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ABSTRACT 
The purpose of this paper is to initiate a statistical analysis of the Apportionment index, a measure used 
in the context of forest harvesting to evaluate the fit between demand and supply distribution of logs. 
There have been some attempts to understand this index, but a serious theoretical foundation is still 
lacking. We briefly review the available literature and then proceed to investigate the properties of the 
index from a distributional point of view. This is mainly an exploratory article and we focus only on the 
cases of two and three log classes, i.e., locations. In the case of two locations we use the beta 
distribution for the random relative output variables; with three locations the random relative outputs are 
assumed to follow a singular  Dirichlet distribution. Using this formulation it is possible to understand the 
statistical properties of the apportionment index. 
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RESUMEN 
El propósito de este trabajo es comenzar el análisis estadístico del índice del prorrateo, esta es una 
medida usada en el contexto de la tala en bosque para evaluar el ajuste entre la demanda y distribución 
del suministro de leña. Ha habido algunos esfuerzos por entender este índice, pero se necesita una 
base teórica seria. Discutimos brevemente la literatura existente y procedemos a investigar las 
propiedades del índice desde un punto de vista distribucional. Éste es fundamentalmente un artículo 
exploratorio y sólo enfocamos los casos de dos y tres clases de leña, es decir, locaciones. En el caso 
de dos clases usamos la distribución beta para las variables aleatorias relativas a la salida (output) del 
rendimiento; en tres locaciones al azar se asume que los rendimientos relativos siguen la distribución 
de Dirichlet singular. Usando esta formulación es posible entender las propiedades estadísticas del 
índice del prorrateo.  
 
MSC: 62P12. 

 
1. INTRODUCTION 
 
 Modern sawmills attempt to develop their production strategies based on customer demands in terms of the 
distribution of logs of various diameter - length specifications. The quality of the actual harvesting operation 
has mainly been measured by calculating the relationship between the demand log distribution and the actual 
production distribution. A very commonly adopted practice in Scandinavia is to measure the bucking outcome 
by the so-called apportionment degree, or apportionment index (AI). This measure was developed by the 
Swedish mathematician Bergstrand in the mid 1980s, when the first steps were taken in developing automatic 
bucking systems for forest harvesters. The main idea is to compare the relative proportions of the demand 
and target distributions (e.g. Bergstrand 1990). While there have been attempts to understand this index 
(Kivinen et al. 2003 and Nummi et al. 2004), a serious theoretical foundation is still lacking. Several 
extensions of this measure are proposed in Kirkkala et al. (2000) and Malinen & Palander (2004).  
 
 Our interest here is in the statistical analysis of the apportionment index AI. This kind of analysis may have 
many potential applications in harvesting. For example, in harvesting planning we may have many possible 
output distributions (stands) and we should be able to select the optimal one for a given target. Further, we 
may have many possible targets and we wish to know which is optimal for a given output. A proper 
understanding of the statistical properties of this measure is thus of great importance.  
 
 In Section 2 we initiate a statistical study of the AI based on the joint distribution of the random component 
outputs in the output matrix. In section 2.1 we take the analysis of the two log classes as a starting-point. in 
Section 2.2 we extend the analysis to the case of three locations and finally in section 3 some observations 
are made on the future course of action.  
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 Before closing the section, we record the general definition of AI. Suppose X refers to the proportional 
output distribution and θ refers to the proportional demand distribution. Then the AI is defined as  
 

      AI = 1 -  ∑∑ θ
i j

ijij | - X|
2
1 .                                          (1) 

 
 After some simple manipulations we can show that AI can also be written as 
 

   AI = ∑∑
i j

min {Xij . θij}.             (2) 

 

since and min(a, b) = 1X
i j

ij
i j

ij ∑∑∑∑ =θ=
2

|ba|
2

ba −
−

+  for two real numbers a and b. 

 
2. JOINT DISTRIBUTION OF RANDOM OUTPUTS AND STATISTICAL ANALYSIS OF AI 
 
2.1. The case of two locations 
 
 Let us assume for simplicity that there are only two locations, labeled “L1" and “L2", and their relative  
(i.e., proportional) demands are θ and 1 - θ, respectively. Let the relative random output generated at location 
L1 be denoted by X so that in location L2 the output generated is 1 - X. By the definition the AI is given by the 
formula (1) and in the case of two locations it can be written as  
 
       AI = 1 - | X - θ |.                 (3) 
 
 Because AI is now a random quantity we may look at the expected value of the AI given by the formula 
 
            E(AI) = 1 – E [ | X - θ | ] .                (4) 
 
 At this stage we note that the relative random output X in L1 is a random variable defined over [0,1] and this 
explains the random nature of AI in (3). Our purpose is to maximize AI in some sense, since this will suggest 
maximum apportionment. By reason of the stochastic nature of AI, one possibility would be to attain a heavy 
right tail distribution for AI so that it will tend to be probabilistically large. In this paper, we use the notion of 
maximization in the averaged sense, i.e., we aim at maximizing the expectation of AI in (4). This is equivalent 
to minimizing E[|X-θ|]. Since the mean deviation is least when it is taken about the median, our goal is to 
recommend a distribution for X for which the median is the known target value of θ, say θ0. Since X is 
distributed over [0,1], it is natural to express its distribution as a member of the family of beta distributions 
(B(x;α,β)) introduced below by the density in (5). 
 
             f(x; α, β) = xα-1(1 - x)β-1 / B(α, β); 0 < x < 1,                                             (5) 
 
where B(α, β) is the beta integral defined for α > 0, β > 0. On this see e.g. Johnson et al. (1995), 2nd Edition, 
pp. 210-211; Kotz and Johnson (1982), Vol.1, pp. 228-229. We may thus seek to use the beta distribution for 
X with proper choice of the parameters α and β, determined by the condition that θ0 serves as the median of 
the X distribution. In effect, we seek a solution for α and β, so as to satisfy  
 

       0.5 = .                             (6) dx),;x(f
0

0
∫
θ

βα

 
 Since equation (6) does not have an unique solution, it is reasonable to introduce the condition 
 
             αβ / [(α + β)2(α + β + 1)] = V0,         (7)
 
since Var(X) = Var(1 - X). In the above, V0 is a pre-specified quantity. From (7), we may readily observe that a 
solution to α exists provided that   
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 However, equation (6) is not easy to solve analytically, even if it is expressed as a function of one unknown 
quantity, say α , in view of the above consideration. In Table 1 we display solutions to α and β satisfying (6) 
for selected values of V0 and θ0. Define  

      ∆(θ; α, β) = E[| X - θ|], X ~ B(x; α, β).           (8) 

 Since 

               ∆(θ; α, β) = ∆(1 - θ; β, α),           (9) 

in Table 1, we present values θ up to 0.5. Moreover, we also display the efficiency ratio Q ×100, where  
Q = 1/E(AI). The smaller the value of Q the better the degree of apportionment will be attained. In Figure 1, 
we display Q × 100 values vs. V0 for selected values of θ0. 
 
 The purpose of Table 1 is to demonstrate the specification of the parameters of the beta distribution for X 
when the target (θ) is specified, and we maximize the AI in an averaged sense for a given value of Var(X). 
Some of the findings are displayed in Figure 1. 
 
 Figure 1 shows that for a specified target value θ0 of θ, Q (reciprocal of averaged AI) increases in V0.  
In other words, if we seek to be liberal (by allowing a larger variation in the X distribution by taking a higher 
value of Var(X)), then we will tend to achieve a poorer apportionment on an average. From the figure we  
can determine the extent of variation to be allowed in the X distribution to meet any specific value of the  
averaged AI. 
 

Table 1. Values of α, β and Q × 100 subject to (6) for a given θ and Var(X). 
 

Var(X) = 0.01 

θ  .051  .111 .151  .211  .251  .311  .351  .411  .451 .511

α .601  1.241  2.161  3.341  4.711  6.211  7.761  9.291  10.731  12.011

β 6.311  8.691  10.771  12.391  13.481  14.051  14.131  13.771  13.041  12.011  

100Q 107.411 108.211 108.511 108.611 108.711 108.711 108.811 108.811 108.811 108.811

Var(X) = 0.05 

θ  .051  .111 .151  .211  .251  .311  .351  .411  .451 1.51

α .271  .411  .561  .741  .941  1.161  1.381  1.601  1.811  2.01

β 1.421  1.711  1.931  2.111  2.231  2.301  2.301  2.251  2.151  2.01

100Q 117.611  119.711  121.011  121.811  122.311  122.711  122.911  123.011  123.111  123.11

Var(X) = 0.10 

θ  .051  .111 .15 1  .211  .251  .311  .351  .411  .451 .511

α .181       .251 .311 .371  .431  .501  .571 .631  .701  .751

β .601 .691  .751 .791 .821 .841 .841 .821  .791 .751

100Q 129.011  132.011 134.011 135.411 136.511 137.311 137.911  138.311 138.511 138.511

Var(X) = 0.20 

θ  .051  .111 .151  .211  .251  .311  .35 1  .411  .451 .511

α    .0731 .084  .092 .099  .101  .111  .111  .121  .121  .131

β   .111 .121 .131 .131 .131 .131 .131 .131 .131 .131

100Q 162.5     166.3   168.8   170.8    172.3      173.4   174.3    174.9     175.2     175.3 
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         Figure 1. Graph showing Q × 100 vs. V0 for some selected values of θ 

                                                              in the case of two locations. 
 
2.2. The case of three locations 
 
 We now pass on to a discussion for three locations with relative demands to be denoted by θ1, θ2 and θ3 
subject to the total being 1. We will also denote the corresponding random relative outputs by the variables 
X1, X2 and X3, respectively. Note that X1, X2 and X3 are non-negative random variables subject to the 
normalizing constraint X1 + X2 + X3 =1. Therefore, as a natural generalization of the beta distribution for two 
locations, we here adopt 3-variate singular Dirichlet distribution to describe the joint distribution of the Xs. We 
take the parameters of the Dirichlet distribution as α1 , α2 and  α3 and denote the distribution by Dir[α1 , α2,  α3] 
and assume (X1,X2) to follow this distribution, unless otherwise stated. For the sake of completeness, we 
display the density underlying Dir[α1 , α2, α3] below. 
 

f(x1, x2; α1 , α2, α3) = (1 - x1
2

1
1

21 xx −α−α
1 - x2 )

α3−1
/ D(α1, α2, α3), 

     
       0 < x1, x2 < x1 + x2 ≤ 1,         (10) 
 
where D(α1, α2, α3) = Γ(α1, α2 ,α3) / Γ(α1)Γ(α2)Γ(α3). Here Γ(α) refers to the standard Gamma integral defined 

for α > 0 as See Johnson & Kotz (1972), pp 231-235; Kotz & Johnson (1982), Vol.2, pp. 386-387.  ∫
∞

−α−

0

1x .dxxe

 
 This time our requirements are fairly stringent so far as attainment of the absolute maximum of the 
expected AI is concerned. In the case of three locations the AI is given by the formula 
 

     AI = 1 -
2
1  [ | X1 - θ1 | + | X2 - θ2 | + | X3 - θ3 | ]           (11) 

 
and the expected AI is  

     E(AI) =  1 -
2
1 [E[|X1 - θ1|] + E[|X2 - θ2 |] + E[|X3 - θ3|]].            (12) 

 172



 Note that now X3 = 1 - X1 - X2 and θ3 = 1 - θ1 - θ2 but for simplicity we remain in the notations X3 and θ3.  
To maximize (12) we need to minimize 
  
               ψ(α) =  E [ | (X1 - θ1)| ] + E [ | (X2 - θ2) | ] + E [ | (X3 - θ3 ) | ]         (13) 
 
 We know that for any individual term above, minimization is achieved by taking the demand parameter θi as 
the median of the corresponding output distribution of Xi. However, it is not possible to attain this feature for 
all three terms simultaneously. To see this, we refer to Statement II in the Appendix.  
 
 Note that in a Dirichlet distribution, each marginal distribution is beta. Hence in order for all the terms to be 
simultaneously minimized to attain the least possible value corresponding to the median in each case, we 
must have 
 

  (i)  where ),t,;(dx),;x(f5.0 11111
0

3211

1

ααθ∆=α+αα= ∫
θ

1

32
1t α

α+α
= ; 

 

 (ii) where ( ) ),t,;(dx,;xf5.0 22222
0

3122

2

ααθ∆=α+αα= ∫
θ

2

31
2t α

α+α
= ; 

 

(iii) where ( ) ),t,;(dx,;xf5.0 33333
0

2133

3

ααθ∆=α+αα= ∫
θ

3

21
3t α

α+α
= . 

  
 Now, appealing to Statement II in the Appendix, we must have 
 
         θ1(α2 +α3) < (1 − θ1)α1; θ2(α1 + α3) < (1 − θ2)α2; θ3(α1 + α2) < (1 − θ3)α3.     (14) 
 

 
 This pre-supposes that each θi  is less than 0.5, which will be assumed throughout.  
 
 Summing over all the conditions and re-writing the inequality, we obtain  
 

(θ1 + θ2 + θ3)(α1 + α2 + α3) < (α1 + α2 + α3), 
 

i.e. (θ1 +θ2 +θ3) < 1 which is a contradiction. Therefore, we must have equality in each of the requirements above. 
This means that 
 

                     (15) ∫
θ

αα=
0

dx)t,;x(f5.0

 
is to be satisfied for a finite α while t = (1 - θ) ⁄ θ. This is again a contradiction, as indicated in the Appendix.  
 
 Simultaneous minimization of all three terms in (13) to respective absolute minimum must therefore be 
ruled out. From now onwards, we assume θ1 ≤ θ2 ≤ θ3 without any loss of generity. However, a unique choice 
of αis may be made by selecting them in the ratio of the θis and by equating the highest marginal variance  
of the Xis to a given quantity V0.  In other words, we may start with  [α, aα, bα], where a = θ2 / θ1 , b = θ3 /θ1  
(1 ≤ a ≤ b), and seek to choose α using the variance requirement V0 on the largest of V(X1), V(X2) and V(X3), 
i.e., on V(X3). We can compute the value of AI and hence that of Q and examine its behaviour for variations in 
α for given (a, b), i.e. for given θ1, θ2 and θ3. In Tables 2, 3 and 4 we show the values of Q x 100 and ψ(α) in 
(13) for different values of θ1, θ2 ,θ3 as a function of V0 (or α). 
 
 Tables 2, 3 and 4 and also Figure 2 show that for higher values of V0, equal-demand distribution seems to 
yield less satisfactory results. We should therefore look at this case more carefully. In Table 5 we compare 

the relative ratios of Qi and Qj by using the measure RR(i, j) = %,100
)Q(Q

|Q-Q|

ji2
1

ji ×
+

where indices i and j 
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correspond to the settings in Tables 2, 3 and 4, respectively. Table 5 and also Figure 2 reveal that there is 
little difference among the realized Q values for different demand distributions whenever V0 is appreciably 
small. The comparison also shows that settings 1 and 2 likewise differ little, but a slight difference is obtained 
for large values of V0. For settings 1 and 3, and also for settings 2 and 3, the difference is fairly large except 
for notably small values of Vo.  
 
 The values of Ψ(α) and Q × 100 for different values of θ1, θ2, θ3 as a function of V0 (or α). 
 

Table 2. θ1 = 0.17, θ2 = 0.38, θ3 = 0.45 

                           a =
1

2
θ
θ = 2.23529, b =

1

3
θ
θ = 2.64706 

 
V0 α ψ(α) 100Q 

.010  4.04 0.219 112.3 

.020 1.93 0.312 118.5 

.030 1.23 0.385 123.8 

.040 0.88 0.447 128.8 

.050 0.67 0.504 133.6 

.075 0.39 0.625 145.5 

.100 0.25 0.733 157.8 

.125 0.17 0.831 171.1 

.150 0.11 0.923 185.7 

.175 0.070 1.011 202.1 

.200 0.040 1.095 221.0 
 

Table 3. θ1 = 0.1, θ2 = 0.45, θ3 = 0.45 

                                       a =
1

2
θ
θ = 4.5, b =

1

3
θ
θ = 4.5 

  
V0 α ψ(α) 100Q 

.01 2.38 0.209 111.6 

.02 1.14 0.296 117.4 

.03 0.73 0.364 122.3 

.04 0.52 0.422 126.8 

.05 0.47 0.474 131.1 

.075 0.23 0.588 141.6 

.10 0.15 0.687 152.4 

.125 0.098 0.778 163.7 

.15 0.065 0.864 176.1 

.175 0.041 0.946 189.8 

.20 0.024 1.025 205.2 
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Table 4. θ1 = ,
3
1  θ2 = ,

3
1  θ3 = 

3
1  

                 a =
1

2
θ
θ = 1.0, b =

1

3
θ
θ = 1.0. 

V0 α ψ(α) 100Q 
.01 7.07 0.215 113.7 
.02 3.37 0.345 120.8 
.03 2.14 0.426 127.1 
.04 1.52 0.496 133.0 
.05 1.15 0.560 138.8 
.075 0.65 0.699 153.9 
.10 0.41 0.823 170.0 
.125 0.26 0.938 188.3 
.15 0.16 1.045 209.5 
.175 0.090 1.148 234.8 
.20 0.037 1.247 265.8 

 
 
 
 
 
 
 
 
 

 
1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

            
 

                
 
 
 

                              Vo
 

Figure 2. Graph displaying Q × 100 vs. V0 for different settings in Example 2.1. 
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Table 5. Relative ratio of Q values defined as RR(i,j) = %,100
)Q-(Q
|Q-Q|

ji2
1

ji ×  

              where i and j refer to two different demand distributions. 
 

V0 RR(1,1) RR(1,3)) RR(2,3) 
.01  0.60 1.26 1.86 
.02 0.95 1.95 2.89 
.03 1.27 2.58 3.85 
.04 1.58 3.21 4.79 
.05 1.89 3.85 5.74 
.075 2.69 5.60 8.29 
.10 3.51 7.43 10.94 
.125 4.38 9.58 13.94 
.15 5.30 12.06 17.33 
.175 6.30 14.96 21.21 
.20 7.42 18.41 25.74 

 
   The computations in this section were carried out using Mathematica (Wolfram, 1999) and R software (Venables 
& Ripley 2002) environments. The software code is available from the authors on request. 
 
3. DISCUSSION 
 
 In this paper we have initiated a statistical study of the Apportionment Index (AI) by considering it as a 
random variable and by seeking maximization of its average value. We have developed the necessary theory 
and computational aspects for this problem in the case of two and three locations. Our results rely on a 
specification of the distribution of the underlying random variable(s) which is taken to be beta (Dirichlet). The 
general case is yet to be taken up. There is also scope for a Bayesian analysis of this problem by considering 
the target parameters (θ) to be random and taking appropriate priors for them. 
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A P P E N D I X  
 
STATEMENT I  
 
 Define 

             ∆(r; α, tα) = 

∫

∫
−α−α

−α−α

−

−

1

0

1t1

r

0

1t1

dx)x1(x

dx)x1(x

 .         (16) 

 
 Then ∆(r; α, tα) ↑ in t, ∀α > 0, ∀r ∈ (0,1).  
 
Proof. 
 
 Taking the first derivative and requiring it to be positive, we end up, after simplification, with the inequality  
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which is equivalent to 
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 Then, comparing term by term, we require 
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 We can now simplify the above and demand: 
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 Note next that on the left-hand side, xj ≤ rj, while on the right, xj ≤ rj, and this is true for all j = 0, 1, 2,… 
Therefore  
 

left-side integral < rj
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while 

right-side integral > rj
⎟
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 Hence the claim is settled.  
 
 It thus follows that ∆(r; α, t1α) ≤ ∆(r; α, α) ≤ ∆(r; α, t2α), ∀t1 < 1 < t2, ∀α > 0, ∀r ∈ (0,1). 
 
STATEMENT II 
 
 With the ∆ function defined as in Statement I, ∆(r; α, tα) = 0.5 is possible only when t (1 - r)/r, according as 

r 0.5 whatever be the value of α. 

<
>

<
>

 
 A satisfactory analytical proof of Statement II has so far eluded us. However, we have carried out extensive 
numerical computations and our results support the claim. In Table 6 we display some of the computations 
(see also Figure 3). 
 
 
 
 
 
 
 

 
Figure 3.  
Graph showing t(α) as a function  
of α satisfying the equation 

∫ =−
αα

−−
r

0

1tα1α 0.5dxx)(1x1
)t,(B

 

for some selected values of r  
 
(r = 0.05, 0.1,…,0.45).  

The values of t0(r) = 1
r
1

−  

are also indicated along the t-axis. 
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Table 6. Table showing selected values of r and t for different values of α. The values of t0 (r) = 
r
1 - 1 

      are also shown in the table. 
 

∫ =−
αα

−α−α
r

0

1t1 5.0dx)x1(x
)t,(B

1  

 
r 

α 
  .05   .10   .15   .20   .25  .30 .35   .40 .45 

0.2 3.642 2.240 1.919 1.647 1.465 1.331 1.226 1.139 1.065 
0.4 7.787 4.126 2.883 2.247 1.855 1.585 1.386 1.231 1.105 
0.6 10.583 5.310 3.544 2.655 2.117 1.754 1.491 1.290 1.131 
0.8 12.340 6.068 3.973 2.923 2.290 1.866 1.560 1.329 1.147 
1.0 13.513 6.579 4.265 3.106 2.409 1.943 1.609 1.357 1.159 
1.2 14.344 6.942 4.474 3.238 2.496 2.000 1.645 1.377 1.168 
1.4 14.960 7.213 4.629 3.337 2.560 2.042 1.671 1.392 1.175 
1.6 15.433 7.421 4.750 3.413 2.611 2.075 1.692 1.405 1.180 
1.8 15.809 7.587 4.845 3.474 2.651 2.102 1.709 1.414 1.184 
2.0 16.113 7.721 4.923 3.524 2.684 2.123 1.723 1.422 1.188 
2.5 16.670 7.967 5.066 3.615 2.744 2.163 1.748 1.437 1.194 
3.0 17.048 8.134 5.163 3.677 2.785 2.190 1.766 1.447 1.199 
3.5 17.320 8.255 5.233 3.722 2.815 2.210 1.778 1.454 1.202 
4.0 17.526 8.346 5.286 3.755 2.837 2.225 1.788 1.460 1.204 
5.0 17.817 8.475 5.361 3.803 2.869 2.246 1.801 1.465 1.208 
6.0 18.011 8.561 5.411 3.836 2.891 2.260 1.810 1.473 1.210 
7.0 18.151 8.623 5.447 3.859 2.906 2.271 1.817 1.477 1.212 
8.0 18.256 8.670 5.474 3.876 2.918 2.278 1.822 1.479 1.213 
9.0 18.338 8.706 5.495 3.890 2.927 2.284 1.826 1.482 1.214 

10.0 18.404 8.735 5.512 3.901 2.934 2.289 1.829 1.483 1.215 
20.0 

t 

18.701 8.867 5.589 3.950 2.967 2.311 1.843 1.492 1.219 
 t0 19.000 9.000 5.66667 4.00 3.000 2.33333 1.85714 1.50 1.22222 
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