CIe) 2
0σ + 2AR]

E4 = 3θσ0
2[(h + CIe) 2

0σ  + 2AR ]              (32)

Case 2.2: The variance is proportional to the ordered quantity, i.e. i.e. σ0 = 0 and σ1 > 0. The above equation 
(29) becomes

           

2/1

22
1e

20
)b)(CIh(

AR2
Q













+σ+
=          (33) 

and average expected total cost of the system per time unit is





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==
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2
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                             (34)

and the optimum value of Q2 = Q20 is the solution of  

3
21QE + 2

22QE + E3 = 0            (35)

where

E1 = θ[2b2(2h + 3CIe) (b2 + )3 2
1σ - 3(h+CIe) 2

1(σ  + b2)2]

E2 = - 3bR 2
1(σ  + b2)(h + CIe + θC)

E3 = 6bR2A             (36)

4. NUMERICAL ILLUSTRATION

Consider an inventory system with following parameters (in proper units):

[R, h, C, Ic, Ie, A] = [1000, 2, 20, 0.20, 0.12, 250]

162



Table 1. Variations in Q and AEC with changes in 2
1

2
0 and

b = 0.75, M = 0.083, θ = 0.01

2
0

2
1 \ 5.00 10.00 15.00

0.10
Q

AEC

353.40

1928.07

353.44

1928.13

353.45

1928.19

0.15
Q

AEC

340.84

1999.58

340.85

1999.64

340.86

1999.70

0.20
Q

AEC

329.50

2068.64

329.51

2068.70

329.52

2068.77

Table 2. Variations in Q and AEC with changes in 2
1

2
0 and

b = 0.75, M = 0.083, θ = 0.02

2
0

2
1 \ 5.00 10.00 15.00

0.10
Q

AEC

348.49

1955.37

348.40

1955.43

348.52

1955.50

0.15
Q

AEC

336.11

2027.97

336.12

2028.03

336.14

2028.10

0.20
Q

AEC

324.96

2098.11

324.97

2098.17

324.98

2098.29

Table 3. Variations in Q and AEC with changes in 2
1

2
0 and

b = 0.75, M = 0.083, θ = 0.03

2
0

2
1 \ 5.00 10.00 15.00

0.10
Q

AEC

343.74

1982.30

343.75

1982.36

343.76

1982.43

0.15
Q

AEC

331.56

2055. 98

331.57

2056.05

331.58

2056.11

0.20
Q

AEC

320.60

2127.32

320.59

2127.25

320.58

2127.18

Table 4. Variations in Q and AEC with changes in 2
0 and M

b = 0.75, 2
1σ = 0.20, θ = 0.01

2
0\M 5.00 10.00 15.00

0.0417
Q

AEC

326.83

2053.51

326.84

2053.58

326.85

2053.64

0.0833
Q

AEC

329.53

2068.79

329.54

2068.85

329.55

2068.92

0.1250
Q

AEC

333.99

2095.10

334.00

2095.16

334.01

2095.22
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Table 5 .Variations in Q and AEC with changes in 2
0 and M

b = 0.75, 2
1σ = 0.20, θ = 0.02

2
0\M 5.00 10.00 15.00

0.0417
Q

AEC

322.31

2084.37

322.32

2084.44

322.33

2084.51

0.0833
Q

AEC

324.98

2098.25

324.99

2098.31

325.01

2098.38

0.1250
Q

AEC

329.39

2123.33

329.40

2123.39

329.41

2123.45

Table 6. Variations in Q and AEC with changes in Mand2
0

b = 0.75, 2
1σ = 0.20, θ = 0.03

2
0\M 5.00 10.00 15.00

0.0417
Q

AEC

317.96

2114.84

317.97

2114.91

317.98

2114.98

0.0833
Q

AEC

320.60

2127.31

320.61

2127.38

320.62

2127.45

0.1250
Q

AEC

324.96

2151.15

324.97

2151.22

324.98

2151.29

Table 7. Variations in Q and AEC with changes in band2
0 σ0

2

2
1σ = 0.20, M = 0.083, θ = 0.01

b\2
0 0.75 0.80 0.85

5.00
Q

AEC

329.53

2068.79

313.95

2035.62

299.57

2007. 73

10.00
Q

AEC

329.54

2068.85

313.96

2035.69

299.58

2007.79

15.00
Q

AEC

329.55

2068.91

313.97

2035.75

299.59

2007.85

Table 8. Variations in Q and AEC with changes in 2
0σ  and  b

2
1σ = 0.20, M = 0.083, θ = 0.02

b\2
0 0.75 0.80 0.85

5.00
Q

AEC

324.98

2098.25

309.61

2064.56

295.42

2036.23

10.00
Q

AEC

324.99

2098.31

309.61

2064.56

295.42

2036.30

15.00
Q

AEC

325.00

2098.38

309.63

2064.69

295.44

2036.36
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Table 9. Variations in Q and AEC with changes in 2
0σ and b

2
1σ  = 0.20, M = 0.083, θ = 0.03

b\2
0 0.75 0.80 0.85

5.00
Q

AEC

320.60

2127.31

305.42

2093.11

291.42

2064.35

10.00
Q

AEC

320.61

2127.38

305.43

2093.18

291.43

2064.42

15.00
Q

AEC

320.62

2127.45

305.44

2093.25

291.44

2064.49

Table 10. Variations in Q and AEC with changes in 2
0σ and  b

2
1σ = 0.20, M = 0.0417, θ = 0.01

b\2
0 0.75 0.80 0.85

5.00
Q

AEC

326.83

2053.51

311.37

2020.62

297.11

1992.95

10.00
Q

AEC

326.84

2053.58

311.38

2020.68

297.12

1993.01

15.00
Q

AEC

326.85

2053.67

311.39

2020.75

297.13

1993.07

Table 11. Variations in Q and AEC with changes in 2
0σ and b

2
1σ = 0.20, M = 0.083, θ = 0.01

b\2
0 0.75 0.80 0.85

5.00
Q

AEC

329.53

2068.79

313.95

2035.62

299.57

2007.73

10.00
Q

AEC

329.54

2068.85

313.96

2035.69

299.57

2007.79

15.00
Q

AEC

329.55

2068.64

313.98

2035.75

299.58

2007.85

Table 12. Variations in Q and AEC with changes in 2
0σ  and  b

2
1σ = 0.20, M = 0.125, θ = 0.01

b\2
0

0.75 0.80 0.85

5.00 Q

AEC

333.99

2095.10

318.20

2061.48

303.62

2033.21

10.00 Q

AEC

334.00

2095.16

318.21

2061.54

303.64

2033.27

15.00 Q

AEC

334.01

2095.22

318.21

2061.61

303.64

2033.33
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Table 13. Variations in Q and AEC with changes in 2
1σ  and  b

2
0σ = 5.00, M = 0.083, θ = 0.01

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

353.46

1928.21

334.43

1910.49

317.20

1895.68

0.15
Q

AEC

340.87

1999.72

323.70

1974.04

308.01

1952.50

0.20
Q

AEC

329.53

2068.79

313.95

2035.62

299.57

2007.73

Table 14. Variations in Q and AEC with changes in 2
1σ and  b

2
0σ = 5.00, M = 0.083, θ = 0.02

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

348.52

1955.50

329.75

1937.52

312.76

1922.49

0.15
Q

AEC

336.14

2028.10

319.21

2002.03

303.72

1980.16

0.20
Q

AEC

324.98

2098.25

309.61

2064.56

295.42

2036.23

Table 15. Variations in Q and AEC with changes in 2
1σ and  b

2
0σ = 5.00, M = 0.083, θ = 0.03

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

343.77

1982.42

325.24

1964.17

308.47

1948.92

0.15
Q

AEC

331.59

2056.10

314.87

2029.64

291.42

2007.44

0.20
Q

AEC

320.61

2127.31

305.43

2093.11

291.42

2064.36

Table 16. Variations in Q and AEC with changes in 2
1σ and  b

2
0σ = 5.00, M = 0.0417, θ = 0.01

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

350.56

1914.08

331.69

1896.51

314.60

1881.82

0.15
Q

AEC

338.07

1985.01

321.05

1959.54

305.49

1938.18

0.20
Q

AEC

326.83

2053.51

311.37

2020.62

297.12

1992.95
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Table 17. Variations in Q and AEC with changes in 2
1σ and  b

2
0σ = 5.00, M = 0.083, θ = 0.02

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

353.46

1928.21

334.43

1910.49

317.20

1895.68

0.15
Q

AEC

340.85

1999.72

323.70

1974.04

308.01

1952.50

0.20
Q

AEC

329.53

2068.79

313.95

2035.62

299.57

2007.73

Table 18. Variations in Q and AEC with changes in 2
1σ and  b

2
0σ = 5.00, M = 0.083, θ = 0.03

b\2
1 0.75 0.80 0.85

0.10
Q

AEC

358.24

1952.62

338.95

1934.66

321.49

1919.66

0.15
Q

AEC

345.48

2025.10

328.08

1999.07

312.18

1977.24

0.20
Q

AEC

333.99

2095.10

318.20

2061.48

303.62

2033.21

5. INTERPRETATIONS 

•   In Tables 1 - 3, we study the effects of 2
0σ and 2

1σ keeping b constant and varying deterioration rate θ of 

the  units  in  inventory.  It  is  found  that  as 2
0σ increases,  the  optimum purchase  quantity  and  average 

expected  total  cost  of  the  system  increases  whereas  increase  in 2
1σ results  decrease  in  optimum 

procurement  quantity  and  increase  average  expected  total  cost  of  the  system.  With  increase  in 
deterioration of units, optimum purchase quantity decreases and cost of an inventory system increases.

• In Tables 4 - 6, the effects of variations in  2
0σ  and delay period M have been studied keeping  2

1σ  and b 

constant and varying deterioration rate of the units in inventory. Increase in 2
0σ results increase in both, 

optimum purchase quantity and total expected cost. Same pattern is observed when delay in payment 
period increases.

• In Tables 7 - 8, the effects of b and σ0
2 when σ1

2 and delay period are fixed and deterioration rate of units 
increases. It  is  found that  increase in b results  decrease in optimum procurement  quantity  and total 
expected cost of an inventory system. As σ0

2 increases, optimum purchase quantity and total expected 
cost increases. While as  deterioration rate increases, number of units to be procured decrease and total 
cost of the system increases. When delay period increases, there is increase in procurement units and 
expected total cost.

• The effects of variations in deterioration, b and σ1
2 have been studied on optimum purchase quantity 

and total expected cost in tables 13 - 15. It is observed that increase in b results decrease in optimum 
purchase units and total expected cost, whereas increase in  2

1σ results decrease in purchase quantity 
and increase in total  expected cost.  Also,  when deterioration of units  in inventory increase optimum 
procurement quantity decreases and total expected cost increases.
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• In Tables  16 -  18,  we study  variations  of  delay  period,  bias  factor  b and  2
1σ have been studied on 

optimum purchase quantity and total expected cost. It is observed that increase in b results decrease in 
optimum purchase units and total expected cost, whereas increase in 2

1σ results decrease in purchase 
quantity and increase in total expected cost. When delay period increases, optimum purchase quantity 
and total expected cost of an inventory system increases.
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